LogRules: Enhancing Log Analysis Capability of Large Language Models

through Rules
Xin Huang* Ting Zhang* Wen Zhao
Beijing Institute of Technology Peking University Peking University

huangxin@bit.edu.cn

Abstract

Currently, large language models (LLMs) have
achieved impressive performance in natural lan-
guage processing tasks. However, LLMs still

zhangting2019@pku.edu.cn

zhaowen@pku.edu.cn

Q 1. Default file system [hdfs://msra-sa-41:9000]
2. adding path spec: /mapreduce/*

3. Jetty bound to port 62267

LOG

SB[Case-based
= ase-base

Task: log parsing J

E Rule-based

~

exhibit many hallucinations when analyzing
system logs, which is due to the implicit knowl-
edge and rules in logs that LLMs cannot cap-
ture. Based on this, we propose LogRules, a

You will be provided with some log

must abstract variables with
{{placeholders}} to extract the
corresponding template. There might
be no variables in the log message.

messages separated by line break. You

You will be provided with some log
messages separated by line break. You
must abstract variables with
{{placeholders}} to extract the
corresponding template. There might
be no variables in the log message.

lightweight log analysis framework that gen-
erates and utilizes rules through LLMs. Lo-
gRules consists of three stages: an induction
stage, an alignment stage, and a reasoning stage.
Firstly, in the induction stage, an strong LLM
(e.g., GPT-40-mini) is tasked with generating
a series of rules related to logs, which are then
validated on the training set. When the rules
are confirmed to produce correct reasoning re-
sults, they are added to a rule repository. Sec-
ondly, considering that the LLMs with small
size (=8B parameters) still face challenges in
utilizing rules, we design an alignment method
based on rule-case contrastive preference opti-
mization (CPO) to effectively enhance the rule
reasoning capabilities of these LLMs. Finally,
in the reasoning stage, the LLM constructs
prompt using the rule repository and performs
log analysis on the test set. Experiments show
that LogRules outperforms LLM-based meth-
ods in log parsing and anomaly detection tasks,
and achieves better performance compared to
case-based methods.

1 Introduction

System logs provide critical runtime information,
helping developers, operators and maintainers un-
derstand system behavior and debug issues (Sat-
pathi et al., 2019; Le and Zhang, 2021). However,
as systems grow more complex, analyzing vast
amounts of log data has become a significant chal-
lenge (Mi et al., 2013; Oliner et al., 2012). Recent
advances in large language models (LLMs) for nat-
ural language processing have inspired efforts to

“Equal contribution.

Log message:
Got allocated containers 1

Here are some rules you can refer to:

1. Replace URLs with <*>
2. Replace paths with <*>
3. Replace port numbers with <*>

Log template:
Got allocated containers <*>

Learn by rote Learn the essence
Hard to generalize Better generalization)

Figure 1: Comparison between case-based and rule-
based reasoning.

apply LLMs to system log analysis, addressing
tasks such as log parsing (Le and Zhang, 2023a;
Xu et al., 2024b; Zhong et al., 2024) and log-based
anomaly detection (Liu et al., 2024; Qi et al., 2023;
Guo et al., 2024).

However, the cost of LLMs is also a significant
issue. In real-world scenarios, systems generate
large amounts of log data. For example, Mi et al.
(Mi et al., 2013) reported that the Alibaba cloud
system generates approximately 30-50 GB (about
100-200 million lines) of trace logs per hour. On
the one hand, due to the high inference cost of
LLMs, invoking an LLM for each log message
is impractical. On the other hand, using smaller
LLMs is more cost-effective than using large-scale
LLMs. For instance, if a system prompt contains
200 tokens and a log message has average 50 to-
kens, a query to GPT-3.5-turbo-0613 that generates
a 200-token response would cost approximately
$0.000775 per log. This calculation is based on
the GPT-3.5-turbo-0613 API pricing of $1.50 per
million input tokens and $2.00 per million output

452

Findings of the Association for Computational Linguistics:
NAACL 2025, pages 452-470
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

tokens !. In contrast, using a smaller LLM with
around 8B parameters would cost only $0.00009
per log, given a rate of $0.20 per million tokens
for both input and output 2. This represents an ap-
proximate cost saving of 88.4% compared to using
a larger LLM. Unfortunately, most current LLM-
based log analysis methods rely on large LLMs like
ChatGPT (OpenAl, 2023), and their performance
on smaller LLMs remains suboptimal.

Besides, LLMs still face hallucination issues
when analyzing logs, likely due to the implicit
knowledge and rules in logs that LLMs struggle
to capture. Hallucination occurs when LL.Ms pro-
duce outputs that seem reasonable but contradict
real-world knowledge (Ji et al., 2023; Zhang et al.,
2024; McKenna et al., 2023; Zhou et al., 2023).
One method to enhance LLM reasoning and re-
duce hallucinations is prompt engineering, where
examples are provided to clarify the objectives and
approaches (Wei et al., 2022; Kojima et al., 2022;
Khot et al., 2023). This is known as case-based
prompting. While it helps reduce hallucinations,
its ability to generalize is limited, especially as
system logs evolve. As systems are updated, devel-
opers may modify source code and log statements,
changing the structure of log data (Xu et al., 2009;
Kabinna et al., 2018; Zhang et al., 2023). Case-
based prompting fails to capture the underlying
rules within logs, often leading LLMs to rely on
rote memorization, which hampers their ability to
generalize effectively (Zhu et al., 2023b).

To address aforementioned issues, we propose
a lightweight log analysis framework called Lo-
gRules, which leverages rule-based prompting to
improve the reasoning capabilities of small-scale
LLMs. Compared to case-based prompting, rule-
based prompting helps LLMs better understand
the essence of tasks and knowledge, leading to im-
proved generalization, as shown in Figure 1.

LogRules enhances the reasoning and generaliza-
tion abilities of LLLMs by building a rule repository
specifically for logs, improving performance in log
analysis tasks. LogRules operates in three phases:
induction, alignment, and deduction. In the induc-
tion phase, the LLM generates a set of log-related
rules, which are then validated on the training set.
Once verified to produce accurate reasoning out-
comes, these rules are added to the rule repository.
In the alignment phase, the rule utilization ability

"https://openai. com/api/pricing
2https://www.together.ai/pricing

Logging statement

A logging statement from Python
logging.info(f"Starting reading data from {file path}")
Raw log l

24-10-01 15:25:14 INFO Starting reading data from
/etc/data

Structured log l
24-10-01
Time 15:25:14
Level INFO

Template

Starting reading data from <*>

Parameters [/etc/data]

Figure 2: An example of log parsing.

of the LLM is improved through rule-case con-
trastive preference optimization (CPO) (Xu et al.,
2024a). In the deduction phase, the LLM uses the
rule repository to construct prompts for log analysis
on the test set.

We conduct experiments on several open-source
log datasets for log parsing and anomaly detection,
demonstrating that LogRules improves reasoning
ability and performance in these tasks by leverag-
ing rules. Additionally, compared to case-based
methods, rule-based prompting shows stronger ro-
bustness.

2 Related Work
2.1 Log Parsing

The goal of log parsing is to transform raw logs
into log templates (the constant parts written in
log statements) and extract log parameters (the
dynamic parts). This structured format facilitates
downstream tasks, such as log-based anomaly de-
tection.

Log parsing enables the identification and sepa-
ration of static text from variables in raw logs (Zhu
et al., 2019). Typically, logs contain many vari-
ables. First, common variables such as timestamps,
log levels, and log content are separated using reg-
ular expressions. Then, the log content is further
structured into log templates by replacing the vari-
ables (e.g., file paths, URLs, and IP addresses)
with placeholders like {{variable}} or <*>. For
example, the log statement logging.info(f"Starting
reading data from {file_path}") can generate a se-
ries of log messages with different file paths, such

453

https://openai.com/api/pricing
https://www.together.ai/pricing

2. Alignment

Log Sampling

1. adding path spec: /mapreduce/*
2. Jetty bound to port 62267 l

3. IPC Server Responder: starting

|6

Rule Generation

"task": "log_parsing",

"rule": [
"Replace paths with {{path}}",
"Replace number with {{num}}",

&)

gﬁﬁ Rule Ranking

1. "Replace paths with {{path}}"

—logmg (y'|x)

1 ()
{@} @ h .+« > Responses 1,
) T
] Rule-based Pull closer
Responses | "

Rule Repository

3. Deduction
(S
Incoming logs
106G

Rule-based prompt ¥

~

1

i

i S Al e et it s

| log messages separated by line

! break. You must abstract variables
with {{placeholders}} to extract
the corresponding template. There
! might be no variables in the log

1 message. Here are some rules you
. can refer to: {RULES}
1

1

v

‘ Natural language ‘

log e (y™ |x)

2. "Replace number with {{num}}"

3. >, <Rules for LP

l REGEX

<Rules for AD

AN J

‘ Final results ‘

Figure 3: The framework of LogRules. The figure shows the process of log parsing, while log-based anomaly
detection also follows the same process, with only some differences in the rule-based prompt.

as Starting reading data from /etc/data/. In this
case, the log template is Starting reading data from
<*>_and the variable is the data path /etc/data/. An
example of log parsing is shown in Figure 2.

Since source code accessibility is often restricted,
many data-driven log parsers have been proposed,
including unsupervised (Du and Li, 2016; He et al.,
2017; Dai et al., 2022) and supervised parsers (Huo
etal., 2023; Le and Zhang, 2023b; Liu et al., 2022).
Unsupervised parsers extract patterns using spe-
cially designed features or domain-specific heuris-
tic methods, relying on extensive pre-defined do-
main knowledge and rules (e.g., delimiters and reg-
ular expressions). However, manually constructing
a large number of rules is clearly impractical. Fur-
thermore, as log data evolves, these pre-defined
rules may become outdated, leading to decreased
performance. On the other hand, supervised parsers
typically require model training on target log sam-
ples to learn features, which can result in inade-
quate generalization and suboptimal performance
on diverse log datasets (Xu et al., 2024b).

We aim to address the limitations of both types
of parsers using LLMs. First, LLLMs can continu-
ously generate and update rules based on historical
logs, adapting to log evolution. Second, instead
of requiring extensive data for training, LLMs use
rule-based alignment, which enhances the model’s
generalization capability.

2.2 Log-based Anomaly Detection

Log-based anomaly detection aims to identify
whether a system failure or anomaly has occurred,
which may result from hardware or software issues,
such as a kernel crash. In recent years, several
deep learning-based methods have been proposed,
including supervised approaches like LogRobust
(Zhang et al., 2019) and NeuralLog (Le and
Zhang, 2021) , and self-supervised methods such
as DeepLog (Du et al., 2017) and LogAnomaly
(Meng et al., 2019).

To improve the interpretability of anomaly de-
tection, recent work has explored using LLMs for
this task. Qi et al. proposed LogGPT (Qi et al.,
2023), and Liu et al. introduced LogPrompt (Liu
et al., 2024), both utilizing ChatGPT for log-based
anomaly detection. Guo et al. developed OWL
(Guo et al., 2024), which constructed an instruction
dataset for IT-related tasks and fine-tuned LLMs
for various IT-related tasks, including log-based
anomaly detection.

However, despite improving interpretability,
many LL.M-based anomaly detection models strug-
gle with precision, even when provided with nu-
merous detection examples in the prompts. This is
largely due to hallucinations generated by LLMs
during inference, which increase false positives.
Therefore, LLMs must understand the rules of
anomaly detection beyond just examples to mit-
igate these hallucinations.

454

2.3 Enhancing LLM’s Reasoning Abilities

Many real-world problems require inductive rea-
soning to derive correct answers. Typically, the
problem statement provides the necessary facts
within the context but does not explicitly state the
rules. Humans often make hypotheses, test them
based on observations, and refine them accordingly,
eventually deriving implicit rules (Frinken et al.,
2022; Qiu et al., 2024). Furthermore, humans can
obtain knowledge by learning from rules in a differ-
ent context. In other words, given detailed rules and
a few examples, humans can generalize effectively.

However, LLMs still lag behind humans in
reasoning ability. Currently, LLMs primarily
learn through examples, implicitly acquiring in-
ternal rules from supervised datasets (Hu et al.,
2024). While pre-trained LLMs can retrieve some
common-sense knowledge from their parameters
(Petroni et al., 2019), this implicit process often
leads to unexpected hallucinations (Hu et al., 2024).
Such hallucinations are particularly common with
problems that are either infrequently addressed in
the pre-training data (Roberts et al., 2020) or con-
flict with typical real-world problem formulations
(Longpre et al., 2021; Wu et al., 2024).

Some works address the hallucinations within
LLMs by having them propose hypotheses and ap-
ply inductive reasoning. For instance, iterative hy-
pothesis refinement (Qiu et al., 2024) explores the
potential of LLMs for inductive reasoning. Hypoth-
esis search (Wang et al., 2024) tackles inductive
reasoning tasks by generating and testing hypothe-
ses in both natural language and code. When a hy-
pothesis is validated for a specific task, it is treated
as a rule. We aim for LLMs to use the correct
rules they generate to perform stronger reasoning,
leading to better performance in log analysis tasks.

3 LogRules

To reduce hallucinations in LLMs during log anal-
ysis tasks, we propose LogRules, a log analysis
framework that generates and applies rules using
LLMs. LogRules consists of three stages: induc-
tion, alignment, and deduction. In the induction
stage, we use a powerful LLM (such as OpenAl
GPT-40-mini (OpenAl, 2024)) to generate a series
of log-related rules, which are then validated on
the training set. Once a rule is verified for accurate
reasoning, it is added to the rule repository. In the
alignment stage, we also use the powerful LLM
to perform reasoning on the training logs using

both rule-based and case-based prompting. The
results from these reasoning processes are used
as chosen and rejected alignment samples, and
we fine-tune a smaller LLM (such as LLaMA-3-
8B-Instruct (Dubey et al., 2024) and Qwen2.5-7B-
Instruct (Qwen, 2024)) through contrastive prefer-
ence optimization (CPO) (Xu et al., 2024a). In the
reasoning stage, the smaller LLM leverages the rule
repository to construct prompts for log analysis on
the test set. The overall framework of LogRules is
shown in Figure 3.

3.1 Induction Stage

To uncover explicit knowledge for reasoning, we
use GPT-40-mini to induce rules. The induction
stage consists of three steps: log sampling, rule
generation, and rule ranking.

3.1.1 Log Sampling

Since logs are vast and large in volume, generating
rules from a massive amount of logs would be more
reliable, but using GPT for large-scale reasoning
is costly. Therefore, we sample logs to create a
dataset Dy = {(z;,9:)},, where x; and y; rep-
resent logs and labels respectively, and T' denotes
the specific log analysis task (e.g., log parsing or
anomaly detection). The dataset Dy is then split
into a training set D" and a test set D', such
that Dy = DS3in U DI,

3.1.2 Rule Generation

We prompt GPT-40-mini to generate rules relevant
to the log analysis task based on the training set.
Rule reasoning involves a function (i.e., GPT and
prompts) f : X UY — V which maps logs and
labels to rules {r;},, where M is the number
of rules, r; = (vi,l,vm, "'>Ui,l>’ Vij € V(l <
j < 1) represents the j-th token of the i-th rule,
and [is the number of r;’s tokens. Rule r; can
take various forms, typically expressed in natural
language, where V' represents the vocabulary space
of GPT-40-mini. Our goal is to find a function f
that best describes the rules governing D7 with
only the training set D", A good rule should
balance accuracy and coverage, meaning it must
have enough expressive power to capture the rules
of DIFin while generalizing to D,

3.1.3 Rule Ranking

Once the rules are generated, they need to be pri-
oritized so the LLMs can understand their relative
importance and apply higher-priority rules during
reasoning. We embed all the rules into the prompt

455

and use GPT-40-mini to perform reasoning on the
training set D&E"‘in, asking it to indicate which rules
are used. We then tally the usage of each rule and
prioritize them based on the frequency of use, from
highest to lowest.

3.2 Alignment Stage

We found that powerful LLMs (such as the GPT se-
ries) perform well in reasoning for log tasks using
rules. However, smaller LLMs (= 8B parameters)
struggle to effectively utilize these rules. Specif-
ically, smaller LL.Ms often lack the rule compre-
hension necessary to solve log tasks correctly or
fail to follow the rules properly. To enhance the
rule-based reasoning capabilities of smaller LL.Ms,
we propose a rule-based alignment method.

First, we construct case-based prompting and
rule-based prompting, with log training samples
z; € DN a5 input. This generates outputs y§°
and y'l°, respectively. Next, we select samples
where the outputs generated by case-based prompt-
ing do not match the ground true labels as rejected
samples, i.e., y! = 1(y$%¢ # y;). At the same time,
samples where the outputs generated by rule-based
prompting match the ground true labels as chosen
samples, i.e., y¥ = 1(yM = y;). This expanded
the training set to D" = {(z;, y;, y!, y?)}fvz"f".
Finally, we use contrastive preference optimization
(CPO) (Xu et al., 2024a) to fine-tune the smaller
LLM. Compared to direct preference optimization
(DPO) (Rafailov et al., 2023), CPO does not rely on
a reference model, optimizing both memory usage
and speed. CPO contains two terms: a preferred
term and a behavior cloning (BC) regularizer. The
computation of the preferred term is as follows:

Lp(mg) = —E,, 1 yuwy~pmin[log o (5 log mo (y;’ | i)

(D
—Blog mo(yi|zs))],

where 7y represents the policy (LLM) with param-
eters 0, o is the sigmoid function, and 5 is is a
hyperparameter. Additionally, CPO incorporates a
BC regularizer to ensure that my does not deviate
from the chosen data distribution, i.e.,

ﬁBc(ﬂ'g) = _E(zi,yﬁ,y;”)wD‘j@i“ [log o (yz"\xl)] (2)
Finally, the total loss is computed as
L(mg) = Lp(mg) + aLpc(m), 3)

where o is a hyperparameter that controls the
strength of the BC regularizer.

3.3 Deduction Stage

In the rule-based reasoning stage, the aligned LLM
uses a rule-based prompt to analyze and reason
about incoming logs. These prompts include the
specific task (e.g., log parsing or log-based anomaly
detection) and a brief task description written by
humans based on the task type. Additionally, the
set of rules generated during the induction stage
is embedded into the rule-based prompt, guiding
the LLM to perform reasoning based on these rules.
The LLM is instructed to generate output, and the
final answers are extracted from the output using
regular expressions.

4 Experiments

4.1 Experimental Settings
4.1.1 Datasets

We use several real-world log datasets from the
open-source Loghub (Zhu et al., 2023a) reposi-
tory. These logs were generated by distributed
systems, supercomputers, operating systems, stan-
dalone software, et al. The statistical information
of the datasets can be found in Appendix A.

For log parsing, we evaluate LogRules on 16
datasets, each containing 2,000 logs. To achieve
low-cost induction and alignment, we construct the
training set using only a single log from each of 10
datasets, while the remaining 6 datasets are used to
evaluate the generalization capability of LogRules.

For log-based anomaly detection, we select the
labeled datasets BGL (Oliner and Stearley, 2007)
and Spirit (Stearley and Oliner, 2008), each con-
taining 10,000 logs. The datasets are split into
training and test sets in a 4:1 ratio, ensuring no
overlap between the two.

4.1.2 Evaluation Metrics

We select widely used metrics for evaluation. For
log parsing, we use grouping accuracy (GA) (Zhu
et al., 2019), parsing accuracy (PA), normalized
edit distance (ED) (Marzal and Vidal, 1993), F1
score of grouping accuracy (FGA) (Jiang et al.,
2023), and F1 score of template accuracy (FTA)
(Dai et al., 2022). For log-based anomaly detection,
we evaluate performance using precision (P), recall
(R), and F1 score (F1). The details of these metrics
can be found in Appendix B.

4.1.3 Hyperparameter Settings

The hyperparameter settings for LLM generation
are as follows: temperature is set to 0.0, top_p

456

and top_k are both set to 1, repetition_penalty is
set to 1, and max_new_tokens is set to 2048. The
hyperparameter settings for alignment are shown
in Appendix D.

4.2 Comparison with Baselines

4.2.1 Log Parsing

We select 4 open-source log parsers and 1 closed-
source LLM for baseline comparison: Brain (Yu
et al., 2023), DivLog (Xu et al., 2024b), LILAC
(Jiang et al., 2024), LogBatcher (Xiao et al., 2024),
and GPT-4-turbo. Among these, Brain is a syntax-
based parser, while DivLog, LILAC, and Log-
Batcher leverage OpenAl GPT for log parsing. To
reduce inference costs while maintaining strong
parsing performance, we focus on smaller LLMs,
and replace the LLM of LogBatcher from GPT to
a smaller LLM, LLaMA-3-8B-Instruct. LogRules
follows the same process as LogBatcher but uses
a smaller LLM and employs rule-based prompt-
ing for inference. Detailed descriptions of these
baseline parsers are provided in Appendix C.1.

The experimental results of the baseline meth-
ods and LogRules across 16 datasets are shown
in Table 1, and additional results for GPT-40 and
GPT-40-mini are shown in Appendix E. LILAC and
GPT-4-turbo demonstrate excellent performance,
while LogBatcher, after replacing GPT with the
smaller LLM, shows a notable drop in performance,
especially in PA and ED metrics. Our proposed Lo-
gRules performs only second to LILAC and GPT-4-
turbo, both of which leverage powerful GPT mod-
els. In contrast, LogRules utilizes the Qwen2.5-7B-
Instruct model with only 7 billion parameters. No-
tably, LogRules excels on the Windows and Linux
datasets, where most parsers struggle.

To evaluate the robustness of the baseline meth-
ods and LogRules, we present the boxplot of the
results in Figure 4. It shows that for the GA metric,
LogRules achieves the third narrowest interquartile
range (IQR) after Brain and GPT-4-turbo, and has
only one outlier. In terms of PA, LogRules has
higher upper and lower quartiles than LogBatcher,
though the median is the same, but it is less robust
compared with GPT-based parsers. For ED, while
LogRules has a wider IQR than LILAC and Log-
Batcher, it has zero outliers, whereas both LILAC
and LogBatcher have three outliers. Overall, Lo-
gRules demonstrates strong robustness, making it
suitable for a wide range of log datasets.

4.2.2 Log-based Anomaly Detection

We select 8 log-based anomaly detection methods
as baselines for comparison, including the unsuper-
vised deep learning methods DeepLog (Du et al.,
2017), LogAnomaly (Meng et al., 2019), the LLM-
based methods LogPrompt (Liu et al., 2024), Log-
GPT (Qi et al., 2023), OWL (Guo et al., 2024),
and 3 OpenAl GPT series models. Details of these
methods can be found in Appendix C.2, with the
experimental results shown in Table 2.

As seen in Table 2, LLM-based anomaly detec-
tion methods still lag slightly behind unsupervised
deep learning approaches. However, our LogRules
framework, by incorporating rule-based prompting,
achieves the best performance. Compared to the
LLM-based method OWL, LogRules improves F1
scores by 36.2% and 29.8% on the BGL and Spirit
datasets, respectively.

4.3 Rule-based vs. Case-based Reasoning
4.3.1 Log Parsing

To compare the impact of case-based and rule-
based prompting on log parsing, we evaluate Lo-
gRules with these tow strategies on 16 datasets, and
calculate the average GA, FGA, and FTA metrics.
For case-based prompting, we conduct experiments
using 1-shot, 2-shot, and 4-shot configurations for
LLaMA-3-8B-Instruct, with the results shown in
Figure 5.

As seen in Figure 5, rule-based prompting out-
performs case-based prompting across all metrics,
demonstrating its superiority. Additionally, we
observe that the 2-shot case-based prompting per-
forms better than the 1-shot and 4-shot configura-
tions, with FGA performing the worst in the 4-shot
setup. This indicates that case-based prompting
is highly sensitive to the selection of examples,
leading to instability. In contrast, while rule-based
prompting also depends on rule selection, the rules
are validated and better capture the essence, result-
ing in greater stability.

4.3.2 Log-based Anomaly Detection

To assess the impact of case-based versus rule-
based prompting on log-based anomaly detection,
we evaluate LogRules with these tow strategies on
the BGL and Spirit datasets, calculating precision,
recall, and F1 scores. Similarly, for case-based
prompting, we conduct experiments using 1-shot,
2-shot, and 4-shot configurations for LLaMA-3-
8B-Instruct, with the results shown in Table 3.

457

Table 1: Comparison with state-of-the-art log parsers (%). The bold and underlined fonts indicate the best and
second best results among methods, respectively.

Brain DivLog LILAC LogBatcher GPT-4-turbo LogRules
GAT PAT EDT | GAT PAT EDT | GAT PAT ED{ | GAT PAT ED{ | GAT PAf EDT | GAT PAT EDT
HDFS 99.8 959 99.7| 930 996 999 | 100 100 100 | 100 100 100 | 100 100 100 | 99.8 99.8 100
Hadoop 95.0 158 75.1 | 683 744 915|991 958 98.6 | 962 781 93.1 | 99.0 88.6 952 | 98.6 552 90.1
Spark 99.8 37.6 950 | 73.8 96.0 983|999 983 99.8 |99.7 968 983 | 99.8 972 999 | 81.3 929 97.7
Zookeeper | 98.9 779 98.7 | 955 979 99.8| 100 98.7 99.9 | 98.6 543 851|995 988 995 | 989 987 99.6
BGL 99.6 42.6 89.1| 736 950 99.0 | 983 972 989 | 86.6 89.1 96.1 | 96.7 94.1 989 | 98.8 96.2 989
HPC 945 66.0 973|935 98.0 99.7 | 97.0 994 999 | 951 747 946 | 953 843 995|950 944 994
Thunderbird | 97.1 6.0 932 | 234 879 97.8| 984 913 983|978 850 964 | 914 854 953|962 924 98.8
Windows 99.7 463 97.6 | 71.0 71.5 903 | 69.6 68.5 89.7 | 69.6 29.6 73.0| 966 859 962|992 859 947
Linux 358 17.6 77.0 | 484 620 935|298 422 926|754 707 947 | 89.8 87.6 99.2 | 87.5 86.2 98.0
Android 96.0 253 924 | 737 677 952|953 627 923|944 796 958 | 97.1 787 973|924 70.7 952
HealthApp | 100 26.1 87.1 | 87.6 984 99.7 | 99.8 988 99.8 | 90.0 869 942 | 920 914 98.1 | 99.6 98.6 99.5
Apache 100 984 99.6 | 984 985 99.7 | 100 100 100 | 100 73.1 94.1 | 98.6 97.8 99.6 | 100 994 99.9
Proxifier 527 704 945 | 531 993 999 | 100 99.5 999 | 522 522 925 | 8.1 90.6 99.7 | 100 100 100
OpenSSH 100 287 948 | 749 987 999 | 753 805 983] 99.6 498 90.3 | 956 956 98.9 | 99.6 99.6 99.9
OpenStack | 49.2 11.2 93.7 | 22.0 437 873 | 100 97.7 99.1 | 100 43.1 94.6 | 794 482 99.2 | 441 429 8938
Mac 949 383 902|712 549 89.8| 805 562 89.2 | 839 405 845|925 628 949 | 89.7 50.1 90.1
Average 883 440 922 | 70.1 839 963|902 86.7 973|904 688 923|943 867 98.2 | 925 852 970
100 . 100 100 4
X T .
80 o 807
o
. 70 o 60 - o . 901 8
<
G 604 . . [. ° Hogs 8
504 o 40 4
40 80 1
° 20 o
30 o 751 o
204 % . . . °
& @ R @"‘é S & @ ’ Q,o‘"‘é S & & & @&é S &
° & v ° C}Q v ° é{&l v

Figure 4: Robustness comparison of baselines and LogRules.

Table 2: Comparison with state-of-the-art log-based
anomaly detection methods (%). The bold fonts indicate
the best results among methods.

BGL Spirit

Method Pt RI FIT| PI R FIT
Deeplog | 92 992 168|352 100 52.1
LogAnomaly | 11.2 985 20.1 | 60.2 779 679
LogPrompt | 24.9 834 384 [29.0 99.9 450
LogGPT | 280 100 356|340 100 50.7
OWL 30.1 86.6 44.6 | 354 972 518
GPT4-turbo | 25.7 792 388 | 368 99.4 53.7
GPT-40 | 33.1 784 465|392 956 556
GPT-4o-mini | 26.3 80.7 39.7 | 37.6 96.7 54.1
LogRules | 764 857 80.8|69.0 100 816

As shown in Table 3, case-based prompting
performs poorly, whereas rule-based prompting
achieve outstanding results. Compared to 4-shot
case-based prompting, rule-based prompting im-

80 1
60 1
]
=
&)
-
40 A
B case (1-shot)
201 mmm case (2-shot)
B case (4-shot)
B rule
0 A
GA FGA FTA
Metric

Figure 5: Comparison between case-based and rule-
based reasoning for log parsing (%).

proves the F1 score by 29.6% on the BGL dataset
and 60.5% on the Spirit dataset.

458

Table 3: Comparison between case-based and rule-
based reasoning for log-based anomaly detection (%).
The bold fonts indicate the best results among methods.

\ BGL \ Spirit
Method Pt Rf FIt| PT Rf FI
Case-based (1-shot) | 154 993 26.6 | 0.5 400 1.0
Case-based (2-shot) | 17.1 99.3 29.1 | 1.5 400 29

Case-based (4-shot)
Rule-based

413 674 512
| 76.4 857

119 950 21.1
80.8 | 69.0 100 81.6

4.4 Comparison of Generated and
Human-crafted Rules

Some studies have used human-crafted rules for
log parsing. For example, Khan et al. (Khan et al.,
2022) designed heuristic rules to refine identified
templates. Other related works such as LILAC
(Jiang et al., 2024) and LogPPT (Le and Zhang,
2023b) have also adopted such rules to fine-tune
generated templates, minimizing the impact of in-
consistent labels. To compare the rules generated
by GPT-40-mini with those crafted by humans, we
embed both into rule-based prompts and conduct
comparison experiments on the test set. The rules
created by humans and generated by GPT-40-mini
can be found in Appendix G.1 and G.2, respectively.

Table 4: Comparison between human-crafted and gener-
ated rules for log parsing (%). The bold fonts indicate
the best results between them.

Human-crafted GPT-40-mini
GAT PAT EDT | GAT PAT ED?T

HDFS 100 100 100 | 99.8° 99.8 100
Hadoop 989 87.6 873 | 98.6 552 90.1

Spark 998 953 98.7 | 81.3 929 977

Zookeeper | 989 83.0 959 | 989 98.7 99.6
BGL 99.2 953 985 | 988 96.2 98.9
HPC 90.7 872 963 | 95.0 944 994

Thunderbird | 91.1 83.8 93.6 | 96.2 924 98.8
Windows | 69.1 304 729 | 99.2 859 94.7
Linux 99.7 89.0 962 | 87.5 86.2 98.0
Android 91.0 674 939|924 70.7 952
HealthApp | 90.0 87.0 939 | 99.6 98.6 99.5
Apache 100 994 999 | 100 994 999

Proxifier 985 984 998 | 100 100 100
OpenSSH | 97.3 903 975 | 99.6 99.6 99.9
OpenStack | 49.1 45.0 90.2 | 44.1 429 89.8

Mac 87.6 41.0 873 | 89.7 50.1 90.1

Average 913 80.0 945|925 852 97.0

The experimental results are shown in Table
4. Overall, the rules generated by GPT-40-mini
outperform those crafted by humans, although the
human-crafted rules have some advantages on the

HDEFS, Hadoop, Spark, Linux, and OpenStack
datasets.

4.5 Performance among Different LLMs

We use LLaMA-3-8B-Instruct, LLaMA-3.1-8B-
Instruct, and Qwen2.5-7B-Instruct as the LLMs
for log parsing. In addition to using the average
GA, PA, and ED across 16 datasets as evaluation
metrics, we also measure the total inference time
for each LLM. As shown in Table 5, Qwen2.5-7B-
Instruct not only achieves the best performance in
GA, PA, and ED metrics, but its inference speed is
also approximately twice as fast as LLaMA-3-8B-
Instruct.

Table 5: Comparison among different LLMs for log
parsing. The bold fonts indicate the best results among
LLMs.

LLM |GAT PAT ED?|Time (s))

LLaMA-3-8B-Instruct {90.8 73.1 93.9| 612.8
LLaMA-3.1-8B-Instruct|81.8 77.1 95.0| 6018.2
Qwen2.5-7B-Instruct |92.5 85.2 97.0| 317.6

To explore the differences in log parsing perfor-
mance between LLaMA-3-8B-Instruct, LLaMA-
3.1-8B-Instruct, and Qwen2.5-7B-Instruct, we an-
alyze several log parsing examples. We find that
LLaMA-3.1-8B-Instruct tends to generate Python
code to implement log parsing based on the given
rules. An example is shown in Appendix F.2. This
approach, where Python code is first generated and
then the parsing results are output, is the main
reason its inference time is longer compared to
LLaMA-3-8B-Instruct and Qwen2.5-7B-Instruct.
In some cases, they only generate Python code
without providing the final parsing results. Since
LogRules does not include a Python interpreter,
this leads to parsing failures.

In contrast, Qwen2.5-7B-Instruct tends to rely
more on natural language for log parsing. As the
experimental results demonstrate, this approach is
more efficient than generating Python code first
and then outputting results.

5 Conclusion

LLMs experience hallucinations when analyzing
system logs, largely due to the implicit knowledge
and rules in logs that LLMs struggle to capture. To
address this, we propose LogRules, a lightweight
log analysis framework that generates and applies

459

rules through LLMs. Experiments show that Lo-
gRules, using LLMs with approximately 8B pa-
rameters, outperforms OpenAl GPT-based meth-
ods in both log parsing and anomaly detection,
and achieves better performance compared to case-
based prompting methods.

6 Limitations

Although LogRules has achieved impressive perfor-
mance, as mentioned in Section 4.5, some LLMs
may handle log analysis tasks by generating code.
Since LogRules currently lacks a code interpreter,
it cannot obtain the final output in such cases. We
plan to integrate various tools into LogRules, in-
cluding a code interpreter, to ensure its effective
application in real-world scenarios.

7 Ethical Considerations

We use open-source log datasets for experiments.
However, real-world logs may contain personal
information or sensitive business data of users. Pro-
cessing such data with large models could pose
a risk of privacy breaches, especially when data
needs to be uploaded to the cloud. The security
during storage and transmission is crucial. Besides,
certain regions or industries (e.g., healthcare, fi-
nance) have strict compliance requirements for data
storage and processing. Using LLMs to process
these logs might violate privacy regulations.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIlPS 2020, December 6-12,
2020, virtual.

Laming Chen, Guoxin Zhang, and Eric Zhou. 2018.
Fast greedy MAP inference for determinantal point
process to improve recommendation diversity. In
Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 5627-5638.

Hetong Dai, Heng Li, Che-Shao Chen, Weiyi Shang,
and Tse-Hsun Chen. 2022. Logram: Efficient log
parsing using n-gram dictionaries. IEEE Trans. Soft-
ware Eng., 48(3):879-892.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023. A survey for in-context learning.
CoRR, abs/2301.00234.

Min Du and Feifei Li. 2016. Spell: Streaming parsing
of system event logs. In IEEE 16th International
Conference on Data Mining, ICDM 2016, December
12-15, 2016, Barcelona, Spain, pages 859-864. IEEE
Computer Society.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
2017. Deeplog: Anomaly detection and diagnosis
from system logs through deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017,
pages 1285-1298. ACM.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and
Xiaowei Xu. 1996. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Min-
ing (KDD-96), Portland, Oregon, USA, pages 226—
231. AAAI Press.

460

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/dbbf603ff0e99629dda5d75b6f75f966-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/dbbf603ff0e99629dda5d75b6f75f966-Abstract.html
https://doi.org/10.1109/TSE.2020.3007554
https://doi.org/10.1109/TSE.2020.3007554
https://doi.org/10.48550/ARXIV.2301.00234
https://doi.org/10.1109/ICDM.2016.0103
https://doi.org/10.1109/ICDM.2016.0103
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.48550/ARXIV.2407.21783
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
http://www.aaai.org/Library/KDD/1996/kdd96-037.php

Jan-Philipp Frinken, Nikos C Theodoropoulos, and
Neil R Bramley. 2022. Algorithms of adapta-
tion in inductive inference. Cognitive Psychology,
137:101506.

Hongcheng Guo, Jian Yang, Jiaheng Liu, Liqun Yang,
Linzheng Chai, Jiaqi Bai, Junran Peng, Xiaorong
Hu, Chao Chen, Dongfeng Zhang, Xu Shi, Tieqiao
Zheng, Liangfan Zheng, Bo Zhang, Ke Xu, and Zhou-
jun Li. 2024. OWL: A large language model for IT
operations. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R.
Lyu. 2017. Drain: An online log parsing approach
with fixed depth tree. In 2017 IEEE International
Conference on Web Services, ICWS 2017, Honolulu,
HI, USA, June 25-30, 2017, pages 33—40. IEEE.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735-
1780.

Yi Hu, Xiaojuan Tang, Haotong Yang, and Muhan
Zhang. 2024. Case-based or rule-based: How do
transformers do the math? In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net.

Yintong Huo, Yuxin Su, Cheryl Lee, and Michael R.
Lyu. 2023. Semparser: A semantic parser for log an-
alytics. In 45th IEEE/ACM International Conference
on Software Engineering, ICSE 2023, Melbourne,
Australia, May 14-20, 2023, pages 881-893. IEEE.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12):248:1-248:38.

Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li,
Junjie Huang, Yintong Huo, Pinjia He, Jiazhen Gu,
and Michael R. Lyu. 2024. LILAC: log parsing using
Ilms with adaptive parsing cache. Proc. ACM Softw.
Eng., 1(FSE):137-160.

Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li,
Yintong Huo, Jiazhen Gu, Zhuangbin Chen, Jiem-
ing Zhu, and Michael R. Lyu. 2023. A large-scale
benchmark for log parsing. CoRR, abs/2308.10828.

Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang,
Mark D. Syer, and Ahmed E. Hassan. 2018. Ex-
amining the stability of logging statements. Empir.
Softw. Eng., 23(1):290-333.

Zanis Ali Khan, Donghwan Shin, Domenico Bianculli,
and Lionel C. Briand. 2022. Guidelines for assessing
the accuracy of log message template identification
techniques. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022, pages 1095—
1106. ACM.

461

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2023. Decomposed prompting: A modular
approach for solving complex tasks. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Van-Hoang Le and Hongyu Zhang. 2021. Log-based
anomaly detection without log parsing. In 36th
IEEE/ACM International Conference on Automated
Software Engineering, ASE 2021, Melbourne, Aus-
tralia, November 15-19, 2021, pages 492-504. IEEE.

Van-Hoang Le and Hongyu Zhang. 2023a. Log pars-
ing: How far can chatgpt go? In 38th IEEE/ACM
International Conference on Automated Software En-
gineering, ASE 2023, Luxembourg, September 11-15,
2023, pages 1699-1704. IEEE.

Van-Hoang Le and Hongyu Zhang. 2023b. Log pars-
ing with prompt-based few-shot learning. In 45th
IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Australia, May
14-20, 2023, pages 2438-2449. IEEE.

Yilun Liu, Shimin Tao, Weibin Meng, Feiyu Yao, Xi-
aofeng Zhao, and Hao Yang. 2024. Logprompt:
Prompt engineering towards zero-shot and inter-
pretable log analysis. In Proceedings of the 2024
IEEE/ACM 46th International Conference on Soft-
ware Engineering: Companion Proceedings, ICSE
Companion 2024, Lisbon, Portugal, April 14-20,
2024, pages 364-365. ACM.

Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang,
Liqun Li, Yu Kang, Yong Xu, Minghua Ma, Qingwei
Lin, Yingnong Dang, Saravan Rajmohan, and Dong-
mei Zhang. 2022. Uniparser: A unified log parser
for heterogeneous log data. In WWW °22: The ACM
Web Conference 2022, Virtual Event, Lyon, France,
April 25 - 29, 2022, pages 1893-1901. ACM.

Shayne Longpre, Kartik Perisetla, Anthony Chen,
Nikhil Ramesh, Chris DuBois, and Sameer Singh.
2021. Entity-based knowledge conflicts in question
answering. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2021, Virtual Event / Punta Cana, Do-
minican Republic, 7-11 November, 2021, pages 7052—
7063. Association for Computational Linguistics.

Andrés Marzal and Enrique Vidal. 1993. Computation
of normalized edit distance and applications. /EEE
Trans. Pattern Anal. Mach. Intell., 15(9):926-932.

https://openreview.net/forum?id=SZOQ9RKYJu
https://openreview.net/forum?id=SZOQ9RKYJu
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1162/NECO.1997.9.8.1735
https://openreview.net/forum?id=4Vqr8SRfyX
https://openreview.net/forum?id=4Vqr8SRfyX
https://doi.org/10.1109/ICSE48619.2023.00082
https://doi.org/10.1109/ICSE48619.2023.00082
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3643733
https://doi.org/10.1145/3643733
https://doi.org/10.48550/ARXIV.2308.10828
https://doi.org/10.48550/ARXIV.2308.10828
https://doi.org/10.1007/S10664-017-9518-0
https://doi.org/10.1007/S10664-017-9518-0
https://doi.org/10.1145/3510003.3510101
https://doi.org/10.1145/3510003.3510101
https://doi.org/10.1145/3510003.3510101
https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.1109/ASE51524.2021.9678773
https://doi.org/10.1109/ASE51524.2021.9678773
https://doi.org/10.1109/ASE56229.2023.00206
https://doi.org/10.1109/ASE56229.2023.00206
https://doi.org/10.1109/ICSE48619.2023.00204
https://doi.org/10.1109/ICSE48619.2023.00204
https://doi.org/10.1145/3639478.3643108
https://doi.org/10.1145/3639478.3643108
https://doi.org/10.1145/3639478.3643108
https://doi.org/10.1145/3485447.3511993
https://doi.org/10.1145/3485447.3511993
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.565
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.565
https://doi.org/10.1109/34.232078
https://doi.org/10.1109/34.232078

Nick McKenna, Tianyi Li, Liang Cheng, Moham-
mad Javad Hosseini, Mark Johnson, and Mark Steed-
man. 2023. Sources of hallucination by large lan-
guage models on inference tasks. In Findings of the
Association for Computational Linguistics: EMNLP
2023, Singapore, December 6-10, 2023, pages 2758—
2774. Association for Computational Linguistics.

Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang,
Dan Pei, Yuqing Liu, Yihao Chen, Ruizhi Zhang,
Shimin Tao, Pei Sun, and Rong Zhou. 2019.
Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs. In
Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10-16, 2019, pages 4739—
4745. ijcai.org.

Haibo Mi, Huaimin Wang, Yangfan Zhou,
Michael Rung-Tsong Lyu, and Hua Cai. 2013.
Toward fine-grained, unsupervised, scalable perfor-
mance diagnosis for production cloud computing
systems. [EEE Trans. Parallel Distributed Syst.,
24(6):1245-1255.

Sasho Nedelkoski, Jasmin Bogatinovski, Alexander
Acker, Jorge Cardoso, and Odej Kao. 2020. Self-
attentive classification-based anomaly detection in
unstructured logs. In 20th IEEE International Con-
ference on Data Mining, ICDM 2020, Sorrento, Italy,
November 17-20, 2020, pages 1196-1201. IEEE.

Adam J. Oliner, Archana Ganapathi, and Wei Xu. 2012.
Advances and challenges in log analysis. Commun.
ACM, 55(2):55-61.

Adam J. Oliner and Jon Stearley. 2007. What super-
computers say: A study of five system logs. In The
37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2007, 25-
28 June 2007, Edinburgh, UK, Proceedings, pages
575-584. IEEE Computer Society.

OpenAl. 2023. Chatgpt.

OpenAl. 2024. Gpt-40 mini: advancing cost-efficient
intelligence.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language mod-
els as knowledge bases? In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2463-2473. Association for
Computational Linguistics.

Jiaxing Qi, Shaohan Huang, Zhongzhi Luan, Shu Yang,
Carol J. Fung, Hailong Yang, Depei Qian, Jing Shang,
Zhiwen Xiao, and Zhihui Wu. 2023. Loggpt: Explor-
ing chatgpt for log-based anomaly detection. In IEEE
International Conference on High Performance Com-
puting & Communications, Data Science & Systems,
Smart City & Dependability in Sensor, Cloud & Big

Data Systems & Application, HPCC/DSS/SmartCi-
ty/DependSys 2023, Melbourne, Australia, December
17-21, 2023, pages 273-280. IEEE.

Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar,
Valentina Pyatkin, Chandra Bhagavatula, Bailin
Wang, Yoon Kim, Yejin Choi, Nouha Dziri, and Xi-
ang Ren. 2024. Phenomenal yet puzzling: Testing
inductive reasoning capabilities of language models
with hypothesis refinement. In The Twelfth Inter-
national Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Team Qwen. 2024. Qwen2.5: A party of foundation
models.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurlPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020, pages 5418-5426. Association for
Computational Linguistics.

Siddhartha Satpathi, Supratim Deb, R. Srikant, and
He Yan. 2019. Learning latent events from network
message logs. IEEE/ACM Trans. Netw., 277(4):1728—
1741.

Jon Stearley and Adam J. Oliner. 2008. Bad words:
Finding faults in spirit’s syslogs. In 8th IEEE Inter-
national Symposium on Cluster Computing and the
Grid (CCGrid 2008), 19-22 May 2008, Lyon, France,
pages 765-770. IEEE Computer Society.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen
Pu, Nick Haber, and Noah D. Goodman. 2024. Hy-
pothesis search: Inductive reasoning with language
models. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurlPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyiirek,
Boyuan Chen, Bailin Wang, Najoung Kim, Jacob An-
dreas, and Yoon Kim. 2024. Reasoning or reciting?
exploring the capabilities and limitations of language

462

https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.182
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.182
https://doi.org/10.24963/IJCAI.2019/658
https://doi.org/10.24963/IJCAI.2019/658
https://doi.org/10.1109/TPDS.2013.21
https://doi.org/10.1109/TPDS.2013.21
https://doi.org/10.1109/TPDS.2013.21
https://doi.org/10.1109/ICDM50108.2020.00148
https://doi.org/10.1109/ICDM50108.2020.00148
https://doi.org/10.1109/ICDM50108.2020.00148
https://doi.org/10.1145/2076450.2076466
https://doi.org/10.1109/DSN.2007.103
https://doi.org/10.1109/DSN.2007.103
https://chat.openai.com
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence
https://doi.org/10.18653/V1/D19-1250
https://doi.org/10.18653/V1/D19-1250
https://doi.org/10.1109/HPCC-DSS-SMARTCITY-DEPENDSYS60770.2023.00045
https://doi.org/10.1109/HPCC-DSS-SMARTCITY-DEPENDSYS60770.2023.00045
https://openreview.net/forum?id=bNt7oajl2a
https://openreview.net/forum?id=bNt7oajl2a
https://openreview.net/forum?id=bNt7oajl2a
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.437
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.437
https://doi.org/10.1109/TNET.2019.2930040
https://doi.org/10.1109/TNET.2019.2930040
https://doi.org/10.1109/CCGRID.2008.107
https://doi.org/10.1109/CCGRID.2008.107
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=G7UtIGQmjm
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/V1/2024.NAACL-LONG.102
https://doi.org/10.18653/V1/2024.NAACL-LONG.102

models through counterfactual tasks. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), NAACL 2024, Mexico City, Mexico,
June 16-21, 2024, pages 1819-1862. Association for
Computational Linguistics.

Yi Xiao, Van-Hoang Le, and Hongyu Zhang. 2024.
Stronger, cheaper and demonstration-free log parsing
with llms. CoRR, abs/2406.06156.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-
ray, and Young Jin Kim. 2024a. Contrastive prefer-
ence optimization: Pushing the boundaries of LLM
performance in machine translation. In Forty-first In-
ternational Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net.

Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu
Zhang, and Pinjia He. 2024b. Divlog: Log parsing
with prompt enhanced in-context learning. In Pro-
ceedings of the 46th IEEE/ACM International Con-
ference on Software Engineering, ICSE 2024, Lisbon,
Portugal, April 14-20, 2024, pages 199:1-199:12.
ACM.

Wei Xu, Ling Huang, Armando Fox, David A. Patter-
son, and Michael I. Jordan. 2009. Online system
problem detection by mining patterns of console logs.
In ICDM 2009, The Ninth IEEE International Con-
ference on Data Mining, Miami, Florida, USA, 6-9
December 2009, pages 588-597. IEEE Computer
Society.

Siyu Yu, Pinjia He, Ningjiang Chen, and Yifan Wu.
2023. Brain: Log parsing with bidirectional parallel
tree. IEEE Trans. Serv. Comput., 16(5):3224-3237.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu,
and Noah A. Smith. 2024. How language model
hallucinations can snowball. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net.

Ting Zhang, Xin Huang, Wen Zhao, Guozhao Mo, and
Shaohuang Bian. 2023. Logcontrast: A weakly su-
pervised anomaly detection method leveraging con-
trastive learning. In 23rd IEEE International Confer-
ence on Software Quality, Reliability, and Security,
ORS 2023, Chiang Mai, Thailand, October 22-26,
2023, pages 48-59. IEEE.

Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu
Zhang, Yingnong Dang, Chunyu Xie, Xinsheng Yang,
Qian Cheng, Ze Li, Junjie Chen, Xiaoting He, Ran-
dolph Yao, Jian-Guang Lou, Murali Chintalapati, Fu-
rao Shen, and Dongmei Zhang. 2019. Robust log-
based anomaly detection on unstable log data. In
Proceedings of the ACM Joint Meeting on European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ES-
EC/SIGSOFT FSE 2019, Tallinn, Estonia, August
26-30, 2019, pages 807-817. ACM.

Aoxiao Zhong, Dengyao Mo, Guiyang Liu, Jinbu Liu,
Qingda Lu, Qi Zhou, Jiesheng Wu, Quanzheng Li,
and Qingsong Wen. 2024. Logparser-llm: Advancing
efficient log parsing with large language models. In
Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD
2024, Barcelona, Spain, August 25-29, 2024, pages
4559-4570. ACM.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May I-5,
2023. OpenReview.net.

Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and
Michael R. Lyu. 2023a. Loghub: A large collection
of system log datasets for ai-driven log analytics.
In 34th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2023, Florence, Italy,
October 9-12, 2023, pages 355-366. IEEE.

Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie,
Zibin Zheng, and Michael R. Lyu. 2019. Tools and
benchmarks for automated log parsing. In Proceed-
ings of the 41st International Conference on Soft-
ware Engineering: Software Engineering in Practice,
ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-
31, 2019, pages 121-130. IEEE / ACM.

Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou,
Jian Tang, Dale Schuurmans, and Hanjun Dai. 2023b.
Large language models can learn rules. CoRR,
abs/2310.07064.

A Details of Datasets

A.1 Log Parsing

Experiments of log parsing are conducted on the
most widely-used benchmark datasets published
in Loghub (Zhu et al., 2023a). The details are
available in Table 6.

A.2 Log-based Anomaly Detection

We select the labeled datasets BGL (Oliner and
Stearley, 2007) and Spirit (Stearley and Oliner,
2008). The datasets are split into training and test
sets in a 4:1 ratio, ensuring no overlap between the
two. The details are available in Table 7.

B Details of Evaluation Metrics

B.1 Log Parsing

Grouping accuracy (GA). GA (Zhu et al., 2019)
assesses the ability to correctly group log messages
belonging to the same template. GA is defined
as the ratio of correctly grouped log messages to

463

https://doi.org/10.18653/V1/2024.NAACL-LONG.102
https://doi.org/10.48550/ARXIV.2406.06156
https://doi.org/10.48550/ARXIV.2406.06156
https://openreview.net/forum?id=51iwkioZpn
https://openreview.net/forum?id=51iwkioZpn
https://openreview.net/forum?id=51iwkioZpn
https://doi.org/10.1145/3597503.3639155
https://doi.org/10.1145/3597503.3639155
https://doi.org/10.1109/ICDM.2009.19
https://doi.org/10.1109/ICDM.2009.19
https://doi.org/10.1109/TSC.2023.3270566
https://doi.org/10.1109/TSC.2023.3270566
https://openreview.net/forum?id=FPlaQyAGHu
https://openreview.net/forum?id=FPlaQyAGHu
https://doi.org/10.1109/QRS60937.2023.00015
https://doi.org/10.1109/QRS60937.2023.00015
https://doi.org/10.1109/QRS60937.2023.00015
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3637528.3671810
https://doi.org/10.1145/3637528.3671810
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://doi.org/10.1109/ISSRE59848.2023.00071
https://doi.org/10.1109/ISSRE59848.2023.00071
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.48550/ARXIV.2310.07064

Table 6: Statistical details of the datasets for log parsing.

Dataset # Templates | # Train | # Test
HDFS 14 1 2,000
Hadoop 114 0 2,000
Spark 36 0 2,000
Zookeeper 50 1 2,000
BGL 120 1 2,000
HPC 46 1 2,000
Thunderbird 149 0 2,000
Windows 50 0 2,000
Linux 118 1 2,000
Android 166 0 2,000
HealthApp 75 1 2,000
Apache 6 0 2,000
Proxifier 8 1 2,000
OpenSSH 27 1 2,000
OpenStack 43 1 2,000
Mac 341 1 2,000

Table 7: Statistical details of the datasets for log-based
anomaly detection.

Dataset ‘ # Train (Anomalies) ‘ # Test (Anomalies)

BGL 8,000 (611) 2,000 (147)
Spirit 8,000 (75) 2,000 (20)

the total number of log messages. A log message
is regarded as correctly grouped if and only if its
template aligns with the same set of log messages
as that of the ground truth.

Parsing accuracy (PA). PA (Dai et al., 2022)
assesses the ability to correctly extract the static
templates and dynamic variables for each log mes-
sage, which is essential for downstream tasks, such
as anomaly detection (Du et al., 2017). PA is de-
fined as the ratio of correctly parsed log messages
to the total number of log messages. A log mes-
sage is regarded as correctly parsed if and only if
all tokens of templates and variables are correctly
identified.

Edit distance (ED). ED assesses the perfor-
mance of template extraction in terms of string
comparison (Nedelkoski et al., 2020). It calculates
the minimum number of actions needed to convert
one template into another. We apply normalized
ED (Marzal and Vidal, 1993), which computes the
mean ED of all compared template pairs in the
dataset (parsed templates versus ground truth tem-
plates).

F1 score of grouping accuracy (FGA). FGA

(Jiang et al., 2023) is a template-level metric that
focuses on the proportion of correctly grouped tem-
plates rather than log messages. Specifically, let
N, be the actual correct number of templates in the
ground truth, and N, be the number of templates
that are generated by a log parser. If IV, is the
number of templates that are correctly parsed by
the log parser, we define the Precision of Grouping
Accuracy (PGA) as %—; and the Recall of Grouping

Accuracy (RGA) as % Then, we calculate FGA

as their harmonic mean, i.e., %.

F1 score of template accuracy (FTA). Similar
to FGA, FTA (Khan et al., 2022) is a template-level
metric that is calculated based on the proportion of
correctly identified templates. It is computed as the
harmonic mean of precision and recall of template
accuracy. Differently, a template is regarded as
correctly identified if and only if log messages of
the parsed template share the same ground-truth
template and all tokens of the template are the same
as those of the ground-truth template.

B.2 Log-based Anomaly Detection

Log-based anomaly detection methods are typically
evaluated with three metrics: precision, recall and
F1 score, with the following definitions:

Precision (P). The percentage of correctly de-
tected anomalous logs among all predicted anoma-
lous logs, i.e., P = %EFP.

Recall (R). The percentage of correctly detected
anomalous logs among all actual anomalous logs,

. _ TP
ie,R = TPIFN-
F1 score (F1). The harmonic mean of precision
: _ 2xXTP
and recall, i.e., F1 = SXTP+FPIFN -

True positive (TP) denotes the log is actually
anomalous and the model detects it as also anoma-
lous, false negative (FN) denotes the log is actually
anomalous, but the model incorrectly detects it as
normal, and false positive (FP) denotes log is actu-
ally normal, but the model incorrectly detects it as
anomalous.

C Details of Baseline Methods

C.1 Log Parsing

We select 4 open-source log parsers for baseline
comparison: Brain (Yu et al., 2023), DivLog (Xu
et al., 2024b), LILAC (Jiang et al., 2024), and Log-
Batcher (Xiao et al., 2024). Among these, Brain is
a syntax-based parser, while DivLog, LILAC, and
LogBatcher leverage OpenAl GPT for log parsing.

464

Brain. It leverages a bidirectional parallel tree
to complement the longest common pattern with
constant words to form complete log templates.
This hierarchical tree structure allows efficient and
accurate grouping of log entries. Initially, logs are
grouped based on the longest common pattern of
words. This pattern is treated as the root of the
tree. Subsequently, words are added to the tree in
two directions: (1) parent direction, which checks
for missing constant words with frequencies higher
than the root node, and (2) child direction, which
handles words with frequencies lower than the root
node to account for variations in log structures.
After the tree construction, Brain generates the final
log templates by combining constant and variable
nodes.

DivLog. It leverages the in-context learning
(ICL) (Dong et al., 2023) capabilities of LLMs,
particularly GPT-3 (Brown et al., 2020). It uses a
few examples within a prompt to guide the model
in generating log templates for unseen logs. This
method avoids the need for task-specific training
or handcrafted features. Before log parsing, Di-
vLog samples a small number of diverse logs from
the dataset, maximizing sample diversity to create
a labeled candidate set. During parsing, DivLog
selects the most relevant examples from the can-
didate set for each new log. These examples are
formatted into a prompt, which is then used by
GPT-3 to generate the log template. Moreover,
the prompt includes a clear instruction along with
relevant examples, helping the LLM to extract com-
mon patterns and generate accurate log templates.
To ensure output quality, the template format is re-
stricted using special locators (e.g., <START> and
<END>). To improve robustness, DivL.og uses de-
terminantal point process (DPP) (Chen et al., 2018)
for diverse log sampling and K-nearest neighbors
(KNN) for selecting the most relevant examples.
This helps avoid bias and ensures that examples are
diverse and similar to the query log.

LILAC. It leverages LLMs and an adaptive pars-
ing cache to address three challenges: the lack of
specialized log parsing capabilities in LLMs, in-
consistency in outputs, and the high computational
overhead of using LLMs for log parsing tasks. It
employs hierarchical candidate sampling algorithm
to select diverse and representative log messages
from which effective demonstration examples are
chosen. To improve efficiency and mitigate the
high computational cost of LLM inference, LILAC
introduces an adaptive parsing cache. This cache

stores previously generated log templates and al-
lows the system to reuse them for similar logs,
reducing the need for repeated LLM queries.

LogBatcher. It uses a clustering algorithm DB-
SCAN (Ester et al., 1996) to partition logs into mul-
tiple sections, ensuring that logs within the same
partition share common characteristics. It also im-
plements a caching mechanism to store parsed log
templates, which are then matched with logs in the
current partition to avoid redundant LLM queries,
improving parsing efficiency. Additionally, it pro-
poses a batching-query method, where diverse logs
are sampled from each partition and sent as a batch
to the LLMs for parsing. This approach allows
LLMs to better perform log parsing tasks by lever-
aging the diversity of input logs, even without la-
beled examples.

C.2 Log-based Anomaly Detection

We evaluate the performance of LogRules and com-
pare it with influential baseline methods, including
deep learning-based methods Deeplog (Du et al.,
2017) and LogAnomaly (Meng et al., 2019), LLM-
based methods LogPrompt (Liu et al., 2024), Log-
GPT (Qi et al., 2023) and OWL (Guo et al., 2024).
The details of these methods are as follows:

DeepLog. It focuses on learning and detecting
anomalies from log sequences. In the training stage,
an LSTM (Hochreiter and Schmidhuber, 1997) is
trained to capture the sequential patterns of nor-
mal logs. During the detection stage, the model
predicts the next log event based on the current
sequence. A sequence is classified as normal if
the predicted event matches the actual event, and
anomalous otherwise.

LogAnomaly. Similar to DeepLog, it employs
LSTM as backbone model for learning and detec-
tion from both log sequences and log parameters. It
takes into account the semantic information of logs
by Template2Vec, which also considers synonyms
and antonyms in the log text. Log key sequences
and log count vectors are as inputs, and the LSTM
is trained to perform anomaly detection.

LogPrompt. It employs ChatGPT (OpenAl,
2023) to perform online log analysis tasks via a
suite of advanced prompt strategies tailored for log
tasks, which enhances the performance of Chat-
GPT.

LogGPT. It aims to explore the transferability of
knowledge from large-scale corpora to log-based
anomaly detection by leveraging the language in-
terpretation capabilities of ChatGPT.

465

OWL. Itis an LLM trained on constructed OWL-
Instruct with a wide range of IT-related informa-
tion. Specifically, limited by the maximum input
length, the homogeneous Markov context exten-
sion (HMCE) method is proposed. The mixture-
of-adapter strategy is leveraged to improve the
parameter-efficient tuning across different domains
or tasks.

D Hyperparameter Settings for
Alignment

We use CPO to enhance the rule-based reasoning
capabilities of smaller LLMs. The hyperparameters
settings for alignment are shown in Table 8.

Table 8: The hyperparameter settings for alignment.

Hyperparameter ‘ Value
5 (Factor for CPO loss) 0.1
o (Factor for BC regularizer) | 1.0
learning_rate 2e-4
weight_decay le-3
max_grad_norm 0.3
max_length 1024
Ir_scheduler_type linear
num_train_epochs 1
warmup_ratio 0.03
per_device_train_batch_size 1
gradient_accumulation_steps 1

E Additional Results

The experimental results of GPT-40 and GPT-4o-
mini for log parsing are presented in Table 9. It
is evident that the average performance of both
GPT-40 and GPT-40-mini falls short compared to
LogRules, as detailed in Table 1.

F Prompting Details

F.1 Induction Stage

The details of prompts for log parsing and log-
based anomaly detection are shown in Figure 6 and
7, respectively.

F.2 Deduction Stage

The details of prompts for log parsing and log-
based anomaly detection are shown in Figure 8 and
Figure 9, respectively.

Moreover, we observe that LLaMA-3.1-8B-
Instruct tends to generated Python code for han-

Table 9: The performance of GPT-40 and GPT-40-mini
for log parsing (%).

GPT-40-mini GPT-40
GAt PAtT EDt | GAT PAtT ED?
HDFS 100 100 100 | 100 100 100
Hadoop 96.2 92.1 938 | 988 94 974
Spark 99.7 96.8 983 | 942 956 978
Zookeeper | 98.6 943 951 | 99.1 989 99.7
BGL 94 86.6 96.1 | 99.8 91.8 98.9
HPC 95.1 847 946|953 926 994
Thunderbird | 97.8 93 974 | 942 92.1 98.7
Windows | 71.6 83.6 942 | 96.2 872 953
Linux 854 80.7 947|953 522 927
Android 944 79.6 958|979 81 96.6
HealthApp | 92.5 869 942 | 889 89.3 96.6
Apache 100 89.1 94.1 | 100 100 100
Proxifier 522 832 955 86.1 82.6 97.1
OpenSSH | 99.6 90.8 973 | 925 935 100
OpenStack | 100 43.1 96.6 | 451 45 912
Mac 899 605 885|903 52 912
Average 91.7 84.1 954|921 842 970

dling log parsing. An example can be seen in Fig-
ure 10.

G Rules
G.1 Human-crafted Rules

The details of human-crafted rules for log parsing
are shown in Table 10.
G.2

The details of rules generated by GPT-40-mini for
log parsing and log-based anomaly detection are
shown in Table 11 and 12, respectively.

Generated Rules

466

Log parsing

System

You will be given some examples of log parsing, you need to induce some parsing rules based on
these examples. The examples are given with the format "<raw_log> — <parsed_log>". You must
output the induced rules with JSON format containing keys "task" and "rules", where "task" is
"log_parsing" and "rules" is a list of strings.

User
Given examples:
{EXAMPLES}

Figure 6: The prompt for log parsing in induction stage, with blue fonts indicating the input parts.

Log-based anomaly detection

System

You will be given some examples of log-based anomaly detection, you need to induce some
detection rules based on these examples.The examples are given with the format "<raw_log> —
<category>". You must output the induced rules with JSON format containing keys "task" and
"rules", where "task" is "anomaly_detection" and "rules" is a list of strings.

User
Given examples:
{EXAMPLES}

Figure 7: The prompt for log-based anomaly detection in induction stage, with blue fonts indicating the input part.

Table 10: Human-crafted rules for log parsing.

Rule description ‘ Example (before — after)

Replace double spaces with a single space Input:__{{variable}} — Input:_{{variable}}

Replace digit tokens with variables euid=0 — euid={{variable}}

Replace True/False with a variable cancel=false — cancel={{variable}}

Replace a path-like token with a variable /lib/tmp started — {{variable}} started

Replace a token containing both fixed and variable parts with a variable | python v{{variable}} — python {{variable}}

Replace consecutive variables as a single variable value={{variable} } { { variable}} — value={{variable}}
Replace dot separated variables as a single variable {{variable}}.{{variable}} seconds — {{variable}} seconds

Table 11: The rules generated by GPT-40-mini for log parsing.

Rank | Rule description

Replace sequences of numbers with {{variable}}

Replace IP addresses with {{variable} }

Replace host names with {{variable}}

Replace any occurrence of ’size <number>" with ’size {{variable}}’

Replace any occurrence of ’blk_<number>’ with ’{{variable}}’

Replace any sequence indicating a user with user={{variable}}’

Replace any "uid=<number>" and ’euid=<number>" with "uid={{variable}}’ and ’euid={{variable}}’ respectively
Keep the structure and text for logs that have no variable parts

Replace time indicators like *<number> s’ with ’{{variable}} s’

For statements resembling an event or action with a number, replace the number with {{variable}}

For logs indicating a connection or disconnection, replace specific addresses and ports with {{variable}}

O 001N Lt AW~

—_
—_ O

467

Log parsing

System

You will be provided with some log messages separated by line break. You must abstract variables
with {{placeholders}} to extract the corresponding template. There might be no variables in the
log message. Here are some rules you can refer to:

{RULES}

Print the input log’s template delimited by backticks.

User

Log message:

“{LOG MESSAGES}®

Log template:

System

You will be provided with some log messages separated by line break. You must abstract variables
with {{placeholders}} to extract the corresponding template. There might be no variables in the
log message.

Print the input log’s template delimited by backticks.

User

Log message:

“{CASES OF LOG MESSAGES}*
Log template:

“{CASES OF LOG TEMPLATES}*
Log message:

“{LOG MESSAGES}*

Log template:

\

Figure 8: The prompts for log parsing in deduction stage, with blue fonts indicating the input parts. Top: rule-based
prompting; Bottom: case-based prompting.

Table 12: The rules generated by GPT-40-mini for log-based anomaly detection.

Rank | Rule description

If log contains ’data storage interrupt’, then label as > Anomalous’

If log contains ’data TLB error interrupt’, then label as * Anomalous’

If log contains ’rts: kernel terminated for reason’, then label as * Anomalous’
If log contains ’ciod: failed to read message prefix’, then label as > Anomalous’
If log contains "ciod: Error reading message prefix’, then label as *Anomalous’
If log contains ’status error: status=0x00’, then label as ’ Anomalous’

If log contains ’drive not ready for command’, then label as * Anomalous’

If log contains ’system epilog failed w/rc=1’, then label as *Anomalous’

0NN AW~

468

Log-based anomaly detection

System

You will be given some rules of log-based anomaly detection with JSON format, you need to
utilize these rules to determine if the incoming logs are anomalous. You must output the results
with JSON format containing keys "task" and "category"”, where "task" is "anomaly_detection"
and "category" is "Normal" or "Anomalous".

Rules:

{RULES}

User

Given logs:

{LOG MESSAGES}

System

You will be given some cases of log-based anomaly detection with JSON format, you need to
utilize these cases to determine if the incoming logs are anomalous. You must output the results
with JSON format containing keys "task" and "category", where "task" is "anomaly_detection"
and "category" is "Normal" or "Anomalous".

Cases:

{CASES}

User
Given logs:
{LOG MESSAGES}

\

Figure 9: The prompts for log-based anomaly detection in deduction stage, with blue fonts indicating the input parts.
Top: rule-based prompting; Bottom: case-based prompting.

469

T python
import re

def extract_template(log_message):
Replace sequences of numbers with {{variable}}
log_message = re.sub(r'\d+', '{{variable}}', log_message)

Replace IP addresses with {{variable}}
log_message = re.sub(r'00[0-9a-fA-FJ1{6}', '{{variable}}', log_message)

Replace host names with {{variable}}
log_message = re.sub(r'[0-9a-fA-F1{8}', '{{variable}}', log_message)

Replace any occurrence of 'size <number>' with 'size {{variable}}'
log_message = re.sub(r'size_\d+', 'size_{{variable}}', log_message)

Replace any occurrence of 'blk_<number>' with 'blk_{{variable}}"
log_message = re.sub(r'blk_\d+', 'blk_{{variable}}', log_message)

Replace any sequence indicating a user with 'user={{variable}}'
log_message = re.sub(r'dear_[0-9a-fA-FJ]{8}"', 'user={{variable}}"',
log_message)

Replace any 'uid=<number>' and 'euid=<number>' with 'uid={{variable}}' and
'euid={{variable}}' respectively

log_message = re.sub(r'uid=\d+', 'uid={{variable}}', log_message)

log_message = re.sub(r'euid=\d+', 'euid={{variable}}', log_message)

Keep the structure and text for logs that have no variable parts
log_message = re.sub(r'\d+_s', '{{variable}}_s', log_message)

For statements resembling an event or action with a number, replace the
number with {{variable}}
log_message = re.sub(r'\d+', '{{variable}}', log_message)

For logs indicating a connection or disconnection, replace specific
addresses and ports with {{variable}}
log_message = re.sub(r'iar_[0-9a-fA-F1{8}"', 'iar_{{variable}}', log_message)

return log_message
log_message = """
iar 003a90fc dear 00b360e8
iar 003a90dc dear 00b35148
iar 003a9108 dear 00c07348
iar 003a9294 dear 00c06c48
iar 003a926c dear 00f2b078
iar 00149fc@0 dear 00739d98
iar 001061fc dear 02f6676¢C
iar 0014ale4 dear 0099e6c8
iar 003a9258 dear 0136bd38
iar 00105e94 dear 02f5883c

nnn

print(f" {extract_template(log_message)} ")

Figure 10: An example of code generated by LLaMA-3.1-8B-Instruct during log parsing.

470

