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Abstract

Document Visual Question Answering (VQA)
models have evolved at an impressive rate over
the past few years, coming close to or match-
ing human performance on some benchmarks.
We argue that common evaluation metrics used
by popular benchmarks do not account for the
semantic and multimodal groundedness of a
model’s outputs. As a result, hallucinations
and major semantic errors are treated the same
way as well-grounded outputs, and the evalu-
ation scores do not reflect the reasoning capa-
bilities of the model. In response, we propose
a new evaluation methodology that accounts
for the groundedness of predictions with regard
to the semantic characteristics of the output
as well as the multimodal placement of the
output within the input document. Our pro-
posed methodology is parameterized in such
a way that users can configure the score ac-
cording to their preferences. We validate our
scoring methodology using human judgment
and show its potential impact on existing pop-
ular leaderboards. Through extensive analy-
ses, we demonstrate that our proposed method
produces scores that are a better indicator of
a model’s robustness and tends to give higher
rewards to better-calibrated answers.

1 Introduction

Visual Question Answering (VQA) over multi-
modal documents requires joint reasoning over tex-
tual, spatial, and visual signals. Several bench-
marks have been proposed to measure the per-
formance of SotA models on this task, includ-
ing single-page and multi-page VQA (Mathew
et al., 2021; Tito et al., 2023; Mathew et al., 2022;
Van Landeghem et al., 2023; Tito et al., 2021).
In these benchmarks, the ground truth answer is
expressed as a sequence of tokens and evaluated
against the sequence of tokens produced by each
model. As such, the evaluation metrics used by
these benchmarks focus on the surface similarity

between the model output and the ground-truth an-
swer. This misses two key aspects of the model’s
output: 1) Is it aligned with the expected semantic
category? For example, if the ground truth is a
number, is the model also producing a number? 2)
Can it be located within the input document? In
other words, is the model hallucinating a response
or is it generating something based on the docu-
ment (even if it is wrong)? Grounded responses
help determine the provenance of the model output
and verify its accuracy.

Figure 1 and Table 1 illustrate this using an exam-
ple from the DocVQA benchmark (Mathew et al.,
2021), which uses Normalized Levenshtein Dis-
tance as its evaluation metric (Levenshtein, 1966).
Given the two excerpts from an image document in
Figure 1, two questions are listed in Table 1. The
first question, “How many mgs of iron is in en-
riched farina?”, requires the model to reason over
a tabular structure and produce the answer “12”.
If the model produces “26” as the answer, it will
be rewarded by a score of 0.5 because “26” shares
one digit with the ground-truth answer, “12”. In
contrast, if the model produces “8.5” as the answer,
it will not be rewarded, as there is no overlap with
the ground-truth. This is potentially problematic,
as the first answer is not mentioned anywhere on
the page, and can therefore be considered halluci-
natory. The second answer, although inaccurate,
captures a number that is present in the table in
Figure 1a, and is located on the same column as
the ground-truth, potentially signifying some level
of tabular reasoning by the model. A more robust
evaluation metric would provide a small reward to
the second answer, and give the first answer a score
of 0.0.

Another question, “How much added iron do
premodified infant formulas contain?”, requires
verbal reasoning over the paragraph in Figure 1b.
If a model responds by “up to 12 mgs”, it is pe-
nalized for its surface dissimilarity to the ground-
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(a) Tabular snippet. (b) Text snippet.

Figure 1: Two excerpts from an image document from the DocVQA dataset (Mathew et al., 2021).

Table 1: Two example questions based on the snippets in Figure 1. The “NLS” column shows the score awarded to
hypothetical answers for each question using the NLS metric (Mathew et al., 2021). In “Ours”, we show how our
proposed score is calculated.

Question Context GT
Answer

Predicted
Answer NLS

SMuDGE (Ours)
Match
Score

Grounding
Score Composite

Score
(α = 0.25)Text

Score
Num
Score Agg. Horizontal

Distance
Vertical
Distance Agg.

How many mgs of
iron is in enriched farina?

Figure 1a 12
26 0.5 - 0.0 0.0 - - 0.0 0.0
8.5 0.0 - 0.0 0.0 ∼ 0.0 0.2 0.02 0.01

How much added iron
do premodified infant
formulas contain?

Figure 1b
up to 12
milligrams

up to
12 mgs

0.58 0.59 1.0 0.74 0.0 0.0 1.0 0.93

up to 1z
milligrams

0.95 0.94 0.0 0.0 0.0 0.0 1.0 0.75

truth answer, “up to 12 milligrams”. In contrast,
if the model produces “up to 1z milligrams”, it is
awarded a higher score because its answer has a
larger overlap with the ground-truth. Again, this is
problematic, as the second answer misrecognizes a
key component of the ground truth (i.e. the num-
ber) and as such indicates a completely inaccurate
quantity. A more robust evaluation metric should
reward a higher score for the first answer than for
the second.

In this paper, we propose a new evalua-
tion methodology, which we name Semantics
and MUltimodal Document Grounded Evaluation
(SMuDGE). SMuDGE addresses the above issues
by grounding the similarity score in the expected
output type (i.e. numeric, textual, or hybrid an-
swers). We also add a new component—a mul-
timodal grounding score that determines whether
the model’s output is located within the input doc-
ument, and where it is located in relation to the
ground-truth. In the Document AI literature, this
form of multimodal grounding is also referred to
as localization (Karatzas et al., 2015).

As Nourbakhsh et al. (2024) argued, ground-
ing is an important requirement (and challenge)
for the operationalization of Document VQA mod-
els especially in enterprise domains. Nevertheless
it is difficult to determine how much grounding
might matter to one downstream application ver-

sus another. Therefore, we design our evaluation
approach to accommodate different settings by al-
lowing users to set the preferred weights for each
component.

Concretely, our study makes the following con-
tributions to the field:

1. We propose a new evaluation framework
(SMuDGE) that accounts for the grounded-
ness of outputs and the semantic type of the
output. We design SMuDGE to be config-
urable and easy to tune for downstream appli-
cations.

2. Using SMuDGE, we re-evaluate the perfor-
mance of SotA models on four common Doc-
ument VQA benchmarks, and analyze the
impact of grounding on the ranking of each
leaderboard.

3. We perform a detailed analysis of the types
of questions and answers most impacted by
grounding-sensitive criteria, and propose a
configurable setting that allows the down-
stream users of each model to tune the evalua-
tion to their needs.

4. Our analyses show that SMuDGE produces
scores better aligned with human preferences.

5. We experimentally demonstrate that better-
grounded generation is associated with better
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calibrated outputs.

6. Lastly, our analyses show that SMuDGE re-
wards models that are more robust to varia-
tions in tasks and datasets.

2 Background

In recent years, generative multimodal models have
made major strides in Visual Question Answer-
ing over image documents. As an example, as of
January 2025, the top-performing model on the
DocVQA leaderboard is within 2 points of human
performance1.

A key challenge of generative models is that their
output is difficult to ground within the input docu-
ment (Zmigrod et al., 2024b) (this is also known
as the challenge of localization (Karatzas et al.,
2015)). Localization is a common requirement in
many real-world applications, especially in enter-
prise domains where maintaining a proper lineage
of data is crucial from a governance perspective
(Nourbakhsh et al., 2024). Since generative mod-
els produce sequences that are sampled from their
vocabulary, they are not guaranteed to generate an-
swers that are based on the input, unless forced
to do so via grounded decoding (e.g. as in (Qian
et al., 2024)). This in turn makes it difficult to
detect hallucinations, establish the provenance of
the model’s generations, or measure the reliability
of its outputs, all of which limit the applicability
of such models in many enterprise domains (Nour-
bakhsh et al., 2024).

This problem is compounded by the fact that
most popular Document VQA benchmarks do not
account for grounding in their evaluation criteria. A
common metric used by these benchmarks is Aver-
age Normalized Levenshtein Similarity (ANLS), as
proposed by Mathew et al. (2021), which measures
the similarity between the ground truth and pre-
dicted answers based on their edit distance. As an
example, the words ‘apple’ and ‘app1e’ have a Lev-
enshtein distance of 1, a normalized Levenshtein
distance of 0.2, and an NLS of 1−0.2 = 0.8. If the
score for a ground-truth/prediction pair is below
a predefined threshold (typically set to 0.5 (Biten
et al., 2019; Tito et al., 2023; Mathew et al., 2022;
Peer et al., 2024)), the score is flattened to zero,
otherwise the raw similarity score is used.

The flexibility that the NLS metric provides al-
lows the benchmarks to handle minor errors such as

1https://rrc.cvc.uab.es/?ch=17&com=evaluation&
task=1

character misspellings resulting from poor Optical
Character Recognition, without over-penalizing the
models. Contrast this with a metric that relies on
n-gram overlap metrics, or cosine similarity of dis-
tributed representations. Such metrics might con-
sider “apple” and “app1e” to be very dissimilar
words, given a single-character difference between
them (where the the letter “l” has been replaced
by the digit “1”). Nevertheless, relying solely on
surface similarity carries other risks for robust eval-
uation: 1) Surface similarity does not account for
how a small change in the characterization of an
answer can impact its meaning (e.g. changing a
single digit in a number can change its value by a
large magnitude). 2) Surface similarity cannot dis-
tinguish between answers that can be traced back
to the input document, and those that can result
from hallucination.

More recently, some studies have noted the short-
comings of common evaluation metrics in the field
of multimodal document understanding, and pro-
posed alternatives (Zmigrod et al., 2024a). Most
notably, Peer et al. (2024) proposed ANLS*, a
data-type-aware metric that can be used for single
or multi-piece extraction and QA over documents.
While it addresses many challenges of the ANLS
metric, ANLS* is not designed to capture the multi-
modal groundedness of model outputs. In contrast,
we focus on the challenge of measuring grounded-
ness for extractive VQA over documents, where
correct answers are guaranteed to be expressed in
the input. We propose a configurable evaluation
method that not only accounts for the groundedness
of predictions, but also incorporates the semantic
type of the output, similar to ANLS*. To the best
of our knowledge, this is the first study that ex-
amines the impact of groundedness in evaluating
Document VQA models. The following section
describes our proposed approach in detail.

3 Proposed methodology

To measure the impact of groundedness in Docu-
ment VQA performance, we develop a composite
score to rate the output of each model. To ensure
that the score can be applied to all models and
benchmarks, we assume access to four objects only:
1) The question. 2) The ground truth answer. 3)
The answer provided by the model. 4) A dictionary
of words and corresponding bounding box coor-
dinates extracted from the input document. This
dictionary can be obtained by applying any OCR
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tool to the document, though the quality of char-
acter recognition often differs between different
providers. Most benchmarks provide this dictio-
nary as part of their data release.

In the next two subsections, we describe how
we calculate two subscores: 1) The multimodal
grounding score addresses the question of whether
the predicted answer can be located within the input
document, and if so, where it is located with respect
to the ground truth answer. 2) The type-aware sur-
face similarity score evaluates the predicted answer
based on its type, i.e. numeric, textual, or hybrid.

3.1 Multimodal groundedness
Given a question qi, a ground truth answer ti, and
a predicted answer ai, we develop a score gi that
places ai within the originating document (com-
posed of words w1, w2, · · · , wN and correspond-
ing bounding boxes b1, b2, · · · , bN ) and measures
its distance to ti. We do this in two steps:

Locating the predicted answer (ai) and the
ground truth (ti) within the document. To lo-
cate ti within the document, we find a continu-
ous sequence of words wk, wk+1, · · · , wk+n that
matches ti.2 If no such segment is found (say, due
to OCR errors), then we find a sequence that has the
highest Normalized Levenshtein Similarity (NLS)
to ti. We name this sequence wti and the corre-
sponding bounding box bti , which is calculated by
merging bk, bk+1, · · · , bk+n

3. Similarly, we find
the sequence wai and the corresponding bounding
box bai by placing ai within the document. Note
that ai is not guaranteed to be found on the page,
for instance in case of hallucinations. If we can’t
find a wai such that NLS(ai, concat(wai)) > 0.34,
then we define bai as:

[bleft
ti ,btop

ti
,−widthi − bright

ti
,−heighti − bbottom

ti
]

(1)

where bleft
. ,btop

. ,bright
. ,bbottom

. indicate the
four coordinates of the bounding box b. and

2Note that a multimodal document is a 2-D artifact, and
therefore a “continuous sequence” can extend in multiple
directions, depending on the reading order of the page. Most
commercial OCR packages such as Textract segment each
page based on semantic information, e.g. an address block is
presented as one segment, even if it contains multiple lines.
We therefore rely on the segments provided by these packages
to determine continuity. In the absence of such information, a
graph representation of the document can be used as a proxy.
In Appendix A, we provide an algorithm that can be used to
ground the sequence using this graph representation.

3See Appendix B.1 for additional details.
4See Appendix B.5 for more information on how this

threshold was selected.

widthi, heighti indicate the width and height of
the page, respectively. In other words, we use the
bounding box of the ground-truth answer ti and
mirror its bottom right corner in the negative space.
This ensures that the distance between bti and bai

is measured as 1 (see below).
Measuring the distance. Next, we measure di,

the distance between bai and bti . We do this by
first finding the centroid of each bounding box, and
then measuring the Normalized Manhattan Dis-
tance (NMD) between the centroids.5 In other
words:

di = (2)

| bright
ti

2×widthi
− bleft

ti
2×widthi

− bright
ai

2×widthi
+

bleft
ai

2×widthi
|+

| bbottom
ti

2×heighti
− btop

ti
2×heighti

− bbottom
ai

2×heighti
+

btop
ai

2×heighti
|

If the predicted answer ai cannot be located
within the document, the formulation presented
in Equation 1 yields di = 1. Note that 0 ≤ di ≤ 1.

Finally, we calculate the grounding score gi
by applying an exponential decay function to di:

gi = e
−di
1−di . Note that the score rewards cases

where bti and bai are close, or horizontally/verti-
cally aligned (due to lower Manhattan Distance)
with the reward dropping exponentially with dis-
tance. The exponential decay function was demon-
strated to best represent positional information in
unimodal text in Chi et al. (2022), and extended to
multimodal documents in Wang et al. (2023).

3.2 Type-aware surface similarity

To measure mi, the surface match score between
ti and ai, we follow the below criteria:

1. If ti is textual6, we use the NLS metric.

2. If ti is numeric, we use a binary score that in-
dicates whether the predicted answer matches
the ground truth exactly. We allow some flex-
ibility in the match, for example numbers
scaled by 100, thousand, million, or billion
are considered a match. This is to account
for different expressions of percentages, basis
points, financial metrics, etc.

3. If ti is composed of both textual and numeric
characters, we first create substrings numai ,

5See Appendix B.2 for a discussion of alternative distance
normalization methods.

6See Appendix B.3 for additional details.
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strai , numti , and strti by extracting the nu-
meric and non-numeric characters of ai and ti,
respectively. Next, we calculate the number-
based and text-based scores for each substring
according to the above criteria. The final score
is a weighted harmonic mean of the two sub-
scores: 11

10
num_scorei

+ 1
str_scorei

.7 Note that the model

has to get the numeric part of the answer cor-
rectly to be rewarded higher.

3.3 Composite metric

Given the mutimodal grounding score gi and type-
aware match score mi, we propose the following
composite score parameterized by α:

si = αmi + (1− α)gi (3)

Note that α = 0 yields the grounding score and
α = 1 yields the type-aware match score. The
configurability of the α parameter allows users to
tune it on a validation set of their choice, or, as we
will show in Section 5.3, to optimize it such that it
rewards well-calibrated outputs.

4 Experiments

Given the composite score proposed in Section 3.3,
we investigate the impact of groundedness on four
prominent Document VQA benchmarks.

DocVQA (Mathew et al., 2021) is a visual
question-answering (VQA) dataset designed specif-
ically for document images. It contains over 12,000
document images sourced from scanned business
forms, reports, and invoices, among others. The
dataset is structured with over 50,000 question-
answer pairs, and questions are broken down into
9 categories, indicating the context of the correct
answer (e.g. “Free_text”, “Layout”, “Figure/Dia-
gram”, etc.). This breakdown is not available for
the text collection. Therefore we determine the
type of each question using GPT-4o (gpt)8. Next
we remove questions in the “Yes/No” category to
filter potentially abstractive questions. This results
in 5,130 questions in the final dataset.

InfographicVQA. (Mathew et al., 2022) is a
dataset aimed at visual question answering over
complex infographic documents. The dataset in-
cludes over 5,000 infographic images and over
30,000 questions that require reasoning over text,

7See Appendix B.4 for additional details.
8Please see Appendix C for details.

charts, and images embedded within the info-
graphic. We filter multi-piece answers from the
test collection, resulting in 3,272 samples.

MP-DocVQA (Tito et al., 2023) focuses on
multi-page documents. It consists of over 46,000
question-answer pairs from 6,000 multi-page docu-
ments. We use 5,019 questions in the test set.

DUDE (Van Landeghem et al., 2023) is a docu-
ment understanding dataset focused on structured
documents such as forms, invoices, and tables.
It includes around 5,000 documents and 41,000
question-answer pairs. We limit the test collection
to single-piece extractive questions, resulting in
2,552 samples.

For each sample in each dataset, we calculate
the NLS as well as the composite score, with α set
to increments of 0.05 in the [0, 1] range.

5 Analysis

Throughout most of our experiments, we set α =
0.25, as it proves optimal based on the calibration
analysis provided in Section 5.3. Since α is opti-
mized on the DUDE dataset, we have not included
this dataset in any of the analyses that use this opti-
mal value for α.

5.1 Leaderboard analysis

We first analyze how SMuDGE can affect the rank-
ings produced by Document VQA benchmarks.
Figure 2 illustrates this using the top 10 models9

on the DocVQA leaderboard. The leftmost col-
umn of the figure shows the original ANLS-based
ranking10. The second column shows how the
ranking changes if we switch to SMuDGE with
α = 0.25. As the figure shows, human perfor-
mance and QWen2-VL (Wang et al., 2024) remain
stable, but all other models move by at least one
position on the leaderboard. The middle segment
of the figure shows how the models would rank
based on the type of question. Certain question
types such as “Figure/Diagram” and “Table/List”
offer little volatility, but for questions that fall under
“Handwritten” or “Other”, the volatility is higher.11

9As of September 2024.
10Note that our ANLS-based rankings could be slightly

different from the leaderboard, since we have filtered the ques-
tions per Section 4.

11An example of a question classified as “Other” is: “What
does GCC stand for?” requiring the model to infer that an
acronym mentioned on one part of a page is related to an entity
mentioned on a different part. This category of questions
constitutes about 0.2% of the DocVQA dataset, and can be
considered negligible.
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The middle segment of the figure also shows that
some models such as SMoLA-PaLI-X (Wu et al.,
2024) are better at answering questions based on
“Free_text” contexts, whereas they struggle with
“Table/List” questions compared to other models.

The right segment of the figure shows the rerank-
ings broken down by the type of answer. As ex-
pected, textual answers offer the closest ranking
to the original one produced by ANLS, whereas
numeric and hybrid answers perturb the ranking of
the leaderboard. Notably, humans remain the top
performer for textual and hybrid answers, but fall
behind two other models in the numeric category.
This can be attributed to the human tendency to
rephrase certain entities such as numbers and dates.
For example, in Question #3027, the ground truth
answer “(16.1%)” is rephrased as “-16.1%” by hu-
man respondents, and for question #3290, “1,700”
is modified as “about 1,700”.

Figure 3 shows the correlation between rankings
produced by ANLS and by our composite score
with α = 0.25. Following Alzahrani et al. (2024),
we calculate the correlation based on a two-tailed
Kendall’s τ analysis. Note that the y-axis on Fig-
ure 3 begins at 0.70. As the figure shows, ques-
tions with textual answers are the least affected by
switching to our score, but numeric and hybrid an-
swers impact the ranking by a larger margin. This is
expected as the text-only version of our score is the
closest to ANLS. Of the three benchmarks shown in
the figure, InfographicVQA is most affected by our
score, whereas DocVQA and MP-DocVQA retain
a strong correlation with their original rankings. As
evidenced by Figure 2, this strong correlation does
not indicate a stable leaderboard, but one where the
models move by ±d, where d is a small number.

5.2 Question type analysis
Figure 4 shows the correlation between our com-
posite score and the original ranking of the
DocVQA leaderboard for each question type. As
expected, moving from small values of α (weighing
groundedness more that type-aware similarity) to
large values (weighing type-aware similarity more
than groundedness), moves the rankings closer to
the original ANLS ranking. This is especially true
of the “Free_text” category, where our score comes
closest to ANLS. Once again, “Other” is the outlier
category, which can be safely ignored due to its
small sample size. The remaining categories show
a similar trend, further establishing that grounded-
ness is not accounted for in ANLS-based rankings.

5.3 Association with calibration

The DUDE dataset provides the confidence scores
produced by each model (when available). This en-
ables the benchmark to report Expected Calibration
Errors (ECE) (Pakdaman Naeini et al., 2015), indi-
cating if the models are wrongfully over or under-
confident about the accuracy of their output. We
use this metric to determine whether our proposed
score can account for accuracy through calibrated-
ness. To do this, we map the score at various α’s
against the calibration error of each model, and cal-
culate the Pearson-R correlation between the two.
The results are displayed in Figure 5. As the figure
shows, at small values of α (focusing on ground-
edness), there is a negative correlation with ECE,
indicating that a higher score is correlated with a
lower ECE. As α increases and the score shifts
towards surface similarity, the association moves
towards positive, crossing 0 around α = 0.5. This
trend can be observed for all categories of questions
except “Textual” questions, which enforce surface
similarity at all α values. The optimal value for α,
which minimizes the correlation with ECE across
most categories lies at around α = 0.25.

5.4 Association with robustness

Next, we inspect the association between SMuDGE
and the robustness of a given model. Robustness is
not a formally defined term in the Document VQA
field, but can be interpreted as a model’s consis-
tent performance across different settings, bench-
marks, and sample types. Therefore, we define
robustness as the volatility12 of a model’s ranking
when evaluated on various subsets of questions (e.g.
textual, numeric, hybrid, or all questions at once).
We plot this volatility against the volatility of a
model’s scores, using the DocVQA, MP-DocVQA,
and InfographicVQA benchmarks. Figure 6 shows
the results using ANLS as well as SMuDGE with
α = 0.25. Each dot represents one model, with red
dots representing models evaluated using ANLS,
and blue dots representing models evaluated by
SMuDGE. As the regression lines in the figure
show, both approaches maintain a positive trend
between the volatility in scores and rankings. In
other words, models with stable rankings tend to
have stable scores as well. However, the positive
trend is stronger for our score compared to ANLS,
with a small but statistically significant regression
coefficient of 0.58 (compared to ANLS’s 0.33).

12See Appendix B.6 for additional details.
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Figure 2: The rankings of the top 10 models on the DocVQA leaderboard, before and after applying our composite
score with α = 0.25. Left segment: Rankings based on ANLS versus our score. Middle segment: Our rankings
broken down by question type. Right segment: Our rankings broken down by answer type.

Figure 3: The correlation between the rankings pro-
duced by our method (with α = 0.25) and the original
ANLS-based ranking, broken down by the type of an-
swer. All τ values are significant at p≪ 0.05.

Next, to present a qualitative view of how our
score can reward robust models, we calculate a
robustness score for each model in the DocVQA
benchmark. To do this, we scale a model’s rank
volatility by its median rank. This ensures that
if a model is stable across rankings, it receives
a high robustness score, unless it is a gener-
ally poor performing model (e.g. a model that
comes last in all rankings). Table 3 lists the top-
5 models identified using this technique. The
ANLS-based models reflect the default ranking
of the DocVQA leaderboard, with Humans lead-
ing the group, followed by Large MLMs such as
QWen2-VL (Wang et al., 2024) and InternVL2-
Pro/InternVL-1.5 (Chen et al., 2024).

Figure 4: Kendall’s τ rank correlation with the original
DocVQA leaderboard, broken down by question types.
All τ values are significant at p≪ 0.05.

In contrast, our score produces a ranking that in-
cludes a Small MLM, namely, Arctic-TILT (Borch-
mann et al., 2024). As of October 2024, this model
is ranked 11 on the DocVQA leaderboard, above
all other Small MLMs and a few Large MLMs. In
addition, it is ranked 1st on the MP-DocVQA and
DUDE leaderboards. No other models listed in
the ANLS column show the same level of cross-
benchmark robustness. Similarly, Molmo-72B
(Deitke et al., 2024) is 4th on the InfographicVQA
benchmark. The strong cross-benchmark rankings
indicate that our method can generate rankings that
reward robust models.
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Table 2: Five samples from the human preference study, showing cases where the human judges preferred our score,
NLS, or neither scores. In the latter case, the human judges preferred equal scores for Models A and B.

Dataset Question GT Model A Model B Human pick

DocVQA
What is the vitamin A requirement
(in I.U.) for a ’lactating’ mother ?

“1,000 i.u. plus
basic requirements”

“basic requirements” “1,000”
SMuDGENLS: 0.54 NLS: 0.0

Ours: 0.0 Ours: 0.62

MP-DocVQA What is the day and date of Meeting?
“thursday 22
october”

“thursday” “saturday 24 october”
SMuDGENLS: 0.0 NLS: 0.74

Ours: 0.81 Ours: 0.25

InfographicVQA
Which age group uses social media
the most?

“18-29
year olds”

“18-29 group” “18-24 year olds”
SMuDGENLS: 0.53 NLS: 0.93

Ours: 0.98 Ours: 0.0

DocVQA What is the date of the letter? “august 1, 1983”

“The date of the letter
is August 1, 1983.”

“August 1983”
Neither

NLS: 0.0 NLS: 0.78
Ours: 0.97 Ours: 0.0

InfographicVQA
What is the estimated number
(in billions) of social media
users around the globe by 2019?

“2.72”
“#infographic” “2. 72”

ANLSNLS: 0.0 NLS: 0.8
Ours: 0.0 Ours: 0.0

Figure 5: Pearson R correlation with the calibration
error of models based on the DUDE leaderboard, broken
down by answer type.

Table 3: Top-5 models based on robustness rankings
produced by ANLS versus our score (with α = 0.25).

ANLS SMuDGE
1 Human 1 Human
2 QWen2-VL 2 QWen2-VL
3 InternVL2-Pro 3 InternVL2-Pro
4 QWenVL-Max 4 Molmo-72B
5 InternVL-1.5-Plus 5 Snowflake Arctic-TILT

5.5 Human evaluation

We used human judgment to assess the validity
of our scores compared to ANLS. To do this, we
used data from three benchmarks: DocVQA, MP-
DocVQA, and InfographicVQA. In each bench-
mark, we sampled questions and a pair of an-
swers produced by two models, indicated by model
A and model B (different models could be se-
lected for each sample). We limited the samples
to cases where model A’s NLS score was higher
than B, but SMuDGE scored B higher than A, or
vice versa. We sampled up to 100 such question-

Figure 6: The mean volatility of each model’s score
versus its ranking. Red dots represent ANLS scores and
blue dots represent SMuDGE with α = 0.25.

answers triplets from each benchmark13. Three
researchers were presented with these triplets, as
well as the ground truth answer, and asked which
model they thought should be scored higher. The
annotations produced a mean Cohen’s κ of 0.82,
indicating a high level of agreement. We filtered
the annotations to those on which at least two an-
notators agreed. This resulted in 28 samples for
DocVQA, 86 samples for MP-DocVQA, and 66
samples for InfographicVQA.

Figure 7 shows the annotators’ agreement rates
with NLS versus our score. The “Neither” bucket
indicates that the annotators believed the models
should have been scored equally. As the figure
shows, annotators agreed with SMuDGE in the
majority of cases across all three benchmarks, indi-
cating that our approach is better aligned with hu-
man judgment. We observe that InfographicVQA,
which yielded the highest rate of agreement with
NLS, contains the largest number of misspelled

13Some datasets had fewer qualifying triplets.
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numbers, as seen in the last row of Table 7. This
could be a result of the complex layout and design
of infographics.

Figure 7: Human preference for pairwise rankings pro-
duced by NLS versus SMuDGE (with α = 0.25).

6 Conclusion

In this study, we showed how popular evaluation
metrics such as ANLS can miss important nuances
when used to analyze Document VQA models. In-
stead, we proposed SMuDGE, a new metric that
is sensitive to the groundedness of the models’
outputs. Through extensive analyses, we showed
how SMuDGE is better aligned with human judge-
ment as well as the calibratedness of the models.
Our analyses also showed that rankings produced
by SMuDGE were better indicators of a model’s
robustness across question types and in different
benchmarks. Our studies demonstrate the impor-
tance of groundedness in the performance and as-
sessment of Document VQA models. We hope that
in addition to presenting a new evaluation method,
our study inspires researchers to develop better
grounded Document VQA models.

7 Limitations

The analyses performed in this paper were all con-
ducted on single-span, extractive answers. To ex-
tend the grounding mechanism to multi-span an-
swers, the matching algorithm would need to han-
dle an arbitrary number of partitions, unless the
benchmark specifically identifies each span in its
test set annotations. Determining groundedness on
abstractive questions is a challenging task that is
outside of the scope of this study.

The methodology proposed in this study does
not account for semantic categories that go beyond
textual/numeric/hybrid forms, such as currencies,
dates, timestamps, etc. each of which come with

nuances that can be mishandled by solely consider-
ing surface similarity.

Since the α parameter was tuned on the DUDE
dataset, it was excluded from some of the other
analyses. The remaining benchmarks (DocVQA,
MP-DocVQA, and InfographicVQA) are all re-
leased as part of the same suite of tasks, with the
first two datasets being based on the same collec-
tion of documents. This can lead to biases in the
analyses that are based solely on these three bench-
marks. However, none of these benchmarks pro-
vided access to the confidence scores produced by
the models, and therefore could not be used to tune
α.

Lastly, the grounding algorithm mentioned in
Section 3.1 relies on the accuracy of the reading
order of each page, as presented in the OCR output.
As Zhang et al. (2023) point out, this can often
be noisy or misleading. Appendix A offers an al-
ternative, more generalizable, yet slower solution
using a walk over the β-skeleton presentation of
each page.
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Jaśkowski, Dawid Jurkiewicz, Piotr Halama, Paweł
Józiak, Łukasz Garncarek, Paweł Liskowski,
Karolina Szyndler, Andrzej Gretkowski, et al. 2024.
Arctic-TILT. Business document understanding at
sub-billion scale. arXiv preprint arXiv:2408.04632.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye,
Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, et al. 2024. How far
are we to GPT-4V? closing the gap to commercial
multimodal models with open-source suites. arXiv
preprint arXiv:2404.16821.

Ta-Chung Chi, Ting-Han Fan, Peter J. Ramadge, and
Alexander I. Rudnicky. 2022. Kerple: Kernelized rel-
ative positional embedding for length extrapolation.
ArXiv, abs/2205.09921.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun
Tripathi, Yue Yang, James Park, Reza Salehi, Niklas
Muennighoff, Kyle Lo, Luca Soldaini, Jiasen Lu,
Taira Anderson, Erin Bransom, Kiana Ehsani, Huong
Ngo, YenSung Chen, Ajay Patel, Mark Yatskar,
Chris Callison-Burch, Andrew Head, Rose Hendrix,
Favyen Bastani, Eli VanderBilt, Nathan Lambert,
Yvonne Chou, Arnavi Chheda, Jenna Sparks, Sam
Skjonsberg, Michael Schmitz, Aaron Sarnat, Byron
Bischoff, Pete Walsh, Chris Newell, Piper Wolters,
Tanmay Gupta, Jon Borchardt, Dirk Groeneveld, Jen
Dumas, Crystal Nam, Sophie Lebrecht, Caitlin Wit-
tlif, Carissa Schoenick, Oscar Michel, Ranjay Kr-
ishna, Luca Weihs, Noah Smith, Hannaneh Hajishirzi,
Ross Girshick, Ali Farhadi, and Aniruddha Kemb-
havi. 2024. Molmo and PixMo: Open weights and
open data for state-of-the-art multimodal models.

Dimosthenis Karatzas, Lluis Gomez-Bigorda, Angue-
los Nicolaou, Suman Ghosh, Andrew Bagdanov,
Masakazu Iwamura, Jiri Matas, Lukas Neumann, Vi-
jay Ramaseshan Chandrasekhar, Shijian Lu, et al.
2015. ICDAR 2015 competition on robust reading.
In 2015 13th international conference on document
analysis and recognition (ICDAR), pages 1156–1160.
IEEE.

Chen-Yu Lee, Chun-Liang Li, Chu Wang, Renshen
Wang, Yasuhisa Fujii, Siyang Qin, Ashok Popat, and
Tomas Pfister. 2021. ROPE: Reading order equivari-
ant positional encoding for graph-based document

information extraction. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 314–321, Online. Association
for Computational Linguistics.

V Levenshtein. 1966. Binary codes capable of correct-
ing deletions, insertions, and reversals. In Soviet
Physics-Doklady, volume 10, pages 707–710.

Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis
Karatzas, Ernest Valveny, and C.V. Jawahar. 2022.
InfographicVQA. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion (WACV), pages 1697–1706.

Minesh Mathew, Dimosthenis Karatzas, and C.V. Jawa-
har. 2021. DocVQA: A Dataset for VQA on Docu-
ment Images. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision
(WACV), pages 2200–2209.

Armineh Nourbakhsh, Sameena Shah, and Carolyn
Rose. 2024. Towards a new research agenda for mul-
timodal enterprise document understanding: What
are we missing? In Findings of the Association
for Computational Linguistics: ACL 2024, pages
14610–14622, Bangkok, Thailand. Association for
Computational Linguistics.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. 2015. Obtaining well calibrated proba-
bilities using bayesian binning. Proceedings of the
AAAI Conference on Artificial Intelligence, 29(1).

David Peer, Philemon Schöpf, Volckmar Nebendahl,
Alexander Rietzler, and Sebastian Stabinger. 2024.
ANLS*–A universal document processing metric for
generative large language models. arXiv preprint
arXiv:2402.03848.

Hongjin Qian, Zheng Liu, Kelong Mao, Yujia Zhou, and
Zhicheng Dou. 2024. Grounding language model
with chunking-free in-context retrieval. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1298–1311, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Rubèn Tito, Dimosthenis Karatzas, and Ernest Val-
veny. 2021. Document collection visual question
answering. In Document Analysis and Recognition–
ICDAR 2021: 16th International Conference, Lau-
sanne, Switzerland, September 5–10, 2021, Proceed-
ings, Part II 16, pages 778–792. Springer.

Rubèn Tito, Dimosthenis Karatzas, and Ernest Valveny.
2023. Hierarchical multimodal transformers for mul-
tipage docvqa. Pattern Recognition, 144:109834.

Jordy Van Landeghem, Rubèn Tito, Łukasz Borchmann,
Michał Pietruszka, Pawel Joziak, Rafal Powalski,
Dawid Jurkiewicz, Mickael Coustaty, Bertrand Anck-
aert, Ernest Valveny, Matthew Blaschko, Sien Moens,

5350

https://doi.org/10.18653/v1/2024.acl-long.744
https://doi.org/10.18653/v1/2024.acl-long.744
https://doi.org/10.18653/v1/2024.acl-long.744
https://arxiv.org/abs/1907.00490
https://arxiv.org/abs/1907.00490
https://arxiv.org/abs/2408.04632
https://arxiv.org/abs/2408.04632
https://arxiv.org/abs/2404.16821
https://arxiv.org/abs/2404.16821
https://arxiv.org/abs/2404.16821
https://api.semanticscholar.org/CorpusID:248965309
https://api.semanticscholar.org/CorpusID:248965309
https://molmo.allenai.org/paper.pdf
https://molmo.allenai.org/paper.pdf
https://ieeexplore.ieee.org/document/7333942
https://doi.org/10.18653/v1/2021.acl-short.41
https://doi.org/10.18653/v1/2021.acl-short.41
https://doi.org/10.18653/v1/2021.acl-short.41
https://openaccess.thecvf.com/content/WACV2022/papers/Mathew_InfographicVQA_WACV_2022_paper
https://openaccess.thecvf.com/content/WACV2021/html/Mathew_DocVQA_A_Dataset_for_VQA_on_Document_Images_WACV_2021_paper.html
https://openaccess.thecvf.com/content/WACV2021/html/Mathew_DocVQA_A_Dataset_for_VQA_on_Document_Images_WACV_2021_paper.html
https://doi.org/10.18653/v1/2024.findings-acl.870
https://doi.org/10.18653/v1/2024.findings-acl.870
https://doi.org/10.18653/v1/2024.findings-acl.870
https://doi.org/10.1609/aaai.v29i1.9602
https://doi.org/10.1609/aaai.v29i1.9602
https://arxiv.org/abs/2402.03848
https://arxiv.org/abs/2402.03848
https://doi.org/10.18653/v1/2024.acl-long.71
https://doi.org/10.18653/v1/2024.acl-long.71
https://link.springer.com/chapter/10.1007/978-3-030-86331-9_50
https://link.springer.com/chapter/10.1007/978-3-030-86331-9_50
https://doi.org/10.1016/j.patcog.2023.109834
https://doi.org/10.1016/j.patcog.2023.109834


and Tomasz Stanislawek. 2023. Document Under-
standing Dataset and Evaluation (DUDE). In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 19528–19540.

Dongsheng Wang, Zhiqiang Ma, Armineh Nourbakhsh,
Kang Gu, and Sameena Shah. 2023. DocGraphLM:
Documental graph language model for information
extraction. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’23, page
1944–1948, New York, NY, USA. Association for
Computing Machinery.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024. Qwen2-VL: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

Jialin Wu, Xia Hu, Yaqing Wang, Bo Pang, and Radu
Soricut. 2024. Omni-SMoLA: Boosting generalist
multimodal models with soft mixture of low-rank
experts. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
14205–14215.

Chong Zhang, Ya Guo, Yi Tu, Huan Chen, Jinyang
Tang, Huijia Zhu, Qi Zhang, and Tao Gui. 2023.
Reading order matters: Information extraction from
visually-rich documents by token path prediction.
arXiv preprint arXiv:2310.11016.

Ran Zmigrod, Zhiqiang Ma, Armineh Nourbakhsh, and
Sameena Shah. 2024a. TreeForm: End-to-end anno-
tation and evaluation for form document parsing. In
Proceedings of The 18th Linguistic Annotation Work-
shop (LAW-XVIII), pages 1–11, St. Julians, Malta.
Association for Computational Linguistics.

Ran Zmigrod, Pranav Shetty, Mathieu Sibue, Zhiqiang
Ma, Armineh Nourbakhsh, Xiaomo Liu, and
Manuela Veloso. 2024b. “What is the value of {tem-
plates}?” Rethinking document information extrac-
tion datasets for LLMs. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2024,
pages 13162–13185, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

A A β-skeleton based grounding
algorithm

Algorithm 1 describes a possible way to ground
a model output O within a page, without apriori
access to the reading order. First, a page is repre-
sented by a β-skeleton graph, similar to Lee et al.
(2021). Next, the first and last tokens of O are
matched to the page by finding all nodes (i.e. to-
kens) on the graph that have a Levenshtein similar-
ity to the first and last token, beyond a threshold T .
Lastly, all possible paths between such nodes are
found, and the path with the highest NLS to O is
selected as the matching path.

A threshold can be set on the score of the best
matching path S, below which the path is consid-
ered a mismatch and therefore no effective matches
are found on the page, e.g. in cases when the model
has hallucinated the output.

This algorithm ensures that any path that is
matched to O is within a contiguous 2-D walk on
the page, without the need for information related
to reading order. A major downside of this algo-
rithm is its quartic time complexity, which can be
improved by caching partial paths. Nevertheless,
we decided to use a simpler algorithm that relies
on the reading order provided by OCR tools.

B Additional experimental details

B.1 Merging bounding boxes

A sequence of bounding boxes can be merged by
finding the left-most, top-most, right-most, and
bottom-most corners in the sequence in order to
create a new bounding box. If all bounding boxes
in the sequence form a contiguous segment, merg-
ing them would yield their union. However, if the
bounding boxes are in disparate locations, this sim-
ple merging algorithm will not yield their union,
and will cover additional areas. As an example, if
a ground truth answer spans two lines, covering
the second half of one line and the first half of the
next, the merging algorithm will create a bounding
box that covers both lines in full. Despite this limi-
tation, we use this algorithm because we are only
interested in measuring the distance between the
resulting bounding boxes based on their centroids.

B.2 Normalizing the distance

Given the ground truth bounding box bti and the
predicted bounding box bai , our goal is to measure
the distance between the centroids of the bounding
boxes. In our proposed formulation, this distance
is normalized by the width and height of the page,
namely widthi and heighti. This is not the only
possible option for normalizing the distance. For
example, the distance can be normalized by the
width/height of the ground truth bounding box bti ,
or the average size of the ground truth and predicted
bounding boxes bti and bai .

Each option offers advantages and disadvan-
tages, which we will demonstrate using examples.
For simplicity, we will suppose that the height of
all bounding boxes is similar, and focus on width
only.

Normalizing the bounding boxes by the width
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Algorithm 1 β-skeleton walk for placing a se-
quence of tokens within a page.

// β-skeleton representation of a page
1: Input: G = (N,V )

// Matching target: a sequence of tokens
2: Input: O = o1, o2, · · · , on

// Threshold for token similarity
3: Input: T

// Best path on the graph that matches O
4: Output: P

// The similarity of the best path to O
5: Output: S

// Create empty indices of all possible paths
over the graph, starting from o1 ending in on.

6: ps ← {}
7: pe ← {}
8: for i ∈ {1, . . . , |N |} do
9: si1 = NLS(Ni, o1)

10: sin = NLS(Ni, on)
11: if si1 > T then
12: append(ps, ni)
13: end if
14: if sin > T then
15: append(pe, ni)
16: end if

// Search all possible paths and select the one
with the highest score

17: for pj ∈ ps do
18: for pk ∈ pe do
19: for path ∈ paths(pj → pk) do
20: if NLS(path, O) > S then
21: S ← NLS(path, O)
22: P ← path
23: end if
24: end for
25: end for
26: end for
27: end for

of bti over-penalizes models that provide short
answers compared to the ground truth, and under-
penalizes models that provide longer answers com-
pared to ground truth. A real example from the
DocVQA dataset is the question “What decides
the selection of terms of Committee members?”
The ground truth answer is “decided by a lottery”,
whereas some models may produce “lottery” and
some may produced “will be decided by a lottery”.
We would want the grounding distance to be con-
sistently low for these variations. But once normal-
ized by the width of ground truth, the first model

will be over-penalized and the second model will
be under-penalized.

An alternative is to normalize the widths by the
average widths of bti and bai . While this formula-
tion does not suffer from sensitivity to the variety
of sizes, it does ignore the sizes of the bounding
boxes relative to the size of the page. For example,
consider a page with width 1000. On this page,
these two scenarios produce the same distance of
1:

Scenario A: bti spans [0 − 500] and bai spans
[500− 1000]. The average width is 500. The cen-
troids are at 250 and 750, respectively. Therefore
the centroids are at a raw distance of 500 and a
normalized distance of 1.

Scenario B: bti spans [0 − 50] and bai spans
[50− 100]. The average width is 50. The centroids
are at 25 and 75, respectively. Therefore the cen-
troids are at a raw distance of 50 and a normalized
distance of 1.

On the one hand, it can be argued that it is fair for
the distances to be equal, as the bounding boxes are
adjacent in both scenarios. On the other hand, it can
be argued that the distance should scale with the
width of the bounding boxes compared to the width
of the page, because locating a small bounding
box on a large page is more difficult than a large
bounding box on a small page.

In contrast, given that the width of the page is
1000, our proposed method would produce a dis-
tance of 0.5 for Scenario A and 0.05 for Scenario
B. This is an interpretable metric, as it indicates
that the two bounding boxes are within 50% of
the width of the page in Scenario A, and 5% in
Scenario B. It can of course be argued that our for-
mulation is too sensitive to the scale of the page.
Our proposed score is indeed not perfect, but we
consider it to be an interpretable “layout-agnostic”
metric that can be easily calculated across all sam-
ples.

We thank our reviewer for suggesting these al-
ternative options.

B.3 Determining the semantic type of the
predicted answer

To classify a string of characters s as numeric, tex-
tual, or hybrid, we follow the below algorithm:

1. If every character in s is a digit, then s is
numeric.

2. If every character in s is alphabetical, then s
is textual.
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3. Otherwise s is hybrid.

Note that this simple algorithm renders a large
portion of strings such as “1,700” or “(8)” as hybrid.
This is not detrimental to SMuDGE, as it still fa-
vors the accuracy of numbers against non-numeric
characters by a factor of 10 to 1 (see Appendix
B.4).

Note that hybrid strings are split into numeric
sequences and non-numeric sequences, e.g. “1,700”
is split into “1700” and “,” and each part is eval-
uated separately before being combined in the
weighted harmonic mean.

B.4 Tuning the weights for the numeric score
and the text score

Setting the weight of num_scorei to 1 would mean
that the numeric and text components of an answer
would have equal importance, which is indeed not
valid. For example if the ground truth is “12 mil-
ligrams”, then the answers “2 milligrams” and “12
milligram” should not receive equal scores, as the
former is quantitatively incorrect, but the latter has
a simple typo. On the other hand, setting a very
high weight for num_scorei can be problematic.
For example if the ground truth is “12 mgs” and
the predicted answer is “12 ms”, we would need to
properly penalize the text component, because “ms”
stands for “milliseconds” and not “milligrams”.

Therefore we tuned the weight of num_scorei
against str_scorei by testing values in the set
{1, 10, 100, 1000}. The tuning was performed
on a subsample of 100 hybrid answers from the
DocVQA validation set, and validated by three
human annotators. Each annotator was presented
with answer/ground-truth pairs and the four varia-
tions of the score calculated using the four values
in {1, 10, 100, 1000}. The annotators were asked
to select the score best representing the similarity
between the predicted answer and the ground-truth
answer. Annotators most frequently selected the
score produced by a weight of 10. On average,
each annotator selected this weight 86% of the
times. For 73 samples on which the three anno-
tator agreed, they selected this weight 96% of the
times.

B.5 Setting the similarity threshold

It is common practice in the field of Document
VQA to set a threshold for NLS (Biten et al., 2019;
Mathew et al., 2021; Tito et al., 2023; Mathew
et al., 2022; Peer et al., 2024). This is done to deter-

mine whether a match can be reasonably expected,
or whether any similarity is coincidental (e.g. the
NLS between “dog” and “giraffe” is larger than 0
as they share the letter “g”, but the two are entirely
different tokens). Following Biten et al. (2019),
most studies have set the threshold to 0.5. Given
that this was not justified by any validation study
in Biten et al. (2019), we instead conducted our
own tuning exercise using the validation dataset de-
scribed in Appendix B.4. Three human annotators
performed a binary classification on 100 pairs of
predicted answers and most similar spans from the
corresponding documents. Each pair was tagged
as a “match” or a “mismatch”, indicating whether
the predicted answer referred to the same span (per-
haps with slight changes in spelling). The NLS
value of 0.3 yielded the most optimal threshold for
distinguishing between matching and mismatched
pairs, predicting a mismatch with an F1 of 0.94.

B.6 Calculating volatility

We use the standard definition of volatility as scaled
standard deviation:

vol([x1, · · · , xT ]) = std([x1, · · · , xT ])
√
T (4)

C Determining the types of questions in
DocVQA

To determine the type of each question, we passed
the following information to GPT-4o: 1) The docu-
ment image. 2) The question. 3) The ground truth
answer, as provided by the dataset. 4) A prompt,
asking the model to determine the context from
which the answer was extracted.

You can see an example prompt below:
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Question: What is the extension number?
Answer: 5177
The above question was answered based on the
document attached. What do you think best de-
scribes the context from which the answer was
extracted? Select one of the below options. Simply
return the correct option without any explanation.

1. Figure/Diagram

2. Form

3. Table/List

4. Layout

5. Free_text

6. Image/Photo

7. Handwritten

8. Yes/No question

9. Other

The experiment ran on September 7th, 2024.
The agreement rate with the DocVQA validation
set was 69.5%.

D Extended leaderboard analysis

Figures 8 to 10 show the reranking analysis for MP-
DocVQA, InfographicVQA, and DUDE bench-
marks, respectively. As with Figure 2, our compos-
ite score has been calculated with α = 0.25.

E Extended question type analysis for
DocVQA

Figure 11 shows how the top 10 models on the
DocVQA leaderboard would be reranked if our
score was used to evaluate them, broken down by
question types.

F Answer type analysis for DocVQA

Figure 12 shows how the top 10 models on the
DocVQA leaderboard would be reranked if our
score was used to evaluate them, broken down by
answer types.

G Answer type analysis for MP-DocVQA

Figure 13 shows how the top 10 models on the
MP-DocVQA leaderboard would be reranked if
our score was used to evaluate them, broken down
by answer types.

H Answer type analysis for
InfographicVQA

Figure 14 shows how the top 10 models on the
InfographicVQA leaderboard would be reranked if
our score was used to evaluate them, broken down
by answer types.

I Answer type analysis for DUDE

Figure 15 shows how the top 10 models on the
DUDE leaderboard would be reranked if our score
was used to evaluate them, broken down by answer
types.

J Correlation between answer types and
original ranking

Figure 16 shows the correlation between the rank-
ing of each leaderboard and the ranking produced
by SMuDGE at various various for α, broken down
by the type of answer.
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Figure 8: MP-DocVQA leaderboard.
Figure 9: InfographicVQA leaderboard.

Figure 10: DUDE leaderboard.
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(a) Figure/Diagram (b) Form

(c) Table/List (d) Layout

(e) Free text (f) Image/Photo

(g) Handwritten (h) Other

Figure 11: The impact of our score on the ranking of the top 10 models on the DocVQA benchmark, broken down
by question type.
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(a) Textual (b) Numeric

(c) Hybrid (d) All

Figure 12: The impact of our score on the ranking of the top 10 models on the DocVQA benchmark, broken down
by answer type.
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(a) Textual (b) Numeric

(c) Hybrid (d) All

Figure 13: The impact of our score on the ranking of the top 10 models on the MP-DocVQA benchmark, broken
down by answer type.
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(a) Textual (b) Numeric

(c) Hybrid (d) All

Figure 14: The impact of our score on the ranking of the top 10 models on the InfographicVQA benchmark, broken
down by answer type.
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(a) Textual (b) Numeric

(c) Hybrid (d) All

Figure 15: The impact of our score on the ranking of the top 10 models on the DUDE benchmark, broken down by
answer type.
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(a) DocVQA (b) MP-DocVQA

(c) InfographicVQA (d) DUDE

Figure 16: Kendall’s τ correlation between different α settings and the original ranking of each benchmark, broken
down by the type of answers.
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