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Abstract

Automatically generated passwords and
passphrases are a cornerstone of IT security.
Yet, these passwords/passphrases are often
hard to remember and see only limited
adoption. In this work, we use large language
models to generate passphrases with rigorous
security guarantees via the computation of the
entropy of the output as a metric of the security
of the passphrase. We then present a range
of practical methods to generate language
model outputs with sufficient entropy: raising
entropy through in-context examples and
generation through a new top-q truncation
method. We further verify the influence of
prompt construction in steering the output
topic and grammatical structure. Finally,
we conduct user studies to determine the
adoption rates for these LLM-generated
passphrases in practice. Code is available at
https://github.com/JieSLi/LLM-passphrase

1 Introduction

Automated passphrase generation is an effective ap-
proach to ensure that users have secure passphrases
and that passwords/passphrases are not reused
across applications. While it offers undeniable se-
curity benefits, randomly generated passphrases are
commonly more challenging to remember due to
their lack of semantic meaning (Meng et al., 2021),
leading to disinterest from users and other security-
threatening behaviors like leaving passphrases ex-
posed on post-it notes. (Technically a password is
one “word" without spaces in between, whereas a
passphrase is a phrase composed of one or more
words, but we use these two terms interchangeably
to indicate a text sequence used to login into an
account.)

In this paper, we explore the use of large lan-
guage models (LLMs) as a tool for generating ran-
domized passphrases that maintain semantic coher-
ence. We demonstrate that autoregressive LLMs

possess several advantageous properties that can
be leveraged for passphrase creation. Notably, the
LLM functions as a probabilistic model of language
and can be used to compute the entropy score for
each passphrase. This score quantifies the number
of bits of entropy present in a passphrase, providing
a rigorous and interpretable metric for assessing
password security. Furthermore, by incorporating
user inputs and preferences into prompts, LLMs
can generate passphrases tailored to specific topics.

A surprising, but crucial, fact of this construc-
tion is that model-evaluated passphrase entropy is
indeed a rigorous measure of security. As such,
these generated passphrases do not merely “appear
random", but their randomness is exactly quantifi-
able.

Despite the capabilities of today’s open-source
language models, generating secure passphrases
remains a complex task. Care must be taken to
ensure that the generated phrases guarantee suffi-
cient entropy to be comparable in security to other
randomized passphrase generation schemes. In
this paper, we address several key issues related
to passphrase generation. We begin with a discus-
sion of how to compute entropy for a passphrase.
We then investigate how to optimize passphrase
generation for each base LLM by utilizing various
prompt engineering strategies to select effective
prompt format and content and by selecting genera-
tion parameters to maximize the number of samples
meeting entropy requirements.

In summary, our goal is to generate passphrases
that satisfy the following two important criteria:

• Usability: In practice, people often ignore
guidelines that ensure the security of pass-
words and passphrases in favor of selecting
weaker and easier to remember passwords,
(Wang et al., 2017) and so usability is crit-
ical. Passphrases should be convenient and
pleasant to use. For example, the password
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“uEBJd6n35", created by an online password
generator (Avast, 2024), is hard to remem-
ber, challenging to pronounce, and potentially
avoided by users. It is then advantageous to
use LLMs to generate passphrases as their text
output is aligned to natural language, mak-
ing the output especially amenable for human
users to remember and to repeatedly input.
(A user may misremember the password “uE-
BJd6n35" with “uEDJ6dm35". In contrast,
a user is unlikely to misremember the LLM-
generated passphrase "Paranoid corgi jumped
over magical hat" as "Parano corgi ov magical
hat jumped’.)

• Security: The randomness of the LLM sam-
pling process can be leveraged to produce out-
put that is hard-to-guess. We introduce a met-
ric to quantify this hard-to-guess-ness in the
definition of entropy in Section 3.

2 Related Works

We use LLMs to generate secure passphrases, while
recent work has used LLMs to evaluate and attack
passwords. Jin et al. (2024) generates passwords
from a neural network in decreasing order of prob-
ability to build a password cracking system. Wang
et al. (2023) uses a generative model to character-
ize users password modification behaviors in the
context of password tweaking attacks. Tan et al.
(2020a) uses a neural network trained on leaked
password data to consider minimum-strength re-
quirements.

Mukherjee et al. (2023) uses a bigram Markov
model to generate passphrases, whereas we lever-
age autoregressive language models and their
proven ability to generate natural language texts.

The challenges of meeting security guidelines
in the real-world setting is well-documented. Shay
et al. (2016) shows user difficulty in remembering
passwords that conform to password composition
policies. Even website administrators often fail to
follow good practice in password guidelines (Lee
et al., 2022).

Research has demonstrated users’ difficulty in
remembering passwords over multi-day intervals.
Rodriguez et al. (2022) finds that four of nine par-
ticipants successfully recalled five-random-word
passphrases and also four of nine recalled seven-
word literary passphrases over intervals of one
to seven days. For auto-generated five-word
passphrases, which the user may elect to re-

generate, Wu et al. (2022) finds that while nearly
all participants could recall their passwords after
ten minutes, only two of 34 participants, who did
not use external help succeeded. Vu et al. (2007)
explores mnemonic password creation, where par-
ticipants generated passwords from meaningful sen-
tences – e.g., using "Before I had coffee at work"
to create "B4EyeH@CofE@w". In this setting, par-
ticipants forgot an average of 2.5 of five passwords
within a week. Yıldırım and Mackie (2019) com-
pare password memorability across two groups in
creating 8-character passwords: one with standard
instructions and another with guidance to create
strong, memorable passwords. After a week, 101
of 152 participants in the guided group recalled
their passwords on the first try, compared to 69 of
156 in the control group.

Woods and Siponen (2019) examine how verify-
ing passwords (re-entering the password) multiple
times upon password creation improves recall. Par-
ticipants created multiple 8-character passwords
for different accounts on a weekly schedule, and
correct recall rates on first try improved with ad-
ditional verifications: 31% for single verification,
44% for double verification, and 58% for triple
verification.

In a real-world context, Keith et al. (2007) stud-
ies student logins to a university course manage-
ment system, where students used the same pass-
word to log in 2–3 times per week for ten weeks.
Students were divided into three groups based on
password requirements: no restrictions, 7-character
passwords, and 15-character passwords. Over
the ten weeks, cumulative failed login rates were
85.61%, 80.38%, and 71.58%, respectively.

Underlying the above studies is this trade-
off: users find meaningful, rhyming, or pleasant
text—such as literary excerpts—easier to remem-
ber and generally prefer passwords with these char-
acteristics. However, such text often poses security
risks. For instance, Rodriguez et al. (2022) ob-
served that rhyming words improved recall, but
passwords based on literary text were suscepti-
ble to attacks leveraging popular text corpora. Vu
et al. (2007) designed their study around mnemonic
methods, based on the idea that participants are
more likely to remember meaningful items than
random ones. However, they found that users often
created weak passwords, such as "4Money!" for a
bank account. While these passwords were mean-
ingful and potentially easier to remember, they
followed a common pattern: users used common
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words and predictably placed special characters at
the end, undermining security.

Together this shows the need for and the ad-
vantage that a well-crafted generation method
can offer. Wu et al. (2022) shows computer-
generated passphrases are more diverse than
human-generated passphrases in a user-survey con-
ducted at a major university which uses passphrases
for its login.

3 Entropy Definition

Shannon entropy (Shannon, 1948) has been used
in password security measure through applying
a uniform probability distribution over letter and
digits (Komanduri et al., 2011). In contrast, we use
the distribution of the language model generation.

We define entropy of a sequence of tokens from
a language model to be H = − log2(P ), where P
is the probability of the sequence of tokens. More
formally, for sequence w1, w2, . . . , wn, we have

P (w1, w2, . . . , wn) =
n∏

i=1

P (wi | w1, . . . , wi−1)

where the probability values results from the soft-
max function applied to the logits of the language
model. Here, P (w1) denotes the probability of
the first token, P (w2 | w1) is the probability of
the second token conditioned on the first token,
P (w3 | w1, w2) is the probability of the third to-
ken conditioned on the first two tokens, and so on.
Note that in practice we further condition text on
a prompt, but we have omitted this in our notation
for brevity.

3.1 Entropy measures security and diversity

The probability P (w1, w2, . . . , wn) defined above
measures how likely our language model is to pro-
duce a particular sequence of tokens. The entropy,
H = − log2(P ), tells us how many bits of random-
ness are present in a text sequence.

If a randomly generated password contains b bits
of randomness, then an optimal strategy for guess-
ing the password requires 2b attempts in expecta-
tion. Likewise, brute-forcing an LLM generated
password requires 2H guesses in expectation, even
in the white box scenario where both the LLM and
the prompt are available to the adversary. Using
entropy, we can directly compare LLM generated
passphrases to randomly sampled passphrases of
equivalent security.

Note also that computing entropy protects us
from a bad LLM that tends to reproduce the same
phrases repeatedly; these phrases will have low
entropy, and can be discarded after generation to
ensure secure passwords. If the user is allowed to
provide inputs to influence the password generation
algorithm, an entropy check can prevent insecure
passwords from being produced, even if the user
provides a pathological input that collapses the
model output to a single mode.

3.2 Relationship between entropy and
perplexity

Perplexity is a metric of model performance, com-
monly used to compare the same output across
two models. The definition of Perplexity for a se-
quence of tokens, w1, w2, . . . , wn with probability
P (w1, w2, . . . , wn), is

Perplexity = (P (w1, w2, . . . , wn))
− 1

n

= 2
H
n

Both Perplexity and our definition of entropy
capture how likely a model is to output a text se-
quence, but Perplexity is normalized by n, the
number of tokens making up the text. This means
that if two models output a piece of text with the
same probability but tokenize the text with differ-
ent number of tokens, then they would have the
same entropy but different Perplexity for that text.
In contrast, entropy as a metric stays constant.

4 Passphrase Generation and Criteria

4.1 Passphrase criteria

We use three criteria to control the distribution of
generated passphrases. Each passphrase must (i)
contain a minimum allowable entropy to ensure se-
curity. It should contain (ii) fewer than maximum
allowable number of words to make it practical.
Finally (iii) it should only contain correctly spelled
English words. This last criteria is important as
most LLMs can output sequences of tokens that
are difficult for humans to interpret, or contain non-
standard typography (e.g., emojis). While not a
formal criteria, another underlying goal is to cre-
ate passphrases that tell a story or parable to aid
memorability.

In our experiments we consider passwords with
a minimum of 47 bits of entropy (and some of our
generations reach as high as 80 bits). This level
of security is recommended by Tan et al. (2020b)
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and Xu et al. (2021), and it requires more than 1014

trials to attack by brute force. We also require that
the passphrase be eight or fewer words so that they
do not become overly cumbersome. We disallow
punctuation other than apostrophe and dash and
disallowing digits and non-ascii characters through,
for the most part (with details in Appendix A.9),
by setting the probability of tokens that contain
such characters to be zero via adjusting the value
of the logits. This step is not applied during the
experiments in Section 5 as we want to examine
the output without additional adjustments of logits.

4.2 Text generation settings

We generate texts using common open-source
chat/instruct models models, with a list of full
model names in Appendix A.1.

We use multinominal sampling while setting the
parameters: temperature and top-p. We also in-
troduce another sampling parameter called top-q
truncation to be discussed. Higher temperature and
higher top-p parameters tend to result in higher en-
tropy values for the output. We select the parameter
values based on the desired entropy target range
and set temperature to be 1.0, 1.2 and 1.4 and top-p
to be 0.95, 0.99, and 1.0, unless specifically other-
wise noted, and sampled ≥ 128 for each parameter
combination. Note that we compute entropy scores
using the probability distribution for tokens after
any temperature scaling, top-p sampling, or other
sampling schemes are applied.

4.3 Entropy correction for rejection sampling

Below, we discuss the generation of passphrases
through rejection sampling, in which each LLM
generated passphrase is tested for the above criteria,
and then it is tossed out and regenerated if it fails.
This process increases the likelihood of generating
certain passphrases. For example, if we reject and
regenerate half of the passphrases for containing
too little entropy, then this doubles the probability
of outputting any one of high-entropy passphrases.

If our sampling process requires n attempts to
produce a passphrase, then we subtract log2(n) bits
from the entropy to compensate.

5 Experiments

We perform experiments on the effects of prompt
format and content and on methods to increase the
entropy of the output sample.

story passp sum TLDR
model

Llama-2-7B 0.0 0.4 0.0 0.1
Llama-2-13B 0.1 0.3 0.1 0.2
Llama-2-70B 0.1 0.3 0.2 0.2
Llama-3-8B 0.1 0.7 0.2 0.2
Llama-3-70B 0.0 0.1 0.0 0.0
Mistral-7B 0.9 0.9 0.6 0.7
Mixtral-8x7B 0.4 0.4 0.3 0.2
gemma-7B 0.3 0.1 0.0 0.0

Table 1: For direction-question prompts, proportion
of outputs that have entropy ≥ 47. "story" column
corresponds to prompt of "Give me a story in six words";
"passp" to "Write a passphrase in six words"; "sum" to
"Write a summary of a story in six words"; "TLDR"
to "Write a tldr of a story in six words" (sampled with
temperature of 1.4 and top-p of 0.95)

.

5.1 Direct-question prompt versus template
form

Prompts such as “Give me a story in six words" or
other direct prompts are ineffective at generating
good passphrases as the prompt is too open-ended
and there is not enough information or guidance of
the desired output. Table 1 shows that a low per-
centage of the output meet the entropy requirement
(entropy ≥ 47). See Tables 12 and 13 in the Ap-
pendix for output percentage that meet the require-
ments on number of words (eight or fewer words)
and English language (correctly-spelt words) crite-
ria.

Note that many of the model outputs are pref-
aced with low-entropy words like “Sure" “Cer-
tainly", which contribute to the prompt length with-
out adding much security. See Appendix A.3 for
a study of this and also for results at other temper-
ature and top-p settings. Overall, direct-question
prompts are ineffective at generating passphrases.

Language models are few-shot learners, and pro-
viding in-context examples in the prompt can be
crucial (Brown et al., 2020) to raising entropy. Sim-
ilarly, in-context examples help to guide the model
towards the format of the desired response (Min
et al., 2022). We show the importance of providing
examples and a template for output in the prompt
construction in the below comparison of the “direct-
question" prompt, whose failings we note above,
versus the template form which is show in Figure
1.
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Provide the summary of a story in six or fewer

words.

Multiple erasers banish innovation sparks.

Provide the summary of a story in six or fewer

words.

Paranoid robot battle leaves town smoldering

Provide a summary of a story in six or fewer

words

...

Figure 1: Prompt following template showing two ex-
amples. This prompt follows the template format and
all prompts in this paper, except for the direct-question
prompts, follow this format but may have a different
number of examples.

Specifically we fill the template (Figure 1) with
six example user and assistant interactions from
Table 2 and use this as a prompt, called the base-
prompt, to generate passphrases. See Figure 2 for
sample responses to the base-prompt. See Table
23 for results. These associated output texts meet
many more of the three passphrase criteria than the
direct-question prompts.

Orphaned monkeys unearth
trove of treasure (38.02)

Resonant robots recite royal
blues poetry (58.05)

Fickle heirloom brings cow-
ering cowards claim (74.02)

Figure 2: Mistral speaks! (Mistral responses at different
entropy values with entropy in parenthesis at temp 1.2
and top-p 0.95 for base-prompt.)

Increasing the temperature or the top-p param-
eters increases the output sample average entropy,
but outputs meeting the number of words criteria

User Assistant
Give the summary of a
story in six or fewer
words.

Multiple erasers
banish innovation
sparks

Give the summary of a
story in six or fewer
words.

Hassled celebrity
resists spaceship visit

Give the summary of a
story in six or fewer
words.

Fabulous doctor
maintained patient
dreams

Give the summary of a
story in six or fewer
words.

Television shoot
overflows fruit boat
capacity

Give the summary of a
story in six or fewer
words.

Pavlov patronizes
papaya pyramid king

Give the summary of a
story in six or fewer
words.

Courteous yeti plays
quiet prodigy

Give the summary of a
story in six or fewer
words.

Table 2: These are the examples used to fill the prompt
template to create the base prompt.

entropy num Eng All
model ≥ words criteria

47.0 ≤ 8

Llama-2-7B 0.8 1.0 0.8 0.6
Llama-2-13B 0.9 1.0 0.8 0.7
Llama-2-70B 0.7 0.9 0.6 0.3
Llama-3-8B 0.9 1.0 0.6 0.6
Llama-3-70B 0.3 1.0 0.8 0.1
Mistral-7B 1.0 0.7 0.6 0.6
Mixtral-8x7B 1.0 0.9 0.7 0.7
gemma-7B 0.9 0.7 0.5 0.3

Table 3: Proportion of output that meet criteria of en-
tropy ≥ 47.0, num_words ≤ 8 and consisting of all
English words, separately, and all criteria concurrently
using the base prompt, temperature of 1.4 and top-p of
0.95.
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or the only English words may decrease. See Ap-
pendix A.4 for additional results using the base
prompt at different generation settings.

5.2 Higher entropy output through higher
entropy input

How much modern LLMs are capable of learn-
ing from in-context examples is a current research
question. (Min et al., 2022) argues the general dis-
tributional properties may be learned rather than
specific correct labeling. Here we show that the
distribution of the entropy of the input examples is
learned and mimicked in the output. We create a
prompt using the template and fill it with examples
with low entropy, and we create another prompt
using the template and fill it with examples with
high entropy.

See Table 9 for average entropy comparisons be-
tween outputs from base prompts versus the low
entropy prompts and the high entropy prompts.
Higher entropy input examples tend to promote
high entropy output examples. The strength of this
tendency varies with temperature and top-p settings.
See Appendix A.6.

5.3 Higher entropy output through top-q
truncation sampling

Entropy can be influenced by setting the temper-
ature and top-p parameters. The top-p parameter
zeroes out the probability of the tokens outside
of the top p of the distribution (Holtzman et al.,
2019). Specifically, given a probability distribution
P (x | x1:i−1) over the vocabulary V , the top-p
vocabulary Vp with Vp ⊆ V is the smallest set such
that:

∑

x∈Vp

P (x | x1:i−1) ≥ p (1)

where p is the top-p parameter, with 0 < p ≤ 1.
The tokens not in Vp are assigned a probability of
0 and the probability of the tokens in Vp are renor-
malized to sum to 1. Then the nucleus sampling
method selects a token from Vp per the normalized
distribution. (Note: in implementation code, the
≥ p of Equation 1 is often replaced with > p for
floating-point arithmetic computation.)

We introduce a method to increase entropy
through an analogous method, the top-q truncation
method, which zeroes out the top q of the distri-
bution. For example, if one token occupies 0.88
probability mass with all others the remaining 0.12,

q = q = q = q =
model 0.0 0.05 0.20 0.35

Llama-2-7B 30.4 31.3 34.9 38.8
Llama-2-13B 35.0 36.3 39.2 40.0
Llama-2-70B 21.5 22.8 24.8 27.6
Llama-3-8B 32.7 35.2 37.6 41.6
Llama-3-70B 16.5 17.2 19.6 21.1
Mistral-7B 43.4 44.9 48.6 49.5
Mixtral-8x7B 49.5 53.7 53.0 52.1
gemma-7B 34.8 36.5 40.4 43.6

Table 4: Average entropy of output at various q values.
(Sample size of 128 using base prompt with temperature
of 1.0 and top-p of 0.95)

then a top-q truncation of 0.05 would decrease the
first token mass to 0.83 and leave all others un-
touched, then the distribution is renormalized and
sampled from.

This eliminates the most common outputs, forc-
ing the model to choose creative words rather than
defaulting to the most obvious (and low entropy)
choice. By zeroing out the top-q portion of the
distribution, this raises the sample output entropy
distribution, and causes far fewer samples to be
rejected. More generally this method can be used
to create more diverse output without sacrificing
coherence.

See Table 4 for a comparison between no q-value
application (q-value of 0) versus various top-q trun-
cation at various q-values. Average entropy of the
output increases as q-value increases.

5.4 Steering output topic through input
content

As discussed, to be tenable to users, there must be
options provided to personalize user passphrases.
The task of steering the topic or other character-
istics of the LLM output has been approached in
various ways, such as described in (Dathathri et al.,
2019) and (Sanchez et al., 2023). In our prompt
template, a significant degree of steering of the out-
put topic is possible by providing examples of the
topic in the prompt. To demonstrate, we create a
prompt containing examples with cat-related words.
The output has more “cat", “cats" and cats-related
words than the base prompt, which is not related to
cats. See Table 5. See Appendix A.5 for examples
of steering towards other topics.
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base base cats cats
prompt prompt prompt prompt
cat purr cat purr

model output output output output

Llama-2-7B 0.06 0.02 0.67 0.17
Llama-2-13B 0.00 0.00 0.64 0.29
Llama-2-70B 0.01 0.01 0.81 0.15
Llama-3-8B 0.01 0.00 0.75 0.10
Llama-3-70B 0.00 0.01 0.96 0.01
Mistral-7B 0.00 0.00 0.87 0.15
Mixtral-8x7B 0.01 0.00 0.86 0.07
gemma-7B 0.04 0.01 0.52 0.22

Table 5: Proportion of output that contains "cat" or
"cats" and proportion of output that contains "purr" or
other cat-related words ("feline" or "kitten"), compared
between base prompt and cats-prompt.

5.5 Steering output part-of-speech
construction

Language models have been used on tasks that re-
quire knowledge of grammar (Lakretz et al., 2022)
(Lampinen, 2024) (Wang et al., 2024), and so it is
not surprising that they can mimic the grammatical
structure of in-context examples. We demonstrate
this through two example prompts. The first prompt
contains examples that start with an adjective and a
noun to be followed by other words (the adjective-
noun prompt) and the second contains examples
that start with a noun and a verb to be followed by
other words (the noun-verb prompt).

For the prompts, we look at the models out-
put and count the number of instances which start
with leading adjective-noun structure or with lead-
ing noun-verb structure. We compare the base
prompt, the adjective-noun prompt and the noun-
verb prompt. See Table 6 for increased occurrence
of adjective-noun output for adjective-noun prompt
relative to the other two prompts and see Table 7
for increased occurrence of nounverb output for
nounverb prompt relative to the other two prompts.

Note that the part-of-speech of each output word
is determined using Spacy’s English pipeline (Hon-
nibal et al., 2020).

5.6 User study in LLM passphrases
memorability

We perform a series of user studies to evaluate
the human memorability of the LLM passphrases.
We choose a baseline of random-word passphrases,

base adj-
noun

noun-
verb

model prompt prompt prompt

Llama-2-7B 0.37 0.45 0.24
Llama-2-13B 0.37 0.50 0.13
Llama-2-70B 0.01 0.01 0.01
Llama-3-8B 0.37 0.63 0.20
Llama-3-70B 0.54 0.82 0.09
Mistral-7B 0.32 0.33 0.15
Mixtral-8x7B 0.32 0.44 0.24
gemma-7B 0.26 0.27 0.30

Table 6: Proportion of output that start with adjective-
noun.

base adj-
noun

noun-
verb

model prompt prompt prompt

Llama-2-7B 0.08 0.07 0.22
Llama-2-13B 0.05 0.03 0.12
Llama-2-70B 0.01 0.00 0.02
Llama-3-8B 0.12 0.02 0.23
Llama-3-70B 0.02 0.01 0.29
Mistral-7B 0.09 0.05 0.29
Mixtral-8x7B 0.07 0.05 0.23
gemma-7B 0.05 0.09 0.11

Table 7: Proportion of output that start with noun-verb.

with each composed of five words randomly cho-
sen with replacement from a list of 800 easy and
common English words (from a subset of the word
list available at EF, 2024). The random words
passphrases have an entropy of 48.2 bits. See
(Wu et al., 2022) for evaluating users response to
computer-generated random five-word passphrases
in its study of memorability.

Section A.10 discusses the information and con-
sent form provided to the participants. The studies
takes place at a university and through a public sur-
vey service. In the university setting, the studies are
conducted at the beginning and end of a one-hour
session, either a meeting or a class. All of the par-
ticipants are university affiliates (students, faculty,
staff). At the beginning, the participants receive
the passphrase printed out on a sheet of paper and
the participants are instructed to expend a reason-
able effort to remember the passphrase, and then to
fold the sheet of paper to hide the passphrase. At
the end of the one-hour session, they are asked to
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reproduce the passphrase from memory and write
it on the outside of the folded page. For the survey
service, the study took over two time points sepa-
rated by one day or three days, and the surveys are
completed electronically. Survey participants were
from available users located in the United States.

See Table 8 for user studies results. We ob-
serve that the memorizability of LLM and random
word phrases are comparable, with a slight advan-
tage to LLM passphrases over the one-hour de-
lay between assignment and recall. We suspect
that random-word passphrases are competitive be-
cause while they lacking semantic meaning, they
are composed of more common words (e.g., “ob-
ject money react capable willing"). Survey partici-
pants exhibit similar recall of random-word versus
LLM passphrases over a one-day period. There
is a significant dropoff in their recall of either
types of passphrases over multiple days. Wu et al.
(2022) also notes the difficulty of remembering
passphrases over multiple-day intervals.

Random-word LLM

Univ mtg 1-hr 3/8 3/8
Univ class 1-hr 5/28 9/28
Survey 1-day 5/28 4/28
Survey 3-day 0/23 0/26

Table 8: Comparison of recall of random-word
passphrases versus LLM passphrases. Numbers
are those correctly recalled out of total number of
passphrases of each group. The first two rows are for
university setting over one hour. The second two rows
are for a survey service over one day and three days.

6 Analysis

6.1 Model comparisons
The larger Llama models have noticeable different
entropy behavior than their smaller counterparts.
Llama2-70B has lower entropy at temperature of
1.0 and top-p of 1.0 than Llama2-7B and Llama2-
13B. Similarly Llama3-70B has lower entropy at
temperature of 1.0 and top-p of 1.0 than Llama3-
8B. See Table 9. Notice this is not the case at other
temperature and top-p combinations. See Table 29

To start parsing this result, we look at the Llama-
2-70B logits for the first to-be-generated token and
calculate the expected entropy of the first token.
Technically the first token of Llama-2-70B is a
space token and we evaluate here its second token.
Figure 3 reveals that Llama-2-70B has a slightly

base low-ent high-ent
model prompt prompt prompt

Llama-2-7B 36.80 20.90 34.10
Llama-2-13B 40.10 19.50 37.10
Llama-2-70B 28.40 17.30 24.80
Llama-3-8B 35.80 22.40 35.00
Llama-3-70B 19.40 4.70 19.10
Mistral-7B 55.10 25.80 53.30
Mixtral-8x7B 52.50 33.40 58.60
gemma-7B 37.10 27.70 32.80

Table 9: Average entropy of output using the base
prompt, prompt containing low entropy examples and
prompt containing high entropy examples, with temper-
ature of 1.0 and top-p of 1.0.

lower entropy at temperature 1.0 but has a slightly
higher entropy at 1.6. Although not explaining the
magnitude of the difference observed in Tables 9
and 29, it shows that changing the temperature can
change the relative order of the models in output
token entropy. It also illustrates the overall effect
of increasing temperature on output entropy.

6.2 English language distribution

Common to all models is the task of generating
natural English text sequence, subject to the struc-
ture of the English language, including the distri-
bution of nouns, verbs, adjectives and others parts
of speech. In English, there are more nouns than
any other parts of speech (Hudson, 1994). Contrast
this with random word passphrases: there the first
word can be chosen from N words (N being the vo-
cabulary size) and the second word can be chosen
from N words and so on. The entropy is evenly
spread out among all words in the passphrase and
each word is approximately equally memorable
and informative and by design are not related to
one another. In contrast, for a noun-verb sequence,
there are more choices of nouns than verbs, hence
the entropy is more on the noun than the verb. Fur-
ther the noun and verb are linked to each other
grammatically and semantically. The noun-verb
sequence is but one exemplar in natural language,
which language model mimics.

6.3 Implementation of passphrase generation

We present a process to create passphrases that
focuses on the user-experience while being mea-
surably secure. The process allows the user to
select a topic for the passphrase (e.g., cats, biology,
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Figure 3: For the sampling of the first token, calculate
the probability of all tokens. Then calculate the expected
entropy for that first token at different temperatures for
various models.

culture), contributing to the affinity of the user to
the passphrase and thereby increasing the usability
of the passphrase. In addition to setting tempera-
ture and top-p, we introduce two additional ways
to ensure the security of passphrases as measured
by entropy through selection of high-entropy in-
put examples and using the new top-q truncation
sampling method, described in Section 5.3

As a final step to standardize output during
passphrase generation, we disallow punctuation
other than apostrophe and dash and disallowing dig-
its and non-ascii characters through, for the most
part (with details in Appendix A.9), by setting the
probability that tokens containing such characters
to zero (via adjusting the value of the logits). This
step is not applied during the experiments in Sec-
tion 5 as we want to examine the output without
additional adjustments of logits.

To provide specific implementation steps, for
each of the models, input the base-prompt and set
the generation parameters per Table 10. Not all but
a large portion of the output meet the criteria of
entropy ≥ 47, number of words ≤ 8 and consisting
of English words. The portion that does not meet
the criteria are to be discarded through automated
filtering. To account for this filtering, we increase
the entropy requirement. For instance, increasing
the entropy by 1-bit accounts for half of the output
being filtered in and increasing the entropy by 2-
bits accounts for one-fourth of the output being
filtered in. For all of the models at the settings in
Table 10, more than one-fourth meet the criteria of
maximum number of words, typographical English
words, and also the increased entropy requirement
of 49 bits. As a result, the filtered in sample also
meet the 47-bit minimum entropy requirement.

The base-prompt, along with the settings in Ta-
ble 10, offers one concrete way to generate good

model temp top-p q-
trunc

all-
criteria

Llama-2-7B 1.4 0.95 0.35 0.57
Llama-2-7B 1.4 0.95 0.00 0.48
Llama-2-13B 1.2 0.99 0.35 0.62
Llama-2-70B 1.4 1.00 0.00 0.31
Llama-3-8B 1.4 0.95 0.35 0.59
Llama-3-70B 1.4 1.00 0.35 0.27
Mistral-7B 1.2 0.95 0.35 0.65
Mixtral-8x7B 1.2 0.95 0.00 0.68
gemma-7B 1.2 1.00 0.35 0.46

Table 10: Settings for passphrase generation. For each
model, use the base-prompt and set temperature, top-
p, and q-truncation as in the above to create good
passphrases. The last column lists the proportion of
output which meets all three criteria: entropy ≥ 49,
number of words ≤ 8, and composed of English words.

passphrases. It is not exhaustive and see Appendix
A.8 for additional parameter settings for passphrase
generation. As noted in Section 5.4, the user may
also choose to create his own prompt based on his
preferred topic while noting the guide on format
and content in Sections A.3 and 5.4.

To reiterate, the process consists of the following:
sample the specified models at the given sequence
of parameters with the base prompt or the chosen
prompt of the user-specified topic following the
format of the base prompt. Filter the results for
the three criteria: output entropy, number of words
and consisting of English words. Use an elevated
entropy level to account for the filtering process.

7 Conclusion

We demonstrate how language models can be used
to create user-friendly passphrases while meeting
security requirements. We show the importance of
the prompt choice in terms of format and content
and the influence that sampling parameters have on
the output.

Despite lack of consensus in the effect, effective-
ness and mechanism of in-context examples, we
show in the specific task of passphrase generation,
in-context examples are effective at steering topic,
grammatical structure, and entropy distribution.

We also introduce an additional sampling pa-
rameter, called top-q-truncation, which can guide
to higher entropy values and greater diversity in
outcomes.
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Limitations

Our method uses instruction-tuned pre-trained mod-
els to generate text outputs and are thus dependent
on the effectiveness of the instruction-tuning to re-
spond to the inputted prompts and on the quality
of the pre-training for useful output. We present
prompt templates to obtain desired outputs and a
selection process to further cull output to create
good passphrases. Model size and other factors
affect model output quality (Kaplan et al., 2020).
A limitation of our method is that it may not work
on weaker models, which either respond poorly to
instructions or output low-quality text sequences.
In that case, we may not be able to obtain a suffi-
cient number of output that meet all of the criteria
for a good passphrase. We note that we include
reasonably-sized models in our experiments, such
as Llama-2-7B, Llama-3-8B, and Mistral-8B, and
these are models which may be accessed by the
public.

Ethics Statement

Potential Risks

Our method allows the generation of passphrases
that satisfy the security requirement described in
4.1. It is possible that individuals may attempt to
generate passphrases which do not satisfy this re-
quirement while operating under the false sense of
security gained through a system-generated output.
We emphasize that satisfying the security require-
ment is critical to creating good passphrases and
urge a considered use of our method. We document
how this security requirement is derived and why it
is justified. Additionally our code provides a direct
way to calculating the security metric of entropy in
each output.
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A Appendix

A.1 Models
We generate texts using these chat/instruct models:

• Llama-2-7b-chat-hf (Llama-2-7B)

• Llama-2-13b-chat-hf (Llama-2-13B)

• Llama-2-70b-chat-hf (Llama-2-70B)

• Meta-Llama-3-8B-Instruct (Llama-3-8B)

• Meta-Llama-3-70B-Instruct (Llama-3-70B)

• Mistral-7B-Instruct-v0.2 (Mistral-7B)

• Mixtral-8x7B-Instruct-v0.1 (Mixtral-8x7B)

• gemma-7b-it (gemma-7B)

The above model names contain the approxi-
mate number of parameters in the model as in "7b"
or "7B" signifying seven billion parameters. The
first three models are part of the Llama-2 family
of models (Wolf et al., 2019a) licensed under the
Llama 2 Community License. The Llama-3 models
(Dubey et al., 2024) are licensed under the Meta
Llama 3 Community License. The Mistral (Jiang
et al., 2023) and Mixtral (Jiang et al., 2024) models
are licensed under the Mistral AI non-production
license. The gemma model (Team et al., 2024) is
licensed under Gemma Terms of Use. Our use of
these models have complied with the relevant li-
cense agreement and have been for scientific and
non-commercial purposes.

A.2 Scientific Artifacts
The above models are publicly available from
HuggingFace at the specific model page of
https://huggingface.co/ using the transformers li-
brary (Wolf et al., 2019b). Up to six NVIDIA RTX
A5000 graphics cards may be needed to generate
texts using these models with generation of each
batch taking a few minutes, with most of the time
dedicated to loading the model. The smaller mod-
els and quantization of larger models allow fewer
graphics cards to be used.

Generating 1000 8-character passwords or 5-
random-word passphrases each requires 0.01 sec-
onds on a single Intel Xeon E5-2680 v3 CPU. The
LLM models we used are much more resource-
intensive: for example, Llama-2-7B requires 390
seconds to generate 1,000 passphrases on an A5000
GPU (24GB memory), while for the same quan-
tized Mixtral-8x7B requires 2185 seconds on two
A5000 GPUs.
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base story passp sum TLDR
model

Llama-2-7B 0.0 0.1 0.4 0.5 0.4
Llama-2-13B 0.0 0.6 0.7 0.9 0.9
Llama-2-70B 0.0 0.2 0.1 0.0 0.1
Llama-3-8B 0.0 0.0 0.3 0.0 0.0
Llama-3-70B 0.0 0.0 0.2 0.0 0.0
Mistral-7B 0.0 0.0 0.0 0.0 0.0
Mixtral-8x7B 0.0 0.0 0.0 0.0 0.0
gemma-7B 0.0 0.0 1.0 1.0 1.0

Table 11: Proportion of outputs that start with “Sure",
“Certainly", “Here", “Here’s", “Okay", or “Ok", sam-
pled with temperature of 1.4 and top-p of 0.95 for the
base prompt and these direct-question prompts. “story"
column corresponds to prompt of “Give me a story in six
words"; “passp" to “Write a passphrase in six words";
“sum" to “Write a summary of a story in six words";
“TLDR" to “Write a tldr of a story in six words"

A.3 Direct-question prompt versus template
prompt

The direct-question prompts sometimes lead to out-
puts that start with filler words such as “Sure",
“Certainly", “Here", “Here’s", “Okay", “Ok". As
discussed in A.3, this seems to occur as there is no
guidance on the desired output form in the direct-
question prompts and the direct-question prompts
evoke a more conversational response. The tem-
plate prompt effectively eliminates the occurrence
of these extra words. See Figure .

The difficulty of using a direct-question prompt
to achieve all three passphrase criteria as discussed
in A.3 and seen in Tables 1, 12 and 13 is generally
true and can be observed at other temperature and
top-p parameters. For example, see Tables 14, 15,
and 16.

A.4 Increasing temperature or top-p
generally increases entropy

Note the effect of increased entropy as temperature
or top-p increases, but the other passphrase criteria
of limited number of words or all words being
correctly spelt English words may suffer. See the
statistics on output generated using the base prompt
at temperatures of 1.0, 1.2, and 1.4 and top-p of
0.95, 0.99, and 1.0 in Tables 17 to 25.

A.5 Steering towards a pre-specified topic

See Table 26 for prevalence of science and science-
related words in outputs of prompts that include

story passp sum TLDR
model

Llama-2-7B 0.9 0.6 0.5 0.5
Llama-2-13B 0.4 0.3 0.1 0.1
Llama-2-70B 0.8 0.9 0.9 0.9
Llama-3-8B 1.0 0.7 1.0 1.0
Llama-3-70B 1.0 0.8 1.0 1.0
Mistral-7B 0.0 0.1 0.1 0.0
Mixtral-8x7B 0.2 0.1 0.1 0.1
gemma-7B 0.0 0.1 0.0 0.0

Table 12: For direction-question prompts, proportion of
outputs that are of eight or fewer words. "story" column
corresponds to prompt of "Give me a story in six words";
"passp" to "Write a passphrase in six words"; "sum" to
"Write a summary of a story in six words"; "TLDR"
to "Write a tldr of a story in six words" (sampled with
temperature of 1.4 and top-p of 0.95)

.

story passp sum TLDR
model

Llama-2-7B 1.0 0.4 1.0 0.5
Llama-2-13B 0.9 0.2 0.8 0.3
Llama-2-70B 0.9 0.7 0.7 0.6
Llama-3-8B 0.9 0.4 0.9 0.8
Llama-3-70B 1.0 0.7 1.0 1.0
Mistral-7B 0.5 0.2 0.5 0.6
Mixtral-8x7B 0.6 0.1 0.4 0.3
gemma-7B 1.0 0.0 1.0 0.1

Table 13: For direction-question prompts, proportion
of outputs that are of entirely English words. "story"
column corresponds to prompt of "Give me a story in six
words"; "passp" to "Write a passphrase in six words";
"sum" to "Write a summary of a story in six words";
"TLDR" to "Write a tldr of a story in six words" (sam-
pled with temperature of 1.4 and top-p of 0.95)

.
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story passp sum TLDR
model

Llama-2-7B 0.0 0.0 0.0 0.0
Llama-2-13B 0.0 0.0 0.0 0.0
Llama-2-70B 0.0 0.0 0.0 0.0
Llama-3-8B 0.0 0.1 0.0 0.0
Llama-3-70B 0.0 0.0 0.0 0.0
Mistral-7B 0.1 0.5 0.0 0.0
Mixtral-8x7B 0.0 0.0 0.0 0.0
gemma-7B 0.0 0.0 0.0 0.0

Table 14: Proportion of outputs that have entropy ≥
47, sampled with temperature of 1.0 and top-p of 0.95
for different prompts. “story" column corresponds to
prompt of “Give me a story in six words"; “passp" to
“Write a passphrase in six words"; “sum" to “Write a
summary of a story in six words"; “TLDR" to “Write a
tldr of a story in six words"

story passp sum TLDR
model

Llama-2-7B 0.9 0.2 0.2 0.2
Llama-2-13B 0.1 0.2 0.0 0.0
Llama-2-70B 0.8 1.0 1.0 0.9
Llama-3-8B 1.0 0.7 1.0 1.0
Llama-3-70B 1.0 0.7 1.0 1.0
Mistral-7B 0.0 0.1 0.0 0.0
Mixtral-8x7B 0.0 0.0 0.2 0.0
gemma-7B 0.0 0.1 0.0 0.0

Table 15: Proportion of outputs that are of eight or fewer
words, sampled with temperature of 1.0 and top-p of
0.95 for different prompts. “story" column corresponds
to prompt of “Give me a story in six words"; “passp"
to “Write a passphrase in six words"; “sum" to “Write a
summary of a story in six words"; “TLDR" to “Write a
tldr of a story in six words"

story passp sum TLDR
model

Llama-2-7B 1.0 0.2 1.0 0.2
Llama-2-13B 1.0 0.2 0.8 0.2
Llama-2-70B 1.0 0.9 1.0 0.8
Llama-3-8B 1.0 0.2 1.0 1.0
Llama-3-70B 1.0 0.7 1.0 1.0
Mistral-7B 0.9 0.5 0.7 0.9
Mixtral-8x7B 0.6 0.0 0.4 0.2
gemma-7B 1.0 0.0 1.0 0.0

Table 16: Proportion of outputs that are of entirely En-
glish words, sampled with temperature of 1.0 and top-p
of 0.95 for different prompts. “story" column corre-
sponds to prompt of “Give me a story in six words";
“passp" to “Write a passphrase in six words"; “sum" to
“Write a summary of a story in six words"; “TLDR" to
“Write a tldr of a story in six words"

entropy num Eng All
model ≥ words criteria

47.0 ≤ 8

Llama-2-7B 0.1 1.0 1.0 0.1
Llama-2-13B 0.1 1.0 1.0 0.1
Llama-2-70B 0.0 1.0 0.9 0.0
Llama-3-8B 0.0 1.0 1.0 0.0
Llama-3-70B 0.0 1.0 1.0 0.0
Mistral-7B 0.5 1.0 0.9 0.4
Mixtral-8x7B 0.5 1.0 0.8 0.3
gemma-7B 0.1 0.9 0.9 0.0

Table 17: Proportion of output that meet criteria of
entropy ≥ 47.0, num_words ≤ 8 and consisting of all
English words, separately, and all criteria concurrently
using the base prompt, temperature 1.0 and top-p of
0.95
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entropy num Eng All
model ≥ words criteria

47.0 ≤ 8

Llama-2-7B 0.2 1.0 1.0 0.2
Llama-2-13B 0.2 1.0 0.9 0.2
Llama-2-70B 0.1 1.0 0.9 0.1
Llama-3-8B 0.1 1.0 1.0 0.1
Llama-3-70B 0.0 1.0 1.0 0.0
Mistral-7B 0.6 0.9 0.9 0.5
Mixtral-8x7B 0.6 1.0 0.8 0.5
gemma-7B 0.2 0.9 0.9 0.1

Table 18: Proportion of output that meet criteria of
entropy ≥ 47.0, num_words ≤ 8 and consisting of all
English words, separately, and all criteria concurrently
using the base prompt, temperature 1.0 and top-p of
0.99.

entropy num Eng All
model ≥ words criteria

47.0 ≤ 8

Llama-2-7B 0.2 1.0 0.9 0.2
Llama-2-13B 0.2 1.0 0.9 0.2
Llama-2-70B 0.1 1.0 0.9 0.1
Llama-3-8B 0.1 1.0 0.9 0.1
Llama-3-70B 0.0 1.0 1.0 0.0
Mistral-7B 0.7 0.9 0.9 0.5
Mixtral-8x7B 0.6 1.0 0.9 0.5
gemma-7B 0.2 0.9 0.9 0.1

Table 19: Proportion of output that meet criteria of
entropy ≥ 47.0, num_words ≤ 8 and consisting of all
English words, separately, and all criteria concurrently
using the base prompt, temperature 1.0 and top-p of 1.0

entropy num Eng All
model ≥ words criteria

47.0 ≤ 8

Llama-2-7B 0.4 1.0 0.9 0.4
Llama-2-13B 0.5 1.0 0.9 0.5
Llama-2-70B 0.2 1.0 0.8 0.1
Llama-3-8B 0.4 1.0 0.9 0.4
Llama-3-70B 0.0 1.0 1.0 0.0
Mistral-7B 0.8 0.9 0.9 0.7
Mixtral-8x7B 0.9 1.0 0.8 0.7
gemma-7B 0.6 0.8 0.7 0.2

Table 20: Proportion of output that meet criteria of
entropy ≥ 47.0, num_words ≤ 8 and consisting of all
English words, separately, and all criteria concurrently
using the base prompt, temperature 1.2 and top-p of
0.95

entropy num Eng All
model ≥ words criteria

47.0 ≤ 8

Llama-2-7B 0.5 1.0 0.9 0.5
Llama-2-13B 0.6 1.0 0.8 0.5
Llama-2-70B 0.4 1.0 0.7 0.2
Llama-3-8B 0.5 1.0 0.9 0.4
Llama-3-70B 0.1 1.0 0.9 0.1
Mistral-7B 0.9 0.9 0.8 0.7
Mixtral-8x7B 0.9 0.9 0.8 0.7
gemma-7B 0.7 0.8 0.7 0.3

Table 21: Proportion of output that meet criteria of
entropy ≥ 47.0, num_words ≤ 8 and consisting of all
English words, separately, and all criteria concurrently
using the base prompt, temperature 1.2 and top-p of
0.99

entropy num Eng All
model ≥ words criteria

47.0 ≤ 8

Llama-2-7B 0.6 1.0 0.9 0.5
Llama-2-13B 0.7 1.0 0.8 0.5
Llama-2-70B 0.4 0.9 0.7 0.2
Llama-3-8B 0.6 1.0 0.8 0.4
Llama-3-70B 0.2 1.0 0.9 0.1
Mistral-7B 0.9 0.8 0.8 0.6
Mixtral-8x7B 0.9 0.9 0.8 0.7
gemma-7B 0.7 0.8 0.7 0.3

Table 22: Proportion of output that meet criteria of
entropy ≥ 47.0, num_words ≤ 8 and consisting of all
English words, separately, and all criteria concurrently
using the base prompt, temperature 1.2 and top-p of 1.0

entropy num Eng All
model ≥ words criteria

47.0 ≤ 8

Llama-2-7B 0.8 1.0 0.8 0.6
Llama-2-13B 0.9 1.0 0.8 0.7
Llama-2-70B 0.7 0.9 0.6 0.3
Llama-3-8B 0.9 1.0 0.6 0.6
Llama-3-70B 0.3 1.0 0.8 0.1
Mistral-7B 1.0 0.7 0.6 0.6
Mixtral-8x7B 1.0 0.9 0.7 0.7
gemma-7B 0.9 0.7 0.5 0.3

Table 23: Proportion of output that meet criteria of
entropy ≥ 47.0, num_words ≤ 8 and consisting of all
English words, separately, and all criteria concurrently
using the base prompt, temperature 1.4 and top-p of
0.95
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entropy num Eng All
model ≥ words criteria

47.0 ≤ 8

Llama-2-7B 0.8 0.9 0.7 0.5
Llama-2-13B 0.9 1.0 0.7 0.6
Llama-2-70B 0.8 0.8 0.5 0.3
Llama-3-8B 0.9 1.0 0.5 0.4
Llama-3-70B 0.5 1.0 0.6 0.2
Mistral-7B 1.0 0.6 0.5 0.4
Mixtral-8x7B 1.0 0.9 0.7 0.6
gemma-7B 1.0 0.7 0.4 0.3

Table 24: Proportion of output that meet criteria of
entropy ≥ 47.0, num_words ≤ 8 and consisting of all
English words, separately, and all criteria concurrently
using the base prompt, temperature 1.4 and top-p of
0.99

entropy num Eng All
model ≥ words criteria

47.0 ≤ 8

Llama-2-7B 0.9 0.9 0.6 0.4
Llama-2-13B 0.9 1.0 0.6 0.6
Llama-2-70B 0.8 0.9 0.5 0.3
Llama-3-8B 0.9 1.0 0.5 0.4
Llama-3-70B 0.5 1.0 0.6 0.1
Mistral-7B 1.0 0.6 0.4 0.3
Mixtral-8x7B 1.0 0.9 0.7 0.7
gemma-7B 1.0 0.7 0.4 0.3

Table 25: Proportion of output that meet criteria of
entropy ≥ 47.0, num_words ≤ 8 and consisting of all
English words, separately, and all criteria concurrently
using the base prompt, temperature 1.4 and top-p of 1.0

base base science science
prompt prompt prompt prompt
science sci-

rel
science sci-

rel
model output output output output

Llama-2-7B 0.01 0.05 0.50 0.05
Llama-2-13B 0.01 0.02 0.17 0.09
Llama-2-70B 0.02 0.05 0.98 0.13
Llama-3-8B 0.00 0.05 0.12 0.07
Llama-3-70B 0.01 0.17 0.12 0.25
Mistral-7B 0.00 0.01 0.08 0.05
Mixtral-8x7B 0.01 0.03 0.08 0.07
gemma-7B 0.01 0.05 0.09 0.05

Table 26: Proportion of output that contains “sci-
ence"/“scientist"/“scientific" and proportion of out-
put that contains science-related words or word-stems
(“robot", “innovat", “discover", “engineer" or “exper-
iment"), compared between base prompt and science-
prompt.

science and science related topics, in comparison
to the base prompt. As expected science-prompt
had outputs with more science or science-related
words.

A.6 High entropy, low entropy

Tables 27, 28, and 29 are the average output entropy
for base prompt, low-entropy prompt, and high-
entropy prompt at top-p of 0.95 and at temperatures
of 1.0, 1.2 and 1.4, respectively. Note the general
trend of higher entropy prompt promoting higher
entropy output but the scale of the effect varies for
different temperatures.

A.7 First token entropy

In Section 6.1, we focus on the first token and cal-
culate the expected entropy of the first token at
various temperatures by summing over each poten-
tial token’s entropy weighted by its probability of
being selected as the first token. To make this more
concrete, see Figure 4, which plots the 50 tokens
with the highest probability (corresponding to the
lowest entropy) of being selected as the first token
using the base-prompt at temperature 1.0 and top-p
of 1.0 in the Gemma-7B model.

A.8 Additional parameter settings for
passphrase generation

In addition to the parameter settings listed in Table
10, the parameters in Tables 30, 31, and 32 can also
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Figure 4: Gemma-7B model: Potential first tokens and their probability (top 50 tokens pictured).

base low-ent high-ent
model prompt prompt prompt

Llama-2-7B 31.5 16.9 29.6
Llama-2-13B 34.8 16.6 31.8
Llama-2-70B 22.6 13.9 19.4
Llama-3-8B 31.9 19.3 30.0
Llama-3-70B 15.7 3.4 16.0
Mistral-7B 47.0 21.2 45.6
Mixtral-8x7B 49.2 27.6 55.1
gemma-7B 32.6 23.5 27.1

Table 27: Average entropy of output using the base
prompt, prompt containing low entropy examples and
prompt containing high entropy examples, with temper-
ature of 1.0 and top-p of 0.95.

base low-ent high-ent
model prompt prompt prompt

Llama-2-7B 46.3 25.2 45.2
Llama-2-13B 47.8 24.1 41.3
Llama-2-70B 39.7 30.5 45.4
Llama-3-8B 46.3 27.4 43.3
Llama-3-70B 24.5 6.8 23.7
Mistral-7B 64.5 32.1 62.8
Mixtral-8x7B 59.7 37.1 66.2
gemma-7B 54.3 37.9 44.3

Table 28: Average entropy of output using the base
prompt, prompt containing low entropy examples and
prompt containing high entropy examples, with temper-
ature of 1.2 and top-p of 0.95.

base low-ent high-ent
model prompt prompt prompt

Llama-2-7B 64.4 44.3 66.5
Llama-2-13B 61.8 44.4 74.6
Llama-2-70B 106.0 87.5 138.3
Llama-3-8B 69.7 50.3 61.0
Llama-3-70B 44.8 16.0 41.9
Mistral-7B 119.8 59.7 111.9
Mixtral-8x7B 73.3 55.3 93.1
gemma-7B 85.1 65.7 69.1

Table 29: Average entropy of output using the base
prompt, prompt containing low entropy examples and
prompt containing high entropy examples, with temper-
ature of 1.4 and top-p of 0.95.

be used to generate good passphrases.

A.9 Logits adjustments in passphrase
generation

In order to standardize the output of generated
passphrases, tokens containing non-ascii, digit and
certain punctuation characters have their probabili-
ties zeroed out. Additionally tokens containing the
newline, exclamation, period and question mark
are replaced by the eos token and no further token
is sampled in the sequence.

A.10 User Study

The users are recruited from a university setting
and using the survey service, Prolific. In the first
setting, the users responded to requests for volun-
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model temp top-p q-
trunc

all-
criteria

Llama-2-13B 1.20 0.95 0 0.32
Llama-2-13B 1.20 0.99 0 0.40
Llama-2-13B 1.20 1.00 0 0.41
Llama-2-13B 1.40 0.95 0 0.56
Llama-2-13B 1.40 0.99 0 0.59
Llama-2-13B 1.40 1.00 0 0.56
Llama-2-70B 1.40 0.95 0 0.30
Llama-2-70B 1.40 0.99 0 0.30
Llama-2-70B 1.40 1.00 0 0.31
Llama-2-7B 1.20 0.99 0 0.29
Llama-2-7B 1.20 1.00 0 0.29
Llama-2-7B 1.40 0.95 0 0.48
Llama-2-7B 1.40 0.99 0 0.39
Llama-2-7B 1.40 1.00 0 0.39
Llama-3-8B 1.20 0.95 0 0.38
Llama-3-8B 1.20 0.99 0 0.42
Llama-3-8B 1.20 1.00 0 0.44
Llama-3-8B 1.40 0.95 0 0.55
Llama-3-8B 1.40 0.99 0 0.53
Llama-3-8B 1.40 1.00 0 0.52
Mistral-7B 1.00 0.99 0 0.36
Mistral-7B 1.00 1.00 0 0.41
Mistral-7B 1.20 0.95 0 0.52
Mistral-7B 1.20 0.99 0 0.57
Mistral-7B 1.20 1.00 0 0.55
Mistral-7B 1.40 0.95 0 0.59
Mistral-7B 1.40 0.99 0 0.48
Mistral-7B 1.40 1.00 0 0.42
Mixtral-8x7B 1.00 0.95 0 0.37
Mixtral-8x7B 1.00 0.99 0 0.48
Mixtral-8x7B 1.00 1.00 0 0.55
Mixtral-8x7B 1.20 0.95 0 0.68
Mixtral-8x7B 1.20 0.99 0 0.63
Mixtral-8x7B 1.20 1.00 0 0.63
Mixtral-8x7B 1.40 0.95 0 0.56
Mixtral-8x7B 1.40 0.99 0 0.52
Mixtral-8x7B 1.40 1.00 0 0.48
gemma-7B 1.20 0.99 0 0.30
gemma-7B 1.20 1.00 0 0.30
gemma-7B 1.40 0.95 0 0.38
gemma-7B 1.40 0.99 0 0.36
gemma-7B 1.40 1.00 0 0.34

Table 30: Settings for passphrase generation with q-
trunc of 0. For each model, use the base-prompt and set
temperature, top-p, and q-truncation as in the above to
create good passphrases. The last column lists the pro-
portion of output which meets all three criteria: entropy
≥ 49, number of words ≤ 8, and composed of English
words.

model temp top-p q-
trunc

all-
criteria

Llama-2-13B 1.20 0.95 0.20 0.45
Llama-2-13B 1.20 0.99 0.20 0.52
Llama-2-13B 1.20 1.00 0.20 0.56
Llama-2-13B 1.40 0.95 0.20 0.70
Llama-2-13B 1.40 0.99 0.20 0.61
Llama-2-13B 1.40 1.00 0.20 0.56
Llama-2-70B 1.40 0.95 0.20 0.38
Llama-2-70B 1.40 0.99 0.20 0.30
Llama-2-70B 1.40 1.00 0.20 0.31
Llama-2-7B 1.20 0.95 0.20 0.39
Llama-2-7B 1.20 0.99 0.20 0.49
Llama-2-7B 1.20 1.00 0.20 0.45
Llama-2-7B 1.40 0.95 0.20 0.60
Llama-2-7B 1.40 0.99 0.20 0.48
Llama-2-7B 1.40 1.00 0.20 0.43
Llama-3-8B 1.20 0.95 0.20 0.42
Llama-3-8B 1.20 0.99 0.20 0.48
Llama-3-8B 1.20 1.00 0.20 0.48
Llama-3-8B 1.40 0.95 0.20 0.58
Llama-3-8B 1.40 0.99 0.20 0.49
Llama-3-8B 1.40 1.00 0.20 0.45
Mistral-7B 1.00 0.95 0.20 0.34
Mistral-7B 1.00 0.99 0.20 0.43
Mistral-7B 1.00 1.00 0.20 0.45
Mistral-7B 1.20 0.95 0.20 0.66
Mistral-7B 1.20 0.99 0.20 0.66
Mistral-7B 1.20 1.00 0.20 0.59
Mistral-7B 1.40 0.95 0.20 0.59
Mistral-7B 1.40 0.99 0.20 0.45
Mistral-7B 1.40 1.00 0.20 0.41
Mixtral-8x7B 1.00 0.95 0.20 0.43
Mixtral-8x7B 1.00 0.99 0.20 0.53
Mixtral-8x7B 1.00 1.00 0.20 0.62
Mixtral-8x7B 1.20 0.95 0.20 0.66
Mixtral-8x7B 1.20 0.99 0.20 0.71
Mixtral-8x7B 1.20 1.00 0.20 0.61
Mixtral-8x7B 1.40 0.95 0.20 0.52
Mixtral-8x7B 1.40 0.99 0.20 0.45
Mixtral-8x7B 1.40 1.00 0.20 0.41
gemma-7B 1.20 0.95 0.20 0.27
gemma-7B 1.20 0.99 0.20 0.33
gemma-7B 1.20 1.00 0.20 0.32
gemma-7B 1.40 0.95 0.20 0.35
gemma-7B 1.40 0.99 0.20 0.30
gemma-7B 1.40 1.00 0.20 0.30

Table 31: With q-trunc of 0.20. use base-prompt and
above parameters. The last column lists the proportion
of output which meets all three criteria: entropy ≥ 49,
number of words ≤ 8, and composed of English words.
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model temp top-p q-
trunc

all-
criteria

Llama-2-13B 1.00 1.00 0.35 0.29
Llama-2-13B 1.20 0.95 0.35 0.57
Llama-2-13B 1.20 0.99 0.35 0.62
Llama-2-13B 1.20 1.00 0.35 0.62
Llama-2-13B 1.40 0.95 0.35 0.56
Llama-2-70B 1.20 0.99 0.35 0.27
Llama-2-70B 1.20 1.00 0.35 0.27
Llama-2-7B 1.00 1.00 0.35 0.28
Llama-2-7B 1.20 0.95 0.35 0.48
Llama-2-7B 1.20 0.99 0.35 0.49
Llama-2-7B 1.20 1.00 0.35 0.48
Llama-2-7B 1.40 0.95 0.35 0.57
Llama-3-70B 1.40 1.00 0.35 0.27
Llama-3-8B 1.00 0.99 0.35 0.26
Llama-3-8B 1.00 1.00 0.35 0.30
Llama-3-8B 1.20 0.95 0.35 0.52
Llama-3-8B 1.20 0.99 0.35 0.54
Llama-3-8B 1.20 1.00 0.35 0.53
Llama-3-8B 1.40 0.95 0.35 0.59
Llama-3-8B 1.40 0.99 0.35 0.41
Llama-3-8B 1.40 1.00 0.35 0.36
Mistral-7B 1.00 0.95 0.35 0.36
Mistral-7B 1.00 0.99 0.35 0.53
Mistral-7B 1.00 1.00 0.35 0.58
Mistral-7B 1.20 0.95 0.35 0.65
Mistral-7B 1.20 0.99 0.35 0.59
Mistral-7B 1.20 1.00 0.35 0.56
Mistral-7B 1.40 0.95 0.35 0.55
Mistral-7B 1.40 0.99 0.35 0.38
Mistral-7B 1.40 1.00 0.35 0.34
Mixtral-8x7B 1.00 0.95 0.35 0.48
Mixtral-8x7B 1.00 0.99 0.35 0.58
Mixtral-8x7B 1.00 1.00 0.35 0.67
Mixtral-8x7B 1.20 0.95 0.35 0.66
Mixtral-8x7B 1.20 0.99 0.35 0.50
Mixtral-8x7B 1.20 1.00 0.35 0.49
Mixtral-8x7B 1.40 0.95 0.35 0.48
Mixtral-8x7B 1.40 0.99 0.35 0.37
gemma-7B 1.20 0.95 0.35 0.41
gemma-7B 1.20 0.99 0.35 0.42
gemma-7B 1.20 1.00 0.35 0.46
gemma-7B 1.40 0.95 0.35 0.28

Table 32: Settings for passphrase generation with q-
trunc of 0.35. For each model, use the base-prompt
and set temperature, top-p, and q-truncation as in the
above to create good passphrases. The last column lists
the proportion of output which meets all three criteria:
entropy ≥ 49, number of words ≤ 8, and composed of
English words.

teers for a user study involving passphrases. No
payment is offered in exchange for their partici-
pation. In the second setting, the survey service
set a minimum fair rate for participant time, which
was complied with. In both settings, no personal
information about any individual participant has
been collected. Only their response to the survey
questions, along with their survey service id for the
survey participants, were collected.

The relevant experts have determined the user
study described in this paper is exempt form Insti-
tutional Review Board review and have reviewed
the information provided to users. The users has
been notified in writing that their participation is
entirely voluntary, that the risks are comparable to
those encountered in everyday life, and that none
of their personal data would be collected.
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