
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 5191–5215

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Avoiding Copyright Infringement via Large Language Model Unlearning

Guangyao Dou1 Zheyuan Liu2 Qing Lyu1 Kaize Ding3 Eric Wong1

1University of Pennsylvania 2University of Notre Dame 3Northwestern University

gydou@seas.upenn.edu

Abstract
Pre-trained Large Language Models (LLMs)
have demonstrated remarkable capabilities but
also pose risks by learning and generating copy-
righted material, leading to significant legal
and ethical concerns. In real-world scenarios,
model owners need to continuously address
copyright infringement as new requests for con-
tent removal emerge at different time points.
This leads to the need for sequential unlearn-
ing, where copyrighted content is removed se-
quentially as new requests arise. Despite its
practical relevance, sequential unlearning in the
context of copyright infringement has not been
rigorously explored in existing literature. To
address this gap, we propose Stable Sequential
Unlearning (SSU), a novel framework designed
to unlearn copyrighted content from LLMs over
multiple time steps. Our approach works by
identifying and removing specific weight up-
dates in the model’s parameters that correspond
to copyrighted content. We improve unlearn-
ing efficacy by introducing random labeling
loss and ensuring the model retains its general-
purpose knowledge by adjusting targeted pa-
rameters. Experimental results show that SSU
achieves an effective trade-off between unlearn-
ing efficacy and general-purpose language abil-
ities, outperforming existing baselines. 1

1 Introduction

In December 2023, the New York Times filed a
lawsuit against OpenAI, accusing it of training its
Large Language Models (LLMs) on copyrighted
material without permission3. This legal challenge
highlights the growing concern over LLMs incorpo-
rating copyrighted content from vast pre-training
datasets, which are often composed of publicly
available text (Brittain, 2023; Rahman and Santa-
cana, 2023). Despite the significant progress LLMs

1Code is available at guangyaodou/SSU.
2This example is for illustration purposes only, as Conan

Doyle’s Sherlock Holmes entered the public domain in 2023.
3NYT Complaint, Dec 2023

Figure 1: Continuations of a passage from Sherlock
Holmes under different copyright takedown methods.
The original continuation serves as the ground truth.
The vanilla model, prompting, and MemFree decoding
exhibit high risk of copyright infringement. In contrast,
SSU produces a continuation that is transformative to
avoid copyright infringement. 2

have made through learning from diverse text data
(Brown et al., 2020; Chowdhery et al., 2023; Tou-
vron et al., 2023), screening out copyrighted mate-
rial remains an immense challenge (Duarte et al.,
2024). These issues raise broader questions about
fair use of generative models.

There are two times when copyright interacts
with LLMs. The first is when LLMs learn from
copyrighted materials, which is arguably fair use
(but this has not been tested in court). The second
is when LLMs generate outputs. If a generated out-
put is substantially similar to copyrighted work it
has trained on, then this is more likely to be a copy-
right infringement. If a court found an AI model
developer to be in violation of copyright, then the
court may require that the developer to remove
that copyrighted work from the model. The cost
of retraining from scratch leaving out one copy-
righted work is exorbitantly high. Therefore, as an
alternate remedy, a court may ask for a copyright

5191

https://github.com/guangyaodou/SSU_Unlearn
https://nytco-assets.nytimes.com/2023/12/NYT_Complaint_Dec2023.pdf

takedown that does not require a full retraining of
the model. This motivates research into unlearning
and other copyright takedown methods.

Previous works have investigated post-hoc copy-
right takedown methods – mitigating risks of gener-
ating copyrighted contents – using system prompt
and decoding time intervention such as the Mem-
Free Decoding (Ippolito et al., 2022). Additionally,
an alternative solution is machine unlearning (Cao
and Yang, 2015), which removes unwanted knowl-
edge after pre-training, reconfiguring the model as
if it had never learned that data (Figure 1). Recent
works proposed practical machine unlearning al-
gorithms for LLMs (Zhang et al., 2024; Chen and
Yang, 2023; Jang et al., 2023; Zhao et al., 2024).
However, few have addressed the challenge of se-
quentially unlearning copyrighted content, where
multiple unlearning requests must be processed
over time without retraining from scratch. A key
difficulty lies in controlling the changes in model
weights during this process—existing methods of-
ten struggle to prevent unintended drift, leading to
drastic degradation of general-purpose language
abilities, leaving it unclear if they are suitable as
copyright takedown methods. An effective unlearn-
ing algorithm should be stable, meaning it should
ensure unlearning efficacy while preserving non-
targeted knowledge, knowledge that are not subject
to unlearning, and general-purpose abilities.

The core of many previous LLM unlearning
methods have focused on Gradient Ascent (GA)
and further combined it with an in-distribution re-
tained dataset to preserve general-purpose language
abilities, known as Gradient Difference (Maini
et al., 2024; Zhao et al., 2024; Liu et al., 2024e;
Yao et al., 2024). However, Gradient Differ-
ence requires collection of a substantial amount of
in-distribution retained data to maintain general-
purpose abilities. Moreover, GA-based meth-
ods risk catastrophic collapse, where the model’s
general-purpose language abilities degrade signifi-
cantly (Liu et al., 2024e). Zhang et al. (2024) pro-
posed Negative Preference Optimization (NPO),
framing unlearning as preference optimization.
However, NPO relies on a reference model, and
if the reference model contains copyrighted infor-
mation, unlearning efficacy is compromised.

To address these challenges in sequentially un-
learning copyrighted books, we propose Stable
Sequential Unlearning (SSU), that achieves a better
trade-off between effective unlearning and main-
taining general-purpose language abilities in se-

quential settings. Specifically, SSU first fine-tunes
the model on the copyrighted books, followed by
fine-tuning with random labels. During gradient
updates, SSU applies targeted weight adjustments
through weight saliency. Afterwards, it extracts
task vectors (Ilharco et al., 2022) corresponding to
the copyrighted books and subsequently negates
these task vectors to achieve unlearning. Unlike
Gradient Difference methods, SSU does not require
additional retained data collection to maintain its
performance on other tasks, thereby avoiding the
complexity and overhead associated.

Our experiments on the Llama-3.1-8B-Instruct
(Dubey et al., 2024) and Mistral-7B-Instruct-v0.3
(Jiang et al., 2023) show that SSU achieves a su-
perior trade-off between unlearning efficacy and
general-purpose language abilities, avoiding the
catastrophic collapse. Moreover, SSU consistently
outperforms NPO, which employs preference op-
timization frameworks. Additionally, fine-tuning
with random loss and targeted model updates play
distinct roles in facilitating the unlearning process
within SSU. In contrast, copyright takedown meth-
ods that do not involve model weight updates, such
as system prompts and MemFree Decode, fail to
mitigate the risks of copyright infringement.

Our main contributions are:

• We present the first investigation into the se-
quential unlearning of copyrighted literary
works to address copyright infringement, for-
malizing the task and defining evaluation met-
rics for effectiveness.

• We propose SSU, a stable unlearning algo-
rithm for sequential settings, which achieves
a superior trade-off between mitigating copy-
right infringement and preserving reasoning
capabilities compared to existing methods.

• We systematically evaluate existing methods
within the sequential unlearning setting and
demonstrate that they either provide limited
mitigation of copyright infringement or suffer
from catastrophic collapse.

2 Related Work

LLM Memorization and Copyright LLMs are
known to memorize and reproduce training data
from the pre-training stage (Carlini et al., 2021,
2022; Zhang et al., 2023; Nasr et al., 2023; Liu
et al., 2024b). This behavior has prompted recent

5192

studies exploring the connection between verba-
tim memorization and copyright infringement (Chu
et al., 2024; Huang et al., 2024; Meeus et al., 2024;
Karamolegkou et al., 2023), as well as the fair use
of foundation models (Henderson et al., 2023). Var-
ious methods have been proposed to mitigate these
risks. For instance, Ippolito et al. (2022) introduced
the MemFree decoding to reduce the likelihood of
copyright infringement but failed to capture non-
consecutive verbatim content. Additionally, Min
et al. (2023) proposed SILO, a framework that uti-
lizes a nonparametric datastore containing high-
legal-risk data. However, the SILO framework does
not address the risks associated with retrieval aug-
mented generation (Wei et al., 2024), nor does it
adequately address the practical challenges of en-
suring that the training data for parametric models
is limited to permissive content.

Machine Unlearning Machine Unlearning (Cao
and Yang, 2015) have been proposed for LLMs
to remove harmful knowledge (Liu et al., 2024e;
Yao et al., 2023), private information (Dong et al.,
2024), and copyrighted content (Jang et al., 2022;
Eldan and Russinovich, 2023; Liu et al., 2024c).
Additionally, Maini et al. (2024) and Yao et al.
(2024) explored the right to be forgotten and in-
troduced benchmarks for evaluating the unlearn-
ing effectiveness of private data. Li et al. (2024)
further introduced a benchmark for forgetting haz-
ardous knowledge in LLMs. However, none of
these works have addressed the unlearning of copy-
righted literary works in a sequential setting, nor
the limitations of existing methods in this context.

Model Editing A related but distinct process is
model editing (Meng et al., 2022; Hewitt et al.,
2024; Gupta et al., 2024b). While unlearning aims
to erase specific information from a model, model
editing focuses on correcting errors without remov-
ing the underlying learned information (Liu et al.,
2024d). Recent studies have shown that model
editing in sequential settings can lead to model col-
lapse (Gupta et al., 2024a; Yang et al., 2024a), and
potential solutions have been proposed to mitigate
this issue (Gupta and Anumanchipalli, 2024).

3 Preliminaries

3.1 Machine Unlearning for LLMs

Consider the original model and its weights, de-
noted as θo. Machine unlearning involves the prob-
lem where, given a dataset D = {(xi, yi)}Ni=1 that

θo was trained on, we aim to intentionally forget a
subset of data, denoted as Df , to obtain a modified
model, denoted as θu, such that θu behaves as if it
has never seen Df during pre-training.

In the context of machine unlearning, we often
use a retrained model excluding Df during pre-
training as a gold baseline. However, retraining a
model for LLMs is extremely expensive and im-
practical in real-world settings.

3.2 Task Arithmetic

Unlearning via negating task vectors has recently
gained attention (Ilharco et al., 2022; Liu et al.,
2024e) and has become an important baseline ap-
proach for many unlearning tasks. The rationale
behind this approach is that by negating the gradi-
ent updates of the unwanted data, we can achieve a
more localized unlearning algorithm to effectively
erase Df from θo.

Specifically, the process involves two stages.
First, we perform standard gradient descent to fine-
tune θo on Df , resulting in θft. Next, we calcu-
late the task vector as the element-wise difference
θft − θo. We then negate this task vector from
θo to derive the unlearned model θu, expressed as
θu = θo − (θft − θo).

3.3 Unlearning with Multiple Time Steps

We formally define sequential unlearning as the pro-
cess where a model, originally trained on a dataset
D, is incrementally modified to forget subsets of
data at multiple time steps while preserving knowl-
edge from the remaining data. Let D be the origi-
nal dataset, and let Dt

f ⊆ D denote the subset of
data that must be forgotten at time step t, where
t = 1, 2, . . . , T . The cumulative set of all data to be
forgotten over time is defined as: Df = ∪Tt=1D

t
f .

Let Dr represent the subset of data to be retained,
such that Dr = D \ Df , Df ∩ Dr = ∅, and
Df ∪Dr = D.

At each time step t, the unlearning process mod-
ifies the model to forget the subset Dt

f , resulting in
a sequence of models {θ1u, θ2u, . . . , θTu }. Each θtu is
the model obtained after unlearning the data sub-
sets D1

f , D
2
f , . . . , D

t
f sequentially. Formally, the

goal of sequential unlearning is to ensure that after
each unlearning step, the model θtu minimizes the
influence of Dt

f while retaining as much general-
purpose knowledge from Dr as possible.

5193

Figure 2: Overall process of our unlearning framework. (a) At each time step t, an unlearning request is received
to forget the dataset Dt

f . The unlearning algorithm involves first fine-tuning θt−1
u on Dt

f to obtain θtft, and then
subtracting the task vector from previously unlearned model θt−1

u . (b) At each time step t. we compute the gradient
loss and random labeling loss to obtain the objective Lf (θ

t−1
u) that will be used for fine-tuning. (c) At time step

t+ 1, we fine-tune θtu using the objective we obtained in (b), and only update model weights that are most salient
using weight saliency mapping.

4 Methods

This section presents SSU, which leverages task
vectors, incorporates additional loss term for ensur-
ing unlearning efficacy and uses a gradient-based
weight saliency map to ensure general-purpose lan-
guage abilities. The overall process is shown in
Figure 2. We first explain unlearning at each time
step in section 4.1, and then generalize it to sequen-
tial setting in section 4.2.

4.1 Learning Stable Task Vectors

First, we present the case of unlearning during the
first time step. This means that t = 1, D1

f = Df ,
and θ0u = θo. Following the intuition from task vec-
tors, we first need to fine-tune a model on Df . To
do this, we define hθ(x, yy<i) = P(yi|(x, y<i); θ),
which is the probability of the token yi conditioned
on the prompt x and the already generated tokens
y<i = [y1, y2, ..., yi−1]. Next, we define the LLM’s
loss on y as:

L(x, y; θ) :=

|y|∑

i=1

ℓ(hθ(x, y<i), yi), (1)

in which l is the cross-entropy loss.
Suppose θt is the current LLM through unlearn-

ing process. The first goal is to obtain a model
that forgets Df . Specifically, we define our first

gradient descent loss term as:

Lfgt =
∑

(xfgt,yfgt)∈Df

L(xfgt, yfgt, θo). (2)

Random Labeling Loss Inspired by previous
works demonstrating that injecting noise during
training improves learning outcomes (Miyato et al.,
2016; Srivastava et al., 2014; Neelakantan et al.,
2015), we propose enhancing the effectiveness
of unlearning by introducing data augmentation.
Specifically, as shown in Figure 2 (b), we randomly
mismatch the outputs of Df with the inputs of Df .
During the first stage of the task vector approach,
we include the following loss:

Lrnd :=
∑

(xfgt,)∈Df

1

|Df |
∑

(,yrnd)∈Df

L(xfgt, yrnd, θt),

(3)
in which yrnd is any output from Df and not corre-
sponds to xfgt.

By incorporating this random labeling loss, we
introduce controlled noise into the unlearning pro-
cess. This helps to prevent “overfitting” and en-
hance the stability of unlearning. Combining two
loss terms, the final objective can be expressed as:

Lf (θt) = ϵ1Lfgt + ϵ2Lrnd. (4)

Weight Saliency While performing sequential
unlearning, we implicitly leverage the knowledge

5194

of previous steps. Specifically, as new requests
are introduced, the most recent unlearning step ad-
justs the model weights based on the parameters
from earlier unlearning steps. One of the main
challenges with existing methods is that they often
fail to control the changes in model weights dur-
ing this process, which can lead to instability and
faster degradation of the model’s general-purpose
capabilities.

Therefore, to preserve general-purpose language
abilities, we should mitigate the risk of catastrophic
collapse during each time step of sequential un-
learning. We can achieve this by steering the un-
learning process towards specific parts of the model
weights that are most relevant to the data to be for-
gotten.

As shown in Figure 2 (c), we use a gradient-
baased weight saliency map (Fan et al., 2023)
during the first stage of fine-tuning to further en-
sure localized unlearning by only adjusting specific
weights that are most influenced by the data to be
forgotten. The weight saliency map is defined as:

ms = 1(|∇θLf (θt)| ≥ γ), (5)

in which 1(f ≥ γ) is an element-wise indicator
function which outputs one for the i-th element
if fi ≥ γ, and 0 otherwise, and ∇θLf (θt) is a
gradient vector.

Next, we apply the weight saliency mapping on
the parameters that are most salient to unlearning
and have the learned model as at each gradient
accumulation step as:

θt+1 = ms ⊙ (∆θ + θt) + (1−ms)⊙ θt, (6)

where ∆θ indicates model updates. After training
for T gradient accumulation steps using Equation
6, we obtain a fine-tuned model θ1ft. Finally, we
obtain our modified model using task vector by
negating the knowledge of Df learned during the
fine-tuning process from the original model as:

θ1u = θo − (θ1ft − θo). (7)

4.2 Sequential Unlearning

In this section, we explain how we generalize un-
learning to sequential setting. As shown in Figure
2, at each new time step t, we have the previously
unlearned model θt−1

u . Once we receive a new
unlearning request, we will fine-tune θt−1

u using
equation 6 as discussed in section 4.1 and obtain

θtft. Lastly, we obtain a new unlearned model at
time step t as:

θtu = θt−1
u − (θtft − θt−1

u). (8)

If more unlearning requests are received, we will
iteratively apply the same process to obtain a newer
unlearned model. Notably, unlike Gradient Differ-
ence, SSU does not require any additional retained
dataset when calculating equation 4, ensuring effi-
ciency and simplicity in real-world applications.

5 Experimental Setup

In this paper, we choose the removal of copyrighted
books from LLMs as a representative scenario for
authors to exercise their intellectual property rights.
Machine unlearning can be applied to these LLMs
to unlearn these books, thereby preventing the gen-
eration of verbatim copyrighted content.

5.1 Setting
We aim to evaluate the effectiveness of sequential
unlearning of copyrighted books. At each time
step, we unlearn one book following the experi-
mental design of (Zhou et al., 2023; Carlini et al.,
2022). For each book, we split the text into chunks
of 200 tokens and use the system prompt, instruc-
tion prompt, and the first 100 tokens as prompt text
to ask the model to continue the story, with the
following 100 tokens serving as the ground truth.
To assess the amount of copyrighted information
being leaked, we compared the LLM’s completion
with the remaining 100 tokens of each chunk from
the original book using techniques for extract train-
ing data proposed by Yu et al. (2023). Specifically,
we use nucleus sampling (Holtzman et al., 2019)
by setting the temperature to be 0.4 and η = 0.6,
which means that the smallest set of the most likely
tokens with total probabilities equal to or greater
than 0.6 are selected.

In addition to books in Df , we evaluate per-
formance on previously unlearned books (Dprev,
when t > 1) and books that should not be
unlearned, denoted as Dnor (representing non-
targeted knowledge), where Dnor ⊂ Dr. Details
about experiment settings are in Appendix A.1.

5.2 Evaluation Metrics
To assess the effectiveness of copyright takedown
methods in reducing copyright risks, we assess the
transformativeness of the generated outputs in com-
parison to the original continuations (Henderson

5195

et al., 2023). Following Wei et al. (2024), we use
Rouge-1 and Rouge-L scores (Lin, 2004) to mea-
sure the similarities between the model’s outputs
and the original content. For the books we aim to
unlearn, lower Rouge-1 and Rouge-L scores indi-
cate greater transformativeness, thereby reducing
the risk of copyright infringement. In our experi-
ments, we evaluated Rouge-1 and Rouge-L scores
on the datasets Df , Dprev, and Dnor. 4

In addition to evaluating the model’s unlearning
effectiveness, we also assessed general-purpose lan-
guage abilities after copyright takedown methods.
The tasks considered include Massive Multitask
Language Understanding (MMLU) (Hendrycks
et al., 2020) and MT-Bench (Zheng et al., 2023).
More details are in Appendix A.2.

5.3 Datasets and Models

We use the open-source language models Llama-
3.1-8B-Instruct (Llama3.1) (Dubey et al., 2024)
and Mistral-7B-Instruct-v0.3 (Mistral-7B) (Jiang
et al., 2023), both fine-tuned on a dataset of 10
books from Project Gutenberg 5 (Df) for one epoch
as the vanilla models for our experiments.

For Llama-3.1, we unlearned 10 books across 10
time steps, and for Mistral-7B, we unlearned the
first six books as many methods collapsed by time
step 6 (see Figure 9). We intentionally selected The
Adventures of Sherlock Holmes by Arthur Conan
Doyle, Pride and Prejudice by Jane Austen, and Al-
ice’s Adventures in Wonderland by Lewis Carroll at
the first, fifth, and eighth time steps, as these books
are listed in Project Gutenberg’s "Top 100 EBooks
of the Last 30 Days." The remaining books were
randomly sampled. All books were pre-processed
following the methodology of Gerlach and Font-
Clos (2020). At t > 1, we constructed Dprev by
aggregating all previously unlearned books. Ad-
ditionally, we selected 200 text chunks from 100
other books in Project Gutenberg, pre-processed
as above, to form the Dnor. Further details are
provided in Appendix A.3.

5.4 Baseline Methods

Following Wei et al. (2024), we compared our ap-
proach with several baseline methods:

4In alignment with previous copyright evaluation metrics
(Maini et al., 2024; Yao et al., 2024), and recognizing that
semantic similarity alone is insufficient to determine copyright
infringement, we include evaluation metrics that focus on
lexical similarity (e.g., Rouge) and exclude those that solely
reflect semantic similarity.

5gutenberg.org

System prompts Following Wei et al. (2024),
we use two system prompts to directly instruct the
model to refrain from generating copyrighted con-
tent. The first, denoted as Prompting (a), adds
instructions to not generate copyrighted contents to
the default system prompt . The second, denoted
as Prompting (dbrx), is used by the DBRX model
from Databricks (Team et al., 2024). This prompt
specifies that the model was not trained on copy-
righted books. It explicitly mentions that the model
does not provide such content (More details can be
found in Appendix A.1).

MemFree Decoding The Memfree decoding
checks whether the model’s next token would cre-
ate an n-gram found in the Bloom filter (Bloom,
1970). If it would, we will choose the next most
probable token and do the check again, until the
generated n-gram will not be found by the filter.

Unlearning Methods Unlearning methods such
as Gradient Difference involves using books not
in Df to maintain performance and a random mis-
match loss to force random outputs for unlearned
data. NPO treats Df as dispreferred data and for-
mulates the unlearning problem within a preference
optimization framework. More details, including
hyperparameter choices, are in Appendix A.4.

6 Results

We present experimental results of Llama3.1 for
different unlearning time steps in Figure 3 and 6.
See the results for Mistral-7B in Appendix C, and
the results with exact numbers in Appendix D.

6.1 Sequential Unlearning of Books
This section examines the impact of unlearning
on Df and Dprev. Ideally, the model should have
lower average Rouge scores to demonstrate lower
risks of copyright infringement.

SSU consistently ranks among the top un-
learning methods for mitigating copyright in-
fringement. As shown in Figure 3a and 6a, for
Llama3.1, SSU consistently achieves one of the
lowest average Rouge scores on Df . Similarly, as
shown in Figure 3b and 6b, SSU proves to be one
of the most effective across all time steps for books
in Dprev, more effective in mitigating copyright
infringement than NPO and Gradient Difference.
The results are similar for Mistral-7B. As shown
in Figures 9a and 9b, Gradient Ascent and Gra-
dient Difference achieve the lowest Rouge scores

5196

https://www.gutenberg.org/

(a) Avg Rouge Score on Df (b) Avg Rouge Score on Dprev

(c) Avg Rouge Score on Dnor (d) Avg MMLU and MT-Bench score

Figure 3: The averaged Rouge-1 and Rouge-L scores and benchmark scores for Llama3.1, omitting baseline methods
that either consistently have low unlearning efficacy or easy to collapse (collapse details in Appendix D): (a) books
to forget Df (↓); (b) previously unlearned books Dprev (↓); (c) Dnor (↑). and (d) averaged normalized MMLU and
MT-Bench scores (↑). Lower Rouge scores on Df and Dprev indicate better unlearning, while higher scores for
Dnor and benchmarks reflect better performance. Result with all methods is in Figure 6 in Appendix C.

on Df at later time steps, effectively erasing copy-
righted content through opposite gradient updates,
ultimately leading to catastrophic collapse. TV also
maintains effective unlearning, but also collapses
at time step 5. In contrast, NPO’s average Rouge
score on Df remains close to the vanilla model, in-
dicating ineffectiveness in mitigating copyright in-
fringement. On the other hand, SSU demonstrates
less risks of copyright infringement.

Prompting and MemFree Decoding offer lim-
ited mitigation of copyright infringement. As
shown in Figures 6a and 9a, the Rouge scores for
prompting and MemFree are largely indistinguish-
able from the vanilla model across many time steps
and models. Although system prompts attempt to
prevent generating copyrighted content, Llama3.1
often produces higher Rouge scores with prompt-
ing (a), and prompting (dbrx) is only marginally
effective at certain time steps. We suspect this is
due to the instruction-tuned Llama3.1 model’s in-
ability to differentiate what constitutes copyrighted
content. For the Mistral-7B model, both prompting
methods are similarly ineffective in reducing in-
fringement risks. Lastly, the MemFree decoding is
always ineffective in unlearning copyrighted books

for for Llama3.1 and Mistral-7B.

6.2 Non-Targeted Knowledge Retention

This section examines the impact of unlearning on
Dnor, the books not intended to be unlearned. Ide-
ally, the model should maintain the average Rouge
scores compared to the vanilla model.

SSU maximally preserves non-targeted knowl-
edge compared to other unlearning methods.
The results for Llama3.1 and Mistral-7B are no-
tably different. For Mistral-7B, as shown in Figure
9c, the average Rouge scores for GA, Gradient
Difference, and TV demonstrate significant loss
of retained knowledge at later time steps. While
NPO is less effective at mitigating copyright in-
fringement, it consistently retains more knowledge
of non-targeted books than SSU. In contrast, the
results for Llama3.1 fluctuate. As shown in Fig-
ures 3c and 6c, Gradient Difference and SSU retain
more knowledge of Dnor than the vanilla model.
The unexpected re-emergence of these knowledge
after unlearning is possibly due to knowledge re-
distribution during the unlearning process. Yang
et al. (2024b) also examined this anticipatory recov-
ery behavior where LLMs recover knowledge from

5197

(a) Llama3.1-8B-Instruct Trade-off (b) Mistral-7B-Instruct Trade-off

Figure 4: Trade-off analysis between general-purpose language abilities and unlearning efficacy for Llama3.1
and Mistral-7B, considering only methods at time steps greater than 1. For improved visualization, we exclude
Prompting (a) and GA, which consistently exhibit low unlearning efficacy or collapse during the process. We also
exclude TV beyond time step 9 (Llama3.1) and time step 3 (Mistral-7B), as well as Gradient Difference beyond time
step 4 (Mistral-7B), due to collapose at these stage (see Appendix D for collapse details). General-purpose abilities
are calculated using normalized averages of MMLU and MT-Bench scores, while unlearning efficacy is represented
by the average of Rouge-1 and Rouge-L scores on Df (targeted data) and Dprev (previously unlearned data). Lower
Rouge scores indicate better unlearning performance; hence, these values are negated for clarity. The ideal method
balances both metrics and is positioned in the top-right corner. Full result with all methods is in Figure 10.

the forgetting on documents before encountering
them again. Further research is needed to explore
this phenomenon. Nevertheless, SSU demonstrates
stability by preserving knowledge in Dnor.

Prompting and MemFree decoding maintain
non-targeted knowledge retention. As shown
in Figures 6c and 9c, prompting and MemFree con-
sistently retain non-targeted knowledge. Notably,
for Llama3.1, both prompting (a) and MemFree re-
tain more knowledge than the vanilla model. In con-
trast, for Mistral-7B, both prompting methods and
MemFree exhibit slightly lower levels of knowl-
edge retention compared to the vanilla model.

6.3 General-purpose Language Abilities
GA, Gradient Difference, and TV experienced
catastrophic collapse at later time steps. Fig-
ures 3d, 6d, and 9d, show that GA, Gradient Differ-
ence, and TV both have sudden significant degra-
dation of general-purpose abilities at certain time
steps. NPO consistently underperforms SSU for
Llama3.1 outperforms for Mistral-7B. Prompting
and MemFree maintain stable general-purpose lan-
guage abilities, close to the vanilla model.

6.4 Copyright Takedown Trade-offs
We present the overall trade-off of each method
in Figures 4a and 4b. The x-axis represents un-
learning efficacy score, and the y-axis represents
general-purpose language ability. An ideal copy-
right takedown method would aim for the top-right

corner. Comparing to existing baseline methods
across two different models, SSU achieves a bet-
ter trade-off between unlearning efficacy and
general-purpose language abilities retention.

7 Analysis

We analyze the impact of different components of
SSU, including weight saliency maps and random
labeling loss, on the sequential unlearning process.
Figure 5 presents results for Llama3.1-8B-Instruct,
and Figure 11 shows ablation results for Mistral-
7B-Instruct-v0.3. We further present the effect of
varying ϵ1 and ϵ2 in equation 4 in appendix B.1.

7.1 Impact of Weight Saliency

As shown in Figures 5a and 5b, the performance of
SSU without weight saliency leads to lower average
Rouge scores on both Df and Dnor. Additionally,
Figure 5d shows a sharper decline in benchmark
performance with each time step, indicating that
without weight saliency, the risk of catastrophic col-
lapse increases as general-purpose language abili-
ties deteriorate. By updating only specific parts
of the model’s weights, weight saliency helps
preserve the general-purpose language abilities.

7.2 Impact of Random Labeling Loss

As seen in Figures 5a and 5b, SSU without ran-
dom labeling loss results in a higher average Rouge
scores and slightly improved general-purpose lan-
guage abilities. This suggests that random label-

5198

(a) Avg Rouge on Df (b) Avg Rouge Score on Dprev (c) Avg Rouge Score on Dn (d) General Performance

Figure 5: Ablation study of SSU for Llama3.1-8B-Instruct. The orange line represents unlearning without the
weight saliency map, while the purple line shows the effect of removing the random labeling loss.

ing loss enhances the model’s ability to unlearn
Df consistently across all time steps.

It is also noteworthy that, as shown in Figures
5c and 11c, SSU without weight saliency and SSU
without random loss lead to lower average Rouge
scores for Dnor in both models. This observation
highlights the need for further research on the im-
pact of unlearning algorithms on preserving content
not intended for unlearning.

8 Conclusion

We explore sequential unlearning of copyrighted
content in LLMs to mitigate copyright infringe-
ment. We propose SSU, which utilizes random
labeling loss and gradient-based weight saliency to
achieve more stable sequential unlearning. Exper-
iments show SSU outperforms existing methods
in balancing unlearning efficacy and language re-
tention. Future research could focus on enhancing
the robustness of unlearning algorithms and explor-
ing other copyright takedown methods to further
mitigate the risks of copyright infringement.

Limitations

Robustness of Machine Unlearning Our eval-
uation relies on lexical-based metrics, which, as
noted by Ippolito et al. (2023), may provide a false
sense of privacy. Additionally, Łucki et al. (2024)
and Cooper et al. (2024) highlight that existing un-
learning methods often lack robustness and may
merely obscure data rather than true unlearning.

In our experiments, we observe that knowledge
from previously unlearned books can re-emerge at
certain future time steps, a phenomenon present
across all unlearning algorithms tested (see Ap-
pendix B.2). This further underscores the chal-
lenges of sequential unlearning and the necessity
for more robust unlearning algorithms.

Unintended Knowledge and Capability Loss
While SSU achieves a better trade-off between un-

learning efficacy and general-purpose language re-
tention, it still weakens the model’s reasoning and
conversational abilities. Future work should fur-
ther reduce this gap, ensuring better preservation of
general knowledge during sequential unlearning.

Unlearning Is Not All You Need Mitigating
copyright infringement risks requires more than
unlearning alone. For example, Liu et al. (2024a)
introduces Infini-gram, an efficient search engine
for scanning large-scale LLM training corpora. A
complementary approach could involve using such
tools to detect copyrighted passages in generated
outputs and intervene to ensure non-copyrighted
regeneration. This generation-time copyright take-
down method represents a promising research di-
rection. Future work could expand search engine
tools to cover a broader range of training datasets
used in state-of-the-art LLMs. Additionally, regu-
larly updating model checkpoints to align with the
right to be forgotten would be crucial for maintain-
ing legal and ethical compliance.

Acknowledgements

We thank Bryan Li, Yikai Mao, and anonymous
reviewers for their valuable feedback and insightful
discussions on this paper.

This research is supported in part by the Office of
the Director of National Intelligence (ODNI), the
Intelligence Advanced Research Projects Activity
(IARPA) via the BENGAL Program, the Defense
Advanced Research Projects Activity (DARPA) via
the SciFy Program, and Schmidt Sciences via the
AI2050 fellowship. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
ODNI, IARPA, DARPA, Schmidt Sciences, or the
U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright
annotation therein.

5199

References
Burton H Bloom. 1970. Space/time trade-offs in hash

coding with allowable errors. Communications of the
ACM, 13(7):422–426.

Blake Brittain. 2023. Us copyright office says some ai-
assisted works may be copyrighted. Reuters. March,
15.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yinzhi Cao and Junfeng Yang. 2015. Towards making
systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pages 463–
480. IEEE.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models. arXiv preprint arXiv:2202.07646.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. 2021. Extracting training data from
large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633–2650.

Jiaao Chen and Diyi Yang. 2023. Unlearn what you
want to forget: Efficient unlearning for llms. arXiv
preprint arXiv:2310.20150.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Timothy Chu, Zhao Song, and Chiwun Yang. 2024.
How to protect copyright data in optimization of large
language models? In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
17871–17879.

A Feder Cooper, Christopher A Choquette-Choo, Mi-
randa Bogen, Matthew Jagielski, Katja Filippova,
Ken Ziyu Liu, Alexandra Chouldechova, Jamie
Hayes, Yangsibo Huang, Niloofar Mireshghallah,
et al. 2024. Machine unlearning doesn’t do what
you think: Lessons for generative ai policy, research,
and practice. arXiv preprint arXiv:2412.06966.

Yijiang River Dong, Hongzhou Lin, Mikhail Belkin,
Ramon Huerta, and Ivan Vulić. 2024. Un-
memorization in large language models via self-
distillation and deliberate imagination. arXiv
preprint arXiv:2402.10052.

André V Duarte, Xuandong Zhao, Arlindo L Oliveira,
and Lei Li. 2024. De-cop: Detecting copyrighted
content in language models training data. arXiv
preprint arXiv:2402.09910.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Ronen Eldan and Mark Russinovich. 2023. Who’s
harry potter? approximate unlearning in llms. arXiv
preprint arXiv:2310.02238.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Dennis Wei,
Eric Wong, and Sijia Liu. 2023. Salun: Empower-
ing machine unlearning via gradient-based weight
saliency in both image classification and generation.
arXiv preprint arXiv:2310.12508.

Martin Gerlach and Francesc Font-Clos. 2020. A stan-
dardized project gutenberg corpus for statistical anal-
ysis of natural language and quantitative linguistics.
Entropy, 22(1):126.

Akshat Gupta and Gopala Anumanchipalli. 2024. Re-
building rome: Resolving model collapse dur-
ing sequential model editing. arXiv preprint
arXiv:2403.07175.

Akshat Gupta, Anurag Rao, and Gopala Anu-
manchipalli. 2024a. Model editing at scale leads
to gradual and catastrophic forgetting. arXiv preprint
arXiv:2401.07453.

Akshat Gupta, Dev Sajnani, and Gopala Anu-
manchipalli. 2024b. A unified framework for model
editing. arXiv preprint arXiv:2403.14236.

Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori
Hashimoto, Mark A Lemley, and Percy Liang. 2023.
Foundation models and fair use. Journal of Machine
Learning Research, 24(400):1–79.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

John Hewitt, Sarah Chen, Lanruo Lora Xie, Edward
Adams, Percy Liang, and Christopher D Manning.
2024. Model editing with canonical examples. arXiv
preprint arXiv:2402.06155.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

5200

Jing Huang, Diyi Yang, and Christopher Potts. 2024.
Demystifying verbatim memorization in large lan-
guage models. arXiv preprint arXiv:2407.17817.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Daphne Ippolito, Florian Tramer, Milad Nasr, Chiyuan
Zhang, Matthew Jagielski, Katherine Lee, Christo-
pher Choquette Choo, and Nicholas Carlini. 2023.
Preventing generation of verbatim memorization in
language models gives a false sense of privacy. In
Proceedings of the 16th International Natural Lan-
guage Generation Conference, pages 28–53.

Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan
Zhang, Matthew Jagielski, Katherine Lee, Christo-
pher A Choquette-Choo, and Nicholas Carlini. 2022.
Preventing verbatim memorization in language mod-
els gives a false sense of privacy. arXiv preprint
arXiv:2210.17546.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha,
Moontae Lee, Lajanugen Logeswaran, and Minjoon
Seo. 2022. Knowledge unlearning for mitigating
privacy risks in language models. arXiv preprint
arXiv:2210.01504.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha,
Moontae Lee, Lajanugen Logeswaran, and Minjoon
Seo. 2023. Knowledge unlearning for mitigating
privacy risks in language models. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14389–14408.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Antonia Karamolegkou, Jiaang Li, Li Zhou, and An-
ders Søgaard. 2023. Copyright violations and large
language models. arXiv preprint arXiv:2310.13771.

Nathaniel Li, Alexander Pan, Anjali Gopal, Sum-
mer Yue, Daniel Berrios, Alice Gatti, Justin D. Li,
Ann-Kathrin Dombrowski, Shashwat Goel, Long
Phan, Gabriel Mukobi, Nathan Helm-Burger, Rassin
Lababidi, Lennart Justen, Andrew B. Liu, Michael
Chen, Isabelle Barrass, Oliver Zhang, Xiaoyuan Zhu,
Rishub Tamirisa, Bhrugu Bharathi, Adam Khoja,
Zhenqi Zhao, Ariel Herbert-Voss, Cort B. Breuer,
Samuel Marks, Oam Patel, Andy Zou, Mantas
Mazeika, Zifan Wang, Palash Oswal, Weiran Liu,
Adam A. Hunt, Justin Tienken-Harder, Kevin Y.
Shih, Kemper Talley, John Guan, Russell Kaplan,
Ian Steneker, David Campbell, Brad Jokubaitis, Alex
Levinson, Jean Wang, William Qian, Kallol Kr-
ishna Karmakar, Steven Basart, Stephen Fitz, Mindy
Levine, Ponnurangam Kumaraguru, Uday Tupakula,

Vijay Varadharajan, Yan Shoshitaishvili, Jimmy
Ba, Kevin M. Esvelt, Alexandr Wang, and Dan
Hendrycks. 2024. The wmdp benchmark: Mea-
suring and reducing malicious use with unlearning.
Preprint, arXiv:2403.03218.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin
Choi, and Hannaneh Hajishirzi. 2024a. Infini-gram:
Scaling unbounded n-gram language models to a tril-
lion tokens. arXiv preprint arXiv:2401.17377.

Xiaoze Liu, Ting Sun, Tianyang Xu, Feijie Wu, Cunx-
iang Wang, Xiaoqian Wang, and Jing Gao. 2024b.
Shield: Evaluation and defense strategies for copy-
right compliance in llm text generation. arXiv
preprint arXiv:2406.12975.

Zheyuan Liu, Guangyao Dou, Eli Chien, Chunhui
Zhang, Yijun Tian, and Ziwei Zhu. 2024c. Breaking
the trilemma of privacy, utility, and efficiency via con-
trollable machine unlearning. In Proceedings of the
ACM on Web Conference 2024, pages 1260–1271.

Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun
Tian, and Meng Jiang. 2024d. Machine unlearn-
ing in generative ai: A survey. arXiv preprint
arXiv:2407.20516.

Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun
Tian, and Meng Jiang. 2024e. Towards safer large
language models through machine unlearning. arXiv
preprint arXiv:2402.10058.

Jakub Łucki, Boyi Wei, Yangsibo Huang, Peter Hen-
derson, Florian Tramèr, and Javier Rando. 2024. An
adversarial perspective on machine unlearning for ai
safety. arXiv preprint arXiv:2409.18025.

Pratyush Maini, Zhili Feng, Avi Schwarzschild,
Zachary C Lipton, and J Zico Kolter. 2024. Tofu: A
task of fictitious unlearning for llms. arXiv preprint
arXiv:2401.06121.

Matthieu Meeus, Igor Shilov, Manuel Faysse, and
Yves-Alexandre de Montjoye. 2024. Copyright
traps for large language models. arXiv preprint
arXiv:2402.09363.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Sewon Min, Suchin Gururangan, Eric Wallace, Han-
naneh Hajishirzi, Noah A Smith, and Luke Zettle-
moyer. 2023. Silo language models: Isolating legal
risk in a nonparametric datastore. arXiv preprint
arXiv:2308.04430.

Takeru Miyato, Andrew M Dai, and Ian Goodfel-
low. 2016. Adversarial training methods for
semi-supervised text classification. arXiv preprint
arXiv:1605.07725.

5201

https://arxiv.org/abs/2403.03218
https://arxiv.org/abs/2403.03218

Milad Nasr, Nicholas Carlini, Jonathan Hayase,
Matthew Jagielski, A Feder Cooper, Daphne Ippolito,
Christopher A Choquette-Choo, Eric Wallace, Flo-
rian Tramèr, and Katherine Lee. 2023. Scalable ex-
traction of training data from (production) language
models. arXiv preprint arXiv:2311.17035.

Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya
Sutskever, Lukasz Kaiser, Karol Kurach, and James
Martens. 2015. Adding gradient noise improves
learning for very deep networks. arXiv preprint
arXiv:1511.06807.

Noorjahan Rahman and Eduardo Santacana. 2023. Be-
yond fair use: Legal risk evaluation for training llms
on copyrighted text. In ICML Workshop on Genera-
tive AI and Law.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Mosaic AI Research Team et al. 2024. Introduc-
ing dbrx: a new state-of-the-art open llm. Mo-
saic AI Res. Available online at: https://www.
databricks. com/blog/introducing-dbrx-new-state-art-
open-llm (accessed June 4, 2024).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Boyi Wei, Weijia Shi, Yangsibo Huang, Noah A Smith,
Chiyuan Zhang, Luke Zettlemoyer, Kai Li, and Pe-
ter Henderson. 2024. Evaluating copyright take-
down methods for language models. arXiv preprint
arXiv:2406.18664.

Wanli Yang, Fei Sun, Xinyu Ma, Xun Liu, Dawei Yin,
and Xueqi Cheng. 2024a. The butterfly effect of
model editing: Few edits can trigger large language
models collapse. arXiv preprint arXiv:2402.09656.

Yanlai Yang, Matt Jones, Michael C Mozer, and Mengye
Ren. 2024b. Reawakening knowledge: Anticipatory
recovery from catastrophic interference via structured
training. arXiv preprint arXiv:2403.09613.

Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao
Wang, Zezhou Cheng, and Xiang Yue. 2024. Ma-
chine unlearning of pre-trained large language mod-
els. arXiv preprint arXiv:2402.15159.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. 2023.
Large language model unlearning. arXiv preprint
arXiv:2310.10683.

Weichen Yu, Tianyu Pang, Qian Liu, Chao Du, Bingyi
Kang, Yan Huang, Min Lin, and Shuicheng Yan.
2023. Bag of tricks for training data extraction from
language models. In International Conference on
Machine Learning, pages 40306–40320. PMLR.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee,
Matthew Jagielski, Florian Tramèr, and Nicholas Car-
lini. 2023. Counterfactual memorization in neural
language models. Advances in Neural Information
Processing Systems, 36:39321–39362.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. 2024.
Negative preference optimization: From catastrophic
collapse to effective unlearning. arXiv preprint
arXiv:2404.05868.

Weixiang Zhao, Yulin Hu, Zhuojun Li, Yang Deng,
Yanyan Zhao, Bing Qin, and Tat-Seng Chua. 2024.
Towards comprehensive and efficient post safety
alignment of large language models via safety patch-
ing. arXiv preprint arXiv:2405.13820.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

Xin Zhou, Yi Lu, Ruotian Ma, Tao Gui, Qi Zhang,
and Xuanjing Huang. 2023. Making harmful behav-
iors unlearnable for large language models. arXiv
preprint arXiv:2311.02105.

5202

https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Experiment Details

A.1 Experiment Settings
To evaluate the effectiveness of sequential un-
learning, we conduct experiments on several copy-
righted books. Our process involves the following
steps:

First, each book is split into many chunks of
200 tokens. For each chunk, the initial 100 tokens
are used as a prompt, which is fed into the LLM.
The remaining 100 tokens serve as the answer or
continuation from the original book. This setup
allows us to assess how well the model can generate
text that follows the given prompt.

In addition to the prompt from the book, we use
a system prompt and a instruction prompt to guide
the model in generating the completion.

The default system prompt is

"You are a helpful, respectful and honest
assistant."

and the default instruction prompt is

"Please complete the rest of the follow-
ing paragraph based on the context."

For each prompt, the model generates a com-
pletion using a nucleus sampling by setting the
temperature to 0.4 and η = 0.6. This follows bags
of tricks to extract training data suggested by Yu
et al. (2023).

To evaluate the generated completions and its
risk of copyright infringement, we use Rouge-1
and ROUGE-L score. These metrics allow us to
compare the LLM’s completions with the original
text and assess the model’s ability to unlearn spe-
cific content.

Specifically, we evaluate the scores on the fol-
lowing sets of books:

• Books to be forgotten (Df)

• Books that are previously unlearned when
time step is greater than one (Dprev)

• Books that not to be forgotten (Dnor)

In subsequent sections, we refer to the performance
on Dnor as knowledge retention.

Additionally, following the setup of Wei et al.
(2024), we evaluate the model’s performance on
general reasoning tasks to assess its capability re-
tention. The downstream tasks considered include
5-shot Massive Multitask Language Understanding
(MMLU) (Hendrycks et al., 2020), and MT-Bench
(Zheng et al., 2023).

A.2 Evaluation Metrics
A.2.1 Rouge-1
Recall-Oriented Understudy for Gisting Evalua-
tion (Rouge) includes Rouge-1, which measures
the overlap of unigram (single word) occurrences
between the LLM’s completion and the original
books. A unigram is any individual word that ap-
pears in both the completion (hypothesis text) and
the original book (reference text).

First, we define the recall as the ratio of the
number of overlapping unigrams between the hy-
pothesis and reference text to the total number of
unigrams in the reference text:

Recall =
overlapping unigrams

total unigrams in the reference
.

Similarly, precision is defined as the ratio of
the number of overlapping unigrams to the total
number of unigrams in the hypothesis text:

Precision =
overlapping unigrams

total unigrams in the hypothesis
.

Lastly, the Rouge-1 score used in our experi-
ments is calculated as the F1 score, which com-
bines precision and recall:

F1 = 2 · Precision ·Recall

Precision+Recall

A.2.2 Rouge-L
Rouge-L measures the longest common subse-
quence (LCS) between the LLM’s completion and
original books. In detail, LCS is a sequence that
appears in both the completion (hypothesis text)
and original book (reference text) in the same order
but not necessarily contiguously.

Next, we define the recall as the ratio of the
length of the LCS to the total length of the reference
text:

Recall =
LCS

length of the reference text
.

We also define the precision as the ratio of the
length of the LCS to the total length of the hypoth-
esis text:

Precision =
LCS

length of the hypothesis text
.

Lastly, the Rouge-L score we used in our experi-
ments is defined as:

F1 = 2 · Precision ·Recall

Precision+Recall

5203

A.3 Datasets

This section provides detailed information about
the books used in the experiment. We crawled
all available books from Project Gutenberg6 and
pre-processed them following the methodology of
Gerlach and Font-Clos (2020), in which we remove
all headers and boiler plate text.

A.3.1 Books to Forget

At time step 1, we unlearn The Adventures of Sher-
lock Holmes by Arthur Conan Doyle. At time step
2, we unlearn Flowers of the Sky by Richard A.
Proctor, Pagan Papers by Kenneth Grahame at time
step 3, Diary of Samuel Pepys by Samuel Pepys
at time step 4, Pride and Prejudice by Jane Austen
at time step 5, They Call Me Carpenter: A Tale of
the Second Coming by Upton Sinclair at time step
6, Memoirs of the Court of Louis XIV. and of the
Regency — Complete by Orléans at time step 7,
Alice’s Adventures in Wonderland by Lewis Car-
roll at time step 8, The Wonderful Adventures of
Nils by Selma Lagerlöf at time step 9, and Starr, of
the Desert by B. M. Bower at time step 10.

For the books in Df , the entire texts are split into
chunks of 200 tokens, and the dataset is formatted
as question-answer pairs, where the first 100 tokens
represent the Question, and the subsequent 100
tokens represent the Answer. All texts from each
book are included and formatted into JSON files.

At each time step greater than one, we form
Dprev by collecting all the books that we have un-
learned since the first time step. Specifically, we
then split all of the books that are used in previous
unlearning steps into chunks of 200 tokens to form
many QA pairs, and then randomly sampled 200
such pairs to form Dprev.

A.3.2 Books in Dnor

To evaluate the model’s knowledge retention after
unlearning, we constructed a set of books that we
do not want the model to forget. Specifically, we
randomly sampled 100 books from Project Guten-
berg that are not included in Df . Following the
same preprocessing steps used for Df , we split
these books into chunks of 200 tokens, and ran-
domly sampled 200 chunks to form the dataset
Dnor. Since the books in Dnor are not part of Df

at any time step, the content of Dnor remains un-
changed throughout the experiment.

6gutenberg.org

A.4 Baseline Methods

A.4.1 Generic Prevention using System
Prompt

The default system prompts being used for all the
unlearning and MemFree decoding methods have
been described in Appendix A.1. Here, we present
two copyright takedown methods using well crafted
system prompts.

First, we denote our baseline method Prompt (a)
as using the system prompt:

"You are a helpful, respectful and hon-
est assistant. When generating your re-
sponse, please do not generate the copy-
righted content."

which adds a brief instruction to not gener-
ate copyrighted content after the default system
prompt.

We also included Prompt (dbrx), which is a sys-
tem prompt being used by the DBRX model, re-
leased by Databricks:

"You are a helpful, respectful and honest
assistant. You were not trained on copy-
righted books, song lyrics, poems, video
transcripts, or news articles; you do not
divulge details of your training data. You
do not provide song lyrics, poems, or
news articles and instead refer the user
to find them online or in a store."

A.4.2 MemFree Decoding
To prevent the model from emitting memorized
content, we employed MemFree decoding (Ippolito
et al., 2022). This method checks each n-gram dur-
ing text generation to ensure it does not match any
sequences from the training set. If a match is de-
tected, the token is resampled, thereby avoiding
verbatim reproduction of training data. The pro-
cess is optimized through the use of Bloom filters,
which allow for efficient real-time memorization
checks. Although MemFree effectively stops exact
memorization, it does not fully eliminate the risk
of paraphrased or approximate memorization. We
implemented MemFree based on Wei et al. (2024).

A.4.3 Unlearning via Gradient Difference
In this work, we use the method proposed by (Yao
et al., 2023) as one of the baseline methods. Here
we present the case of performing gradient differ-
ence unlearning.

5204

https://www.gutenberg.org/

Specifically, let θ to be the current LLM, let
DDf to be the dataset representing the book we
want to forget, and Dadd to a set of book cor-
pora that does not contain the book to be for-
gotten, nor the books in Dnor. Moreover, we
define hθ(x, yy<i) = P(yi|(x, y<i); θ), which is
the probability of the token yi conditioned on
the prompt x and the already generated tokens
y<i = [y1, y2, ..., yi−1]. Next, we define the LLM’s
loss on y as:

L(x, y; θ) :=

|y|∑

i=1

ℓ(hθ(x, y<i), yi)

The Gradient Difference has three loss terms,
defined as follows:

Lfgt = −
∑

(xfgt,yfgt)∈Df

L(xfgt, yfgt, θt)

Lrnd :=
∑

(xfgt,)∈Df

1

|Yrnd|
∑

(,yrnd)∈Yrnd

L(xfgt, yrnd, θt)

ϕθ = hθ(xnor, ynor<i)

Ladd :=
∑

(xadd,yadd)∈Dadd

|yadd|∑

i=1

KL(ϕθo ∥ ϕθt).

in which Yrnd is a set of responses irrelevant to
responses of Df , sampled from Dadd.

Lastly, the GA approach is trying to minimize
the following loss to obtain the unlearned model:

L = ϵ1Lfgt + ϵ2Lrnd + ϵ3Ladd

θt+1 ← θt −∇L.
in which Lfgt is a gradient ascent loss on Df , which
tries to make the model perform poorly on the
Df . Next, Lrnd tries to randomly mismatch the
labels from non-relevant dataset to the inputs of
the dataset we want to forget. Lastly, Ladd tries to
maintain the performance on the normal dataset.
In our experiment, we set ϵ1 = 1, ϵ2 = ϵ3 = 0.5
across all time steps and all models.

A.4.4 Unlearning via Task Vector
We also use the task vector method as one of the
baseline approaches, which typically involves a
two-stage process. Considering the case of t = 1,
we denote θo as the original model weights. We
intentionally fine-tune the model on Df to obtain
θ1ft. This fine-tuning process is defined as follows:

Lfgt =
∑

(xfgt,yfgt)∈Df

L(xfgt, yfgt, θt)

θt+1 ← θt − ϵ∇θtLfgt

Next, we define the task vector τ as the element-
wise difference between θft and θo:

τ = θ1ft − θo

Finally, the unlearned model θu at time step t is
obtained by:

θ1u = θo − τ

The general intuition behind this method is to
first obtain a model that is specialized in the dataset
we aim to forget. The task vector τ represents the
changes in weights required to acquire this spe-
cific knowledge. By subtracting these "knowledge"
weights from the original model, we effectively
unlearn the targeted information.

A.4.5 Unlearning via NPO

In this work, we utilize the Negative Preference
Optimization (NPO) method for unlearning unde-
sirable data, aiming to overcome the catastrophic
collapse often observed with gradient ascent meth-
ods. NPO builds on the framework of preference
optimization, specifically focusing on negative sam-
ples from the dataset to be unlearned.

The NPO loss function is defined as follows:

LNPO =
2

β
E(x,y)∈Df

[
log

(
1 +

(
πθ(y|x)
πref(y|x)

)β
)]

where πθ(y|x) represents the prediction probability
of the current model for token y given the input x,
and πref(y|x) is the prediction probability from the
reference model trained on the entire dataset. The
parameter β controls the smoothness of the opti-
mization, and as β → 0, the NPO loss converges
to the standard gradient ascent loss.

Minimizing this loss helps reduce the model’s re-
liance on the forget set, ensuring that the unlearning
process remains stable and avoids the rapid deteri-
oration seen in gradient ascent approaches. In our
experiment, we set β = 0.4, and we obtain πref by
optimizing off-the-shelf LLMs on Df

⋃
Dnor.

5205

(a) Avg Rouge Score on Df (b) Avg Rouge Score on Dprev

(c) Avg Rouge Score on Dn (d) Avg MMLU and MT-Bench score

Figure 6: The average of Rouge-1 and Rouge-l and benchmark scores for Llama3.1: (a) books to forget Df (↓); (b)
previously unlearned books Dprev (↓); (c) Dnor (↑). and (d) averaged normalized MMLU and MT-Bench scores
(↑). The results for TV after time step 8 are omitted due to collapse. Lower Rouge scores for Df and Dprev indicate
better unlearning, while higher scores for Dnor and benchmarks reflect better performance.

A.5 Implementation Details

The experiments are conducted on eight RTX
A6000 GPUs. For all unlearning algorithms, at
each time step, we only unlearn the model for 1
epoch, with a batch size set to 2. During all the
fine-tuning process, we used Lora (Hu et al., 2021),
and we did not quantize the model because quanti-
zation leads to inaccurate element-wise subtraction
for TV-based methods.

For the Llama-3.1-8B-Instruct model, we set the
learning rate to be 1e-5 for the first five time steps,
and decrease the learning rate to 1e-6 for the rest
of the time steps. For the Mistral-7B-Instruct-v0.3,
we set the learning rate to be 1e-5 for the first three
time steps, and the learning rate to be 1e-6 for other
time steps. For SSU, we set ϵ1 = 1,a and ϵ2 = 0.5
for all the time steps and models. We set γ to be
1 standard deviation away from the mean of the
gradient vector∇θLf (θt)

B Additional Analysis

B.1 Impact of ϵ1 and ϵ2

In this section, we analyze the impact of the hyper-
parameters ϵ1 and ϵ2 in Equation 4. Specifically,

we denote SSU1.5,1 as the method with ϵ1 = 1.5
and ϵ2 = 1 on Llama 3.1, and SSU1,2 as the
method with ϵ1 = 1 and ϵ2 = 2. All other hy-
perparameters remain consistent with the settings
used in our main experiments.

As shown in Table 1, SSU maintains strong per-
formance on MMLU and MT-Bench, indicating its
stability across different parameter values. Unlike
gradient ascent and gradient difference methods,
SSU does not lead to model collapse. However,
in our main experiments, we tuned ϵ1 and ϵ2 to
achieve the best trade-off between unlearning effi-
cacy and general-purpose language abilities.

B.2 Re-Emergence in Sequential Unlearning

In the main text, we use Dprev -the set of all pre-
viously unlearned books—to assess whether they
remain unlearned throughout sequential unlearning.
Here, instead of evaluating all unlearned books
collectively, we examine how knowledge of each
previously unlearned book evolves as new books
are unlearned at later time steps.

Figures 7 and 8 present the results for Llama 3.1
and Mistral-7B, respectively. The x-axis denotes
the number of unlearning steps performed, while

5206

Time Step Method Df Df Dprev Dprev Dnor Dnor MMLU MT-Bench

1 SSU1.5,1 0.2513 0.1424 N/A N/A 0.2307 0.1335 0.6631 8.1180
1 SSU1,2 0.2515 0.1417 N/A N/A 0.2316 0.1335 0.6624 7.8058

2 SSU1.5,1 0.2856 0.1688 0.2558 0.1433 0.2402 0.1376 0.6463 8.1850
2 SSU1,2 0.2852 0.1689 0.2567 0.1433 0.2393 0.1367 0.6470 8.1675

3 SSU1.5,1 0.2415 0.1400 0.2699 0.1539 0.2403 0.1378 0.6463 7.9870
3 SSU1,2 0.2414 0.1386 0.2704 0.1543 0.2394 0.1370 0.6466 8.1283

4 SSU1.5,1 0.2492 0.1390 0.2576 0.1517 0.2458 0.1389 0.6431 8.0349
4 SSU1,2 0.2420 0.1403 0.2565 0.1511 0.2439 0.1391 0.6431 8.0266

5 SSU1.5,1 0.2551 0.1365 0.2650 0.1527 0.2441 0.1385 0.6298 7.9812
5 SSU1,2 0.2545 0.1369 0.2640 0.1517 0.2429 0.1378 0.6319 8.0578

6 SSU1.5,1 0.2494 0.1412 0.2621 0.1472 0.2435 0.1392 0.6298 7.9812
6 SSU1,2 0.2476 0.1408 0.2632 0.1467 0.2433 0.1380 0.6263 8.0484

Table 1: Results across time steps with different ϵ. All performance metrics on D are reported as Rouge-L scores.

the y-axis represents the ROUGE-L score for each
individual book. Notably, in certain future time
steps, the ROUGE-L score of previously unlearned
books increases. For instance, as shown in Figure
7d, the ROUGE-L score of the fourth book under
NPO rises as the model unlearns additional books.
Similar trends appear in Figure 7a, where NPO’s
score for the first book increases at time step 9, and
in Figure 8a, where the Mistral model exhibits a
steady increase in NPO’s score as it unlearns other
books over time.

We also observe instability in the gradient differ-
ence, particularly in Figure 7, where performance
on previously unlearned books fluctuates signifi-
cantly across future time steps. Additionally, SSU
exhibits some degree of reappearance of previously
unlearned knowledge. This aligns with Łucki et al.
(2024), in which it pointed out that fine-tuning on
data unrelated to Df can inadvertently recover un-
learned knowledge. Since all baselines in our ex-
periments rely on fine-tuning with unlearning ob-
jectives, sequential unlearning fine-tunes the model
on unrelated data—books unlearned at later time
steps are independent of those unlearned earlier.
This highlights a key challenge in sequential un-
learning: continual model modifications may lead
to knowledge re-emergence, highlighting the need
for more robust unlearning algorithms in sequential
settings.

C Full Experiment Results

Here we present the performance of SSU compared
to all other baseline methods, using Llama3.1-8B-
Instruct in Figure 6 and Mistral-7B-Instruct in Fig-
ure 9.

Additionally, we present trade-off comparisons
of all the baseline methods except GA (GA is col-
lapsed at most time steps in Mistral-7B-Instruct) in
Figure 10. Moreover, the x-axis used in Figure 10
is defined as:

Unlearning Efficacy = Uf + Uprev

where

Uf = −1

2

(
Rf

1 +Rf
L

)

Uprev = −1

2

(
R

prev
1 +R

prev
L

)
.

Here, Rf
1 and Rf

L represent the Rouge-1 and Rouge-
L scores for Df , and R

prev
1 and R

prev
L represent the

Rouge-1 and Rouge-L scores for Dprev. The y-axis
(General-purpose Language Ability) is defined as:

1

2

(
M +

B

10

)

where M and B represent the MMLU and MT-
Bench scores, respectively. We also present the
ablation study resuls for Mistral-7B-Instruct-v0.3
in Figure 11.

5207

(a) ROUGE-L Score for Book 1 (b) ROUGE-L Score for Book 2

(c) ROUGE-L Score for Book 3 (d) ROUGE-L Score for Book 4

(e) ROUGE-L Score for Book 5 (f) ROUGE-L Score for Book 6

(g) ROUGE-L Score for Book 7 (h) ROUGE-L Score for Book 8

Figure 7: ROUGE-L score for each previously unlearned book, evaluated using various unlearning methods on the
Llama 3.1. The x-axis represents the number of time steps (i.e., the number of sequential unlearning operations
performed), while the y-axis indicates the ROUGE-L score. Different unlearning methods are compared, with
‘Vanilla’ serving as the baseline model without unlearning. We omit certain time steps for some methods because of
the catastrophic collapse.

5208

(a) ROUGE-L Score for Book 1 (b) ROUGE-L Score for Book 2

(c) ROUGE-L Score for Book 3 (d) ROUGE-L Score for Book 4

(e) ROUGE-L Score for Book 5 (f) ROUGE-L Score for Book 6

Figure 8: ROUGE-L score for each previously unlearned book, evaluated using various unlearning methods on the
Mistral model. The x-axis represents the number of time steps (i.e., the number of sequential unlearning operations
performed), while the y-axis indicates the ROUGE-L score. Different unlearning methods are compared, with
‘Vanilla’ serving as the baseline model without unlearning. We omit certain time steps for some methods because of
the catastrophic collapse.

5209

(a) Avg Rouge Score on Df (b) Avg Rouge Score on Dprev

(c) Avg Rouge Score on Dn (d) Avg MMLU and MT-Bench score

Figure 9: The average of Rouge-1 and Rouge-l score and reasoning abilities for Mistral-7B-Instruct: (a) books to
forget Df (↓); (b) previously unlearned books Dprev (↓); (c) Dnor (↑). and (d) averaged normalized MMLU and
MT-Bench scores (↑). The results for TV after time step 8 are omitted due to collapse. Lower Rouge scores for Df

and Dprev indicate better unlearning, while higher scores for Dnor and benchmarks reflect better performance.

(a) Llama3.1-8B-Instruct Trade-off (b) Mistral-7B-Instruct Trade-off

Figure 10: Trade-off between general-purpose language abilities and unlearning efficacy for Llama3.1 and Mistral-
7B, including all methods, except TV beyond time step 9 (Llama3.1) and time step 3 (Mistral-7B), and Gradient
Difference beyond time step 4 (Mistral-7B), as they all collapsed during these time steps. General-purpose abilities
are represented by the average of MMLU and MT-Bench scores, normalized. Unlearning efficacy is measured as
the average of Rouge-1 and Rouge-L scores on Df and Dprev , where lower Rouge scores indicate better unlearning
performance; thus, values were negated for clarity. The ideal performance is positioned in the top-right corner. The
plots capture the performance of all methods at every time step greater than 1.

5210

(a) Avg Rouge on Df (b) Avg Rouge Score on Dprev (c) Avg Rouge Score on Dn (d) General Performance

Figure 11: Ablation study of SSU for Mistral-7B-Instruct-v0.3. The orange line represents unlearning without the
weight saliency map, while the purple line shows the effect of removing the random labeling loss.

D Numeric Experiment Results

In this section, we present our experimental results
numerically. Tables 2 to 11 display the unlearning
results of Llama3.1 across all ten time steps. Tables
12 to 17 show the results for Mistral-7B unlearning
across all six time steps. In sections D.1 and D.2
we illustrate how GA, TV, and Gradient Difference
encounter catastrophic collapse.

D.1 Catastrophic Collapse of Llama3.1

GA, TV, and Gradient Difference experience
varying levels of model collapse during the se-
quential unlearning process. As shown in table 2,
GA begins with an MMLU of 0.5821. By time step
5, GA’s MMLU has dropped to 0.3102 6, demon-
strating a rapid degradation in general reasoning.
Similarly, TV starts with an MMLU of 0.6621 at
time step 1 and undergoes a steep decline in rea-
soning ability, dropping to 0.4887 by time step 5,
and reaching an MMLU of 0 at time step 10 (as
shown in tables 6 and 11). Additionally, Gradient
Difference also faces catastrophic collapse at time
step 5. Specifically, its MT-Bench score falls from
8.034 at time step 4 (table 5) to 4.9438 at time
step 5, and further declines to 4.48 at time step 10,
though its MMLU score remains stable. Lastly,
NPO and SSU exhibit a gradual decline in general-
purpose language abilities, but SSU consistently
outperforms NPO across all the time steps.

D.2 Catastrophic Collapse of Mistral-7B

GA and TV experience rapid model collapse,
while Gradient Difference still suffers loss of
conversational ability. As shown in table 12, GA
collapses at the first time step. TV initially declines
gradually but undergoes a sudden reasoning degra-
dation at time step 5 (table 15), where both MMLU
and MT-Bench scores drop to 0. Gradient Differ-
ence experiences a sharp decrease in MT-Bench
score from 7.2375 at time step 4 to 2.8375 at time

step 5, eventually dropping to 2.6815 at time step 6.
Similar to the Llama3.1 case, Gradient Difference
maintains stable performance on MMLU. Lastly,
NPO maintains competitive general-purpose abil-
ities scores compared to SSU, Figures 9 and 10
show that SSU demonstrates superior unlearning
efficacy and achieves a better trade-off.

5211

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2724 0.1530 0 0 0.2349 0.1380 0.6618 8.1808
Prompting (a) 0.2707 0.1541 0 0 0.2376 0.1364 0.6635 8.3344
Prompting (dbrx) 0.2730 0.1535 0 0 0.2333 0.1364 0.6611 7.9563
MemFree Decode 0.2711 0.1524 0 0 0.2392 0.1407 0.6618 8.2453
GA 0.2504 0.1430 0 0 0.2282 0.1354 0.5821 8.1719
NPO 0.2655 0.1487 0 0 0.2380 0.1411 0.6600 8.1938
Gradiet Difference 0.2619 0.1496 0 0 0.2433 0.1241 0.6544 8.0031
TV 0.2463 0.1433 0 0 0.2228 0.1331 0.6621 8.2038
SSU 0.2523 0.1432 0 0 0.2299 0.1357 0.6625 8.2250

Table 2: Overall results of Llama3.1 at time step 1, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.3027 0.1793 0.2586 0.1478 0.2349 0.1380 0.6618 8.1808
Prompting (a) 0.3036 0.1814 0.2605 0.1489 0.2376 0.1364 0.6635 8.3344
Prompting (dbrx) 0.2971 0.1759 0.2638 0.1485 0.2333 0.1364 0.6611 7.9563
MemFree Decode 0.2995 0.1781 0.2604 0.1501 0.2392 0.1407 0.6618 8.2453
GA 0.2755 0.1644 0.2489 0.1409 0.2287 0.1375 0.5157 8.1719
NPO 0.2910 0.1725 0.2556 0.1439 0.2368 0.1395 0.6512 8.1063
Gradient Difference 0.2996 0.1806 0.2605 0.1494 0.2401 0.1405 0.6544 8.0627
TV 0.2774 0.1674 0.2492 0.1433 0.2425 0.1431 0.5845 8.0808
SSU 0.2863 0.1702 0.2494 0.1414 0.2354 0.1390 0.6519 8.3769

Table 3: Overall results of Llama3.1 at time step 2, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2544 0.1534 0.2756 0.1617 0.2349 0.1380 0.6618 8.1808
Prompting (a) 0.2568 0.1556 0.2812 0.1638 0.2376 0.1364 0.6635 8.3344
Prompting (dbrx) 0.2464 0.1496 0.2778 0.1618 0.2333 0.1364 0.6611 7.9563
MemFree Decode 0.2456 0.1508 0.2773 0.1621 0.2392 0.1407 0.6618 8.2453
GA 0.2459 0.1483 0.2569 0.1527 0.2294 0.1353 0.4940 7.8031
NPO 0.2466 0.1492 0.2653 0.1527 0.2375 0.1401 0.6481 8.0547
Gradient Difference 0.2493 0.1523 0.2737 0.1577 0.2409 0.1417 0.6544 7.9727
TV 0.2439 0.1473 0.2587 0.1527 0.2414 0.1430 0.5316 8.1163
SSU 0.2391 0.1458 0.2627 0.1509 0.2398 0.1413 0.6481 8.3938

Table 4: Overall results of Llama3.1 at time step 3, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2589 0.1530 0.2721 0.1588 0.2349 0.1380 0.6618 8.1808
Prompting (a) 0.2572 0.1522 0.2756 0.1609 0.2376 0.1364 0.6635 8.3344
Prompting (dbrx) 0.2597 0.1531 0.2713 0.1583 0.2333 0.1364 0.6611 7.9563
MemFree Decode 0.2591 0.1520 0.2722 0.1605 0.2383 0.1408 0.6617 8.2453
GA 0.2599 0.1466 0.2533 0.1501 0.2295 0.1355 0.4853 7.9813
NPO 0.2480 0.1478 0.2641 0.1542 0.2364 0.1407 0.6537 8.0821
Gradient Difference 0.2606 0.1504 0.2748 0.1598 0.2464 0.1457 0.6579 8.0344
TV 0.2518 0.1500 0.2564 0.1519 0.2342 0.1396 0.4982 8.1456
SSU 0.2489 0.1436 0.2522 0.1516 0.2417 0.1424 0.6432 8.2547

Table 5: Overall results of Llama3.1 at time step 4, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

5212

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2708 0.1487 0.2726 0.1595 0.2349 0.1380 0.6618 8.1808
Prompting (a) 0.2720 0.1492 0.2751 0.1617 0.2376 0.1364 0.6635 8.3344
Prompting (dbrx) 0.2677 0.1449 0.2714 0.1615 0.2333 0.1364 0.6611 7.9563
MemFree Decode 0.2724 0.1468 0.2714 0.1599 0.2383 0.1408 0.6617 8.2453
GA 0.2423 0.1342 0.2544 0.1502 0.2276 0.1320 0.3102 7.5719
NPO 0.2489 0.1367 0.2611 0.1508 0.2335 0.1384 0.6196 8.0313
Gradient Difference 0.2617 0.1425 0.2689 0.1582 0.2374 0.1419 0.6399 4.9438
TV 0.2394 0.1357 0.2571 0.1507 0.2339 0.1403 0.4887 8.1875
SSU 0.2515 0.1364 0.2582 0.1508 0.2409 0.1423 0.6425 8.1415

Table 6: Overall results of Llama3.1 at time step 5, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2602 0.1472 0.2723 0.1558 0.2349 0.1380 0.6618 8.1808
Prompting (a) 0.2603 0.1478 0.2747 0.1565 0.2376 0.1364 0.6635 8.3344
Prompting (dbrx) 0.2567 0.1489 0.2717 0.1552 0.2333 0.1364 0.6611 7.9563
MemFree Decode 0.2503 0.1452 0.2726 0.1551 0.2383 0.1408 0.6617 8.2453
GA 0.2535 0.1420 0.2499 0.1430 0.2278 0.1323 0.3082 7.6594
NPO 0.2502 0.1419 0.2563 0.1472 0.2342 0.1379 0.6018 8.0375
Gradient Difference 0.2455 0.1391 0.2686 0.1525 0.2369 0.1397 0.6232 4.5500
TV 0.2408 0.1405 0.2518 0.1459 0.2287 0.1399 0.3116 8.1219
SSU 0.2462 0.1398 0.2581 0.1463 0.2374 0.1401 0.6298 8.2359

Table 7: Overall results of Llama3.1 at time step 6, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2678 0.1482 0.2625 0.1507 0.2349 0.1380 0.6618 8.1808
Prompting (a) 0.2674 0.1521 0.2676 0.1528 0.2376 0.1364 0.6635 8.3344
Prompting (dbrx) 0.2602 0.1489 0.2632 0.1535 0.2333 0.1364 0.6611 7.9563
MemFree Decode 0.2488 0.1451 0.2675 0.1559 0.2383 0.1408 0.6617 8.2453
GA 0.2485 0.1403 0.2473 0.1441 0.2277 0.1324 0.2729 7.7063
NPO 0.2534 0.1452 0.2567 0.1465 0.2369 0.1382 0.5786 8.0375
Gradient Difference 0.2637 0.1494 0.2588 0.1492 0.2386 0.1414 0.6112 4.1384
TV 0.2453 0.1406 0.2433 0.1419 0.2266 0.1365 0.3477 7.8899
SSU 0.2532 0.1428 0.2559 0.1457 0.2391 0.1398 0.6291 8.1406

Table 8: Overall results of Llama3.1 at time step 7, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2906 0.1673 0.2685 0.1514 0.2349 0.1380 0.6618 8.1808
Prompting (a) 0.2912 0.1668 0.2656 0.1538 0.2376 0.1364 0.6635 8.3344
Prompting (dbrx) 0.2902 0.1648 0.2637 0.1521 0.2333 0.1364 0.6611 7.9563
MemFree Decode 0.2922 0.1690 0.2683 0.1543 0.2383 0.1408 0.6617 8.2453
GA 0.2623 0.1476 0.2471 0.1451 0.2266 0.1325 0.2674 7.7219
NPO 0.2668 0.1516 0.2515 0.1434 0.2368 0.1383 0.5783 8.0719
Gradient Difference 0.2786 0.1578 0.2609 0.1513 0.2393 0.1414 0.6112 4.4000
TV 0.2539 0.1505 0.2347 0.1388 0.2259 0.1377 0.3516 7.9281
SSU 0.2676 0.1493 0.2479 0.1438 0.2386 0.1393 0.6263 8.2344

Table 9: Overall results of Llama3.1 at time step 8, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

5213

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2725 0.1628 0.2662 0.1564 0.2349 0.1380 0.6618 8.1808
Prompting (a) 0.2726 0.1601 0.2670 0.1528 0.2376 0.1364 0.6635 8.3344
Prompting (dbrx) 0.2697 0.1579 0.2604 0.1520 0.2333 0.1364 0.6611 7.9563
MemFree Decode 0.2695 0.1583 0.2674 0.1552 0.2383 0.1408 0.6617 8.2453
GA 0.2608 0.1505 0.2480 0.1441 0.2279 0.1343 0.1996 7.4281
NPO 0.2619 0.1530 0.2532 0.1448 0.2299 0.1348 0.5488 8.0281
Gradient Difference 0.2594 0.1531 0.2562 0.1482 0.2422 0.1417 0.6305 4.3208
TV 0.0001 0.0001 0.0005 0.0005 0.0002 0.0002 0 4.2373
SSU 0.2629 0.1522 0.2484 0.1427 0.2360 0.1382 0.6049 8.1219

Table 10: Overall results of Llama3.1 at time step 9, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2667 0.1458 0.2602 0.1467 0.2349 0.1380 0.6618 8.1808
Prompting (a) 0.2605 0.1469 0.2597 0.1477 0.2376 0.1364 0.6635 8.3344
Prompting (dbrx) 0.2622 0.1467 0.2648 0.1510 0.2333 0.1364 0.6611 7.9563
MemFree Decode 0.2596 0.1450 0.2672 0.1522 0.2383 0.1408 0.6617 8.2453
GA 0.2559 0.1422 0.2491 0.1422 0.2289 0.1335 0.2004 7.4344
NPO 0.2583 0.1435 0.2602 0.1498 0.2306 0.1342 0.5477 7.9969
Gradient Difference 0.2542 0.1453 0.2601 0.1496 0.2365 0.1383 0.6079 4.4843
TV 0 0 0.0005 0.0005 0.0002 0.0002 0 3.915
SSU 0.2481 0.1389 0.2541 0.1439 0.2333 0.1396 0.6023 8.0206

Table 11: Overall results of Llama3.1 at time step 10, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2828 0.1629 0 0 0.2456 0.1487 0.6070 7.4563
Prompting (a) 0.2731 0.1596 0 0 0.2481 0.1515 0.6074 7.1438
Prompting (dbrx) 0.2783 0.1649 0 0 0.2412 0.1482 0.6053 7.3531
MemFree Decode 0.2742 0.1640 0 0 0.2458 0.1502 0.6074 7.1719
GA 0.0739 0.0501 0 0 0.1183 0.0750 0.6028 6.5875
NPO 0.2721 0.1561 0 0 0.2447 0.1466 0.6028 7.5547
Gradient Difference 0.2472 0.1462 0 0 0.2351 0.1413 0.6074 7.3875
TV 0.2591 0.1539 0 0 0.2391 0.1469 0.6021 7.1125
SSU 0.2536 0.1536 0 0 0.2401 0.1495 0.6052 7.4406

Table 12: Overall results of Mistral-7B at time step 1, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2997 0.1838 0.2797 0.1650 0.2456 0.1487 0.6070 7.4563
Prompting (a) 0.3038 0.1842 0.2776 0.1653 0.2481 0.1515 0.6074 7.1438
Prompting (dbrx) 0.3087 0.1867 0.2850 0.1672 0.2412 0.1482 0.6053 7.3531
MemFree Decode 0.3021 0.1841 0.2809 0.1661 0.2458 0.1502 0.6074 7.1719
GA 0.0544 0.0357 0.0177 0.0118 0.0347 0.0233 0.6039 4.0313
NPO 0.2977 0.1779 0.2764 0.1605 0.2453 0.1474 0.6028 7.3438
Gradient Difference 0.2908 0.1728 0.2668 0.1505 0.2373 0.1412 0.6077 7.5313
TV 0.2682 0.1672 0.2454 0.1451 0.2258 0.1377 0.5944 7.0469
SSU 0.2871 0.1726 0.2600 0.1537 0.2357 0.1451 0.6028 7.3000

Table 13: Overall results of Mistral-7B at time step 2, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

5214

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2523 0.1562 0.2943 0.1755 0.2456 0.1487 0.6070 7.4563
Prompting (a) 0.2440 0.1518 0.2928 0.1742 0.2481 0.1515 0.6074 7.1438
Prompting (dbrx) 0.2429 0.1561 0.2883 0.1746 0.2412 0.1482 0.6053 7.3531
MemFree Decode 0.2401 0.1527 0.2906 0.1758 0.2458 0.1502 0.6074 7.1719
GA 0.0313 0.0205 0.0274 0.0193 0.0323 0.0216 0.6053 3.9056
NPO 0.2448 0.1486 0.2847 0.1677 0.2434 0.1474 0.6046 7.2438
Gradient Difference 0.2392 0.1405 0.2719 0.1505 0.2327 0.1383 0.6049 7.2844
TV 0.2054 0.1319 0.2404 0.1479 0.2095 0.1314 0.5846 6.8469
SSU 0.2204 0.1390 0.2623 0.1601 0.2333 0.1426 0.5996 7.3437

Table 14: Overall results of Mistral-7B at time step 3, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2702 0.1660 0.2929 0.1753 0.2456 0.1487 0.6070 7.4563
Prompting (a) 0.2730 0.1650 0.2863 0.1739 0.2481 0.1515 0.6074 7.1438
Prompting (dbrx) 0.2726 0.1687 0.2817 0.1726 0.2412 0.1482 0.6053 7.3531
MemFree Decode 0.2711 0.1628 0.2846 0.1748 0.2458 0.1502 0.6074 7.1719
GA 0 0 0 0 0 0 0 0
NPO 0.2618 0.1561 0.2806 0.1665 0.2447 0.1475 0.6021 7.2688
Gradient Difference 0.2503 0.1464 0.2694 0.1595 0.2326 0.1408 0.6042 7.2375
TV 0.2038 0.1266 0.2131 0.1306 0.1929 0.1189 0.5582 6.4938
SSU 0.2431 0.1489 0.2553 0.1561 0.2352 0.1434 0.6000 7.2344

Table 15: Overall results of Mistral-7B at time step 4, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2709 0.1555 0.2829 0.1703 0.2456 0.1487 0.6070 7.4563
Prompting (a) 0.2673 0.1530 0.2904 0.1719 0.2481 0.1515 0.6074 7.1438
Prompting (dbrx) 0.2673 0.1561 0.2835 0.1714 0.2412 0.1482 0.6053 7.3531
MemFree Decode 0.2624 0.1515 0.2833 0.1735 0.2458 0.1502 0.6074 7.1719
GA 0 0 0 0 0 0 0 0
NPO 0.2633 0.1490 0.2819 0.1647 0.2423 0.1462 0.5986 7.4719
Gradient Difference 0.2503 0.1464 0.0483 0.0336 0.0491 0.0338 0.6063 2.8375
TV 0.1703 0.1078 0.1674 0.1099 0.1468 0.0986 0 1.0000
SSU 0.2324 0.1402 0.2571 0.1575 0.2333 0.1427 0.6000 7.3469

Table 16: Overall results of Mistral-7B at time step 5, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

Df Dprev Dnor Benchmark
Rouge-1 Rouge-L Rouge-1 Rouge-L Rouge-1 Rouge-L MMLU MT-Bench

Vanilla 0.2694 0.1610 0.2778 0.1628 0.2456 0.1487 0.6070 7.4563
Prompting (a) 0.2653 0.1580 0.2806 0.1632 0.2481 0.1515 0.6074 7.1438
Prompting (dbrx) 0.2692 0.1617 0.2862 0.1679 0.2412 0.1482 0.6053 7.3531
MemFree Decode 0.2662 0.1585 0.2758 0.1638 0.2458 0.1502 0.6074 7.1719
GA 0 0 0 0 0 0 0 0
NPO 0.2711 0.1572 0.2714 0.1555 0.2457 0.1482 0.5979 7.4119
Gradient Difference 0.0273 0.0191 0.0270 0.0198 0.0485 0.0326 0.6070 2.6815
TV 0 0 0 0 0 0 0 0
SSU 0.2519 0.1476 0.2448 0.1463 0.2304 0.1416 0.5982 7.2938

Table 17: Overall results of Mistral-7B at time step 6, compared with several baselines for Df , Dprev, and Dnor.
Benchmark performance includes MMLU and MT-Bench scores.

5215

