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Abstract

Instruction tuning has achieved unprecedented
success in NLP, turning large language models
into versatile chatbots. However, the increasing
variety and volume of instruction datasets de-
mand significant computational resources. To
address this, it is essential to extract a small
and highly informative subset (i.e., Coreset)
that achieves comparable performance to the
full dataset. Achieving this goal poses non-
trivial challenges: 1) data selection requires ac-
curate data representations that reflect the train-
ing samples’ quality, 2) considering the diverse
nature of instruction datasets, and 3) ensuring
the efficiency of the coreset selection algorithm
for large models. To address these challenges,
we propose Task-Agnostic Gradient Clustered
COreset Selection (TAGCOS). Specifically, we
leverage sample gradients as the data repre-
sentations, perform clustering to group simi-
lar data, and apply an efficient greedy algo-
rithm for coreset selection. Experimental re-
sults show that our algorithm, selecting only
5% of the data, surpasses other unsupervised
methods and achieves performance close to that
of the full dataset.

1 Introduction

Instruction tuning (Wei et al., 2022a; Ouyang et al.,
2022) is the most important strategy for customiz-
ing Large Language Models (LLMs) for down-
stream tasks, which allows them to precisely under-
stand human intentions and accurately generate re-
sponses in natural languages. Recently, many exist-
ing works (Wang et al., 2023a) expand the amount
and diversity of instructions for instruction tuning
to further enhance the LLM’s capability. However,
the increased quantity of the dataset also leads to
significantly higher computational costs for instruc-
tion tuning. Meanwhile, Zhou et al. (2023) revealed
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Hyper Parameter Items Full (100%) Data Selected (5%) Data

4 Learning Rate Options:
2e-5, 1e-4, 1e-5, 2e-4 322h 15.2h

4 Batch Size Options:
16, 32, 64, 128 315.3h 14.9h

4 Training Epochs Options:
1, 2, 3, 4 193.7h 9.2h

4 Max Lengths Options:
512, 768, 1024, 2048 248h 12.1h

4 Templates Options:
User, ###Human, Question,

[INST]
322h 15.2h

Selection Cost - 231.1h

Total 1401h 297.7h (-1103.3h)

Evaluation Performance 49.58 48.35

Table 1: We provide a time cost comparison for the
hyper parameter optimization experiments we actually
conducted (using 4 A100-80G GPUs) on the full dataset
(100%) and the selected subset (5%). The one-time ef-
fort of data selection can be utilized for multiple training
runs across various requirements.

that only 1,000 high-quality, human-created data
samples could substantially improve the ability of
LLMs to follow instructions, which suggests that
there exists severe redundancy in current instruc-
tion datasets, and only a high-quality subset may
suffice for achieving promising performance.

To address the above issue, selecting a small,
highly informative subset (i.e., coreset) of training
samples from the original dataset is a promising so-
lution. As shown in table 1, this approach ensures
that training on the coreset achieves performance
comparable to the full dataset while significantly
reducing iteration costs. However, coreset selec-
tion is challenging as it must not only consider the
quality of individual samples, but also their im-
portance within the entire subset. For example, if
two high-quality samples are very similar, selecting
only one may be sufficient. This global perspective
on sample importance is crucial for the quality of
the selected subset.

Current methods for coreset selection can be
categorized into two main types: 1) Heuristic-
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based approaches (Marion et al., 2023; Li et al.,
2023; Chen et al., 2023b; Lu et al., 2023), and
2) Optimization-based approaches (Borsos et al.,
2020; Zhou et al., 2022; Gao et al., 2023; Zhou
et al., 2022). Heuristic-based methods use various
heuristic scores to measure sample quality. For
example, some assess data sample quality by rank-
ing their corresponding perplexity score (Marion
et al., 2023), while others score each sample us-
ing a powerful LLM (Chen et al., 2023b). These
methods often rely on arbitrary heuristics that may
not accurately evaluate sample quality and lack a
comprehensive view of sample importance within
the entire dataset, resulting in suboptimal perfor-
mance. Optimization-based methods, on the other
hand, typically frame the task as a bi-level opti-
mization problem, requiring repeated optimization
of both inner and outer loops. This approach incurs
prohibitive costs, especially in the context of large
language models (LLMs) that contain billions of
parameters. Therefore, a coreset selection method
that is applicable for LLMs is yet to be proposed.

In this paper, to address the above issues, we pro-
pose Task-Agnostic Gradient Clustered COreset
Selection (TAGCOS), a coreset selection frame-
work designed for LLM that is agnostic of its down-
stream tasks. Firstly, we use LLM’s gradients as
representation for each sample. Compared with
representations based on model outputs, gradients
effectively captures the information of how each
sample affects the optimization direction of the
LLM, which is the root cause of the model’s final
performance. Secondly, to perform coreset selec-
tion under a global view of the entire dataset, we
show that coreset selection can be naturally formu-
lated into a Submodular Function Maximization
(SFM) problem. Then, noting that SFM is NP-hard
(Bach et al., 2013) and naive solvers would be im-
practical when the dataset size is large, potentially
leads to inferior solutions. This urges the develop-
ment of efficient approximate optimizer, which is
one of the main contributions of this work.

To be precise, we perform clustering on the gradi-
ent features over the dataset to decompose the SFM
problem into several small-scaled subproblems to
reduce the optimization difficulty. Lastly, we ap-
proximately solve each SFM subproblems via an
efficient greedy approach named optimal matching
pursuit (OMP) algorithm to perform coreset selec-
tion independently in each cluster in a fine-grained
manner. This ensures a comprehensive coverage
of the selected subset. Our theoretical analysis

demonstrates that compared with the methods with-
out our gradient clustering strategy, our method
can achieve the comparable accuracy with a signif-
icantly smaller sized coreset.

In our experiment, we assessed the effectiveness
of our method by selecting data from a combina-
tion of 17 popular instruction datasets (Wang et al.,
2023a; Ivison et al., 2023), with a total of approxi-
mately 1 million data examples. By unsupervisedly
selecting 5% of the original datasets, we obtained
great performance on a range of evaluation bench-
marks. Additionally, we confirmed the generaliza-
tion of our method by applying the selected subset
to various models.

Our main contributions are as follows:

• We verified that gradient features can serve as
a good data representation that captures the
essential information to measure the quality
of instruction data.

• We propose Task-Agnostic Gradient Clustered
Coreset Selection (TAGCOS), a coreset se-
lection framework designed for LLM that is
agnostic of its downstream tasks.

• Our experiment was conducted in a realis-
tic setting, featuring 18 popular instruction
datasets that include 1 million varied instruc-
tion data points. The practical results con-
vincingly demonstrate the effectiveness of the
entire pipeline.

2 Related Work

Instruction Tuning Data. Instruction tun-
ing (Ouyang et al., 2022) has achieved unprece-
dented success in NLP, turning large language mod-
els into versatile chatbots (Chiang et al., 2023;
Taori et al., 2023). Successful instruction tuning
requires a powerful pre-trained base model as well
as high-quality instruction datasets. For the pow-
erful pre-trained base model, one usually selects a
pre-trained LLM with more data and having more
parameters, like Mistral (Jiang et al., 2023), Llama
family models (Touvron et al., 2023). For high-
quality instruction datasets part, it is expected that
high-quality datasets are diverse and representative
enough to adapt the LLM to potential downstream
usage. With the development of instruction tuning,
there are more and more instruction datasets. Usu-
ally, these datasets are either annotated by human
or proprietary LLMs. Currently, instruction data

4687



generally contains these types: (1) datasets are cre-
ated by researchers from existing NLP dataset and
incorporate an instruction for existing input-output
pairs, like Flan (Longpre et al., 2023; Wei et al.,
2022a), SuperNI (Wang et al., 2022), CoT (Wei
et al., 2022b) and Orca (Mukherjee et al., 2023).
(2) open-end text generation, e.g., multi-turn dia-
logue and instruction following. Several open-end
text generation datasets are created by human, like
Dolly (Databricks, 2023) and Oasst1 (Köpf et al.,
2023). Others are generated by proprietary models
or human interaction with these models, like Self-
instruct (Wang et al., 2023b), Alpaca (Taori et al.,
2023), Sharegpt (Chiang et al., 2023), Baize (Xu
et al., 2023), GPT4-Alpaca (Peng et al., 2023) and
Unnatural Instructions (Honovich et al., 2023). (3)
instructions build for domain-specific skills, like
Code-Alpaca (Chaudhary, 2023) for code comple-
tion. Given such a diverse collection of instruction
dataset, the challenge for instruction tuning lies
in ensuring the quality of these instructional data
samples. Zhou et al. (2023) revealed that only sev-
eral high-quality data samples could substantially
improve the instruction tuning results. Thus, in this
work, we aim to explore an automatic and unsuper-
vised data selection technique to obtain the coreset
for these instruction datasets.

LLM Data Selection. Since training LLM still
request a lot of resources, data selection is often
used for implementing efficient training. Also, sev-
eral works (Zhou et al., 2023; Gunasekar et al.,
2023) stress the importance of high-quality data
and thus triggered more research works focus on
data selection. One popular way to select data sam-
ples this is to use an extra LLM to evaluate data
samples. Chen et al. (2023b); Lu et al. (2023) calls
ChatGPT API to tag or evaluate the quality of the
instruction data. Also, several works (Du et al.,
2023; Bukharin and Zhao, 2023; Dong et al., 2023)
make use of a reward model to assess the data qual-
ity. Wettig et al. (2024); Liu et al. (2024) intends
to distill the preference of proprietary LLMs to
small models for implementing efficient scalable
data selection. This line of data selection methods
is very expensive and suffers from interpretabil-
ity. Another line of works focuses on using signals
from the model itself to facilitate data evaluation
and selection. Marion et al. (2023); Li et al. (2024)
make use of perplexity or its variants to determine
if a data sample is good or not. Xia et al. (2024);
Pan et al. (2024) use the gradients and influence
function to find the data sample that best matches

Algorithm 1 Coreset Selection
Require: A pretrained LLM θ, instruction tuning dataset

D = {zi | zi = (si, ci)}Ni=1, target subset size M ,
training loss ℓ, gradient matching error function Err(·).

1: θ ← FineTune(D, θ) # Warm up fine-tune with LoRA
2: G ← ∅
3: for each zi ∈ D do
4: gi ← ∇θℓ(z; θ) # Calculate Sample Gradient
5: G ← G ∪ {gi}
6: end for
7: {Ck}Kk=1, {µk}Kk=1 ← K-means(G,K) # Derive

clusters and their centroids with K-means
8: CoreSet← ∅
9: for each cluster Ck with centroid µk do

10: rk ← |Ck|
|D| ×M # Derive subset size in kth cluster

11: Csubk , w ← OMP(Ck, rk,Err(·)) # Derive the subset
from kth cluster

12: CoreSet← CoreSet ∪ Csubk

13: end for
14: Output: CoreSet

the validation set for downstream tasks evaluation.
Li et al. (2023); Cao et al. (2023) develops their
own evaluation metric for assessing data samples.
Zhao et al. (2024) selects (instruction, response)
pairs whose response is long. Mekala et al. (2024)
selects samples based on learning order. Compared
to existing data selection approaches, our work fo-
cuses on selecting influential instruction data in a
task-agnostic manner by utilizing LLM gradients
on the dataset itself. Our method does not require a
validation set and can be applied more broadly for
data selection.

3 Method

To tackle the challenging coreset selection problem
for LLM’s instruction tuning dataset, we propose
Task-Agnostic Gradient Clustered Coreset Selec-
tion (TAGCOS), a task-agnostic coreset selection
approach that effectively and efficiently discovers
the informative subset from a large instruction tun-
ing dataset.

Notation. Assume we have a pretrained LLM
θ and a giant and diverse instruction dataset D :=
{(s, c)(i)}Ni=1, where each data sample z = (s, c)
comprises an instruction s and a completion c. For
each data sample, the loss ℓ(z; θ) is defined as the
cross entropy between the prediction distribution
p(· | s) and the ground truth text response c. Since
c often contains multiple tokens, ℓ(z; θ) is calcu-
lated as the average of the token-wise cross entropy
loss across the completion c. The notation θt refers
to the model checkpoint at step t.

Problem Formulation. We first formulate the
task into a gradient matching problem, i.e., the av-
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Figure 1: Illustration of the proposed TAGCOS pipeline. Our framework consists of three stages: 1) Gradient
feature computation, which efficiently derive sample-wise gradients to use as data representation; 2) Gradient-based
Clustering, which groups data with high similarity into the same groups; 3) Coreset selection via OMP, which
efficiently selects the coresets from each cluster separately in a greedy manner.

erage gradient of the selected subset should approx-
imate the gradient of the entire dataset. Intuitively,
if the gradient is similar throughout all the train-
ing steps, the resulting model parameter should be
closed to the model trained with the entire dataset.

Formally, given a giant and diverse dataset D,
our goal is to select a subset Dsub ⊆ D (|Dsub| <
|D|) containing the most informative training sam-
ples. We expect that the gradients produced by
the full training dataset

∑
z∈D∇θℓ(z; θ) can be

replaced by the gradients produced by a subset∑
z∈Dsub

∇θℓ(z; θ) with minimal difference:

min
w,Dsub

Err
(
∇θL(D; θ),

1

∥w∥1
∑

z∈Dsub

wz∇θℓ(z; θ)
)

s.t. Dsub ⊆ D, wz ≥ 0, |Dsub| ≤M
(1)

where L(D; θ) = 1
|D|

∑
z∈D∇θℓ(z; θ), w is the

subset weight vector, ∥w∥1 is the sum of the ab-
solute values and Err(·, ·) measures the distance
between two gradients. Note that w could be ei-
ther varibales, which leads to weighted training on
the selected subset, or with discrete values, which
reduces to regular training on the coreset.

Issues and Solution. However, due to the high di-
versity of the large-scale instruction tuning dataset,
simply conducting selection over the entire dataset
potentially causes over-sampling in certain do-
mains and under-sampling in others. To address
this, we introduce clustering to ensure balanced
sampling. By splitting the dataset into clusters and
selecting samples from each cluster, we ensure a
more even distribution across different domains.

Overall, as illustrated in algorithm 1, the process
for coreset construction could be summarized as

follows:

1. Compute the gradient features G = {gi |
gi = ∇θℓ(z; θ)}Ni=1. It is worth noting that
the “graident” here actually refers to the first-
order approximation of training dynamics,
which is actually a little different from gradi-
ent itself. For briefness, we term this the first-
order approximation as gradient here. More
exactly, we compute the low-dimensional ap-
proximations of gradient features for each
data samples z over the whole dataset D;

2. Perform gradient-based clustering, we per-
form k-means clustering (Hartigan and Wong,
1979) given the gradients features and get k
clusters and corresponding centroids ce for
each cluster, which effectively gathers the
samples with similar characteristics into one
cluster;

3. Coreset selection via Optimal Matching
Pursuit, we compute the data samples
matches best with the centroids in each clus-
ter with an orthogonal matching pursuit algo-
rithm (Killamsetty et al., 2021).

3.1 Gradient Features Computation

We perform an efficient gradient feature approxima-
tion computation over the entire dataset. To speed
up gradient computation, LoRA (Hu et al., 2022)
and random projections (Park et al., 2023) are used
to reduce the dimensions in gradient features.

Adam Gradient Computation Function. The
gradients and training dynamics are computed
based on Adam optimizer Kingma and Ba (2015) :
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θt+1 − θt = −ηtgi(z, θt) (2)

gi(z, θ
t) ≜ mt+1

√
vt+1 + ϵ

(3)

mt+1 =
(
β1m

t + (1− β1)∇ℓ(z; θt)
)
/(1− βt

1)
(4)

vt+1 =
(
β2v

t + (1− β2)(∇ℓ(z; θt))2
)
/(1− βt

2)
(5)

where β1 and β2 are hyperparameters, and ϵ is a
small constant. gi(z, θt) represents the first-order
expansion for the Adam dynamics, requiring model
gradients and optimizer states from the training pro-
cess. Warmup training on a subset of the dataset
provides the necessary checkpoints for these com-
putations. As mentioned above, we will sample
checkpoints before convergence to provide a more
accurate gradient estimation.

Warmup Training and Projection. LoRA (Hu
et al., 2022) is used to reduce the number of train-
able parameters and accelerate the inner products
in gi(z, θ

t). LoRA freezes the pre-trained weights
and adds a low-rank adaptor to the selected fully
connected layers. We use LoRA to perform in-
struction tuning on pre-trained base model (e.g.,
LLAMA-2-7B) on a random subset Dwarmup ⊆ D
for N epochs, checkpointing the model after each
epoch to store {θi}Ni=1. The gradient when training
with LoRA, denoted ∇̂ℓ(·; θ) ∈ RP , is much lower
dimensional than the model itself; for example, in
LLAMA-2-7B, ∇̂ℓ(·; θ) is less than 2% the size of
θ. We use ∇̂ℓ(·; θ) to compute the Adam update
and denote it as ĝi(·, θ).

In order to further accelerate the computation, a
random projection, Rademacher distribution (John-
son, 1984) (i.e., Πij ∼ U({−1, 1})), is introduced
to further reducing the feature dimension. In total,
we compute gradient features for each data sample
z with g̃i(z, ·) = Π⊤ĝi(z, ·).

3.2 Gradient-based Clustering
Due to the diversity of instruction tuning dataset,
direct sampling over the entire dataset may not
cover all the regions, since the training samples
from each domain are not evenly distributed. To
further improve the effectiveness and robustness of
data selection, we divide the entire dataset into sev-
eral clusters and then perform gradient matching
algorithm on each cluster itself. With the gradi-
ent features gi from the above step, we conduct
K-means clustering on them to assign each data

sample into a cluster {Ck}Kk=1. Also, we can obtain
cluster centroids {µk}Kk=1 of these clusters during
the clustering process, where each centroid shares
the dimension with gradient features.

3.3 Coreset Selection via Optimal Matching
Pursuit

In each cluster, we hope to get the subset that min-
imizes the difference between the selected subset
and the whole cluster. Instead of doing heuristic
selection like selecting all the instances with short-
est distance with cluster centroids, we formalize
this as an optimization problem and introduce an
orthogonal matching pursuit (OMP) algorithm (Kil-
lamsetty et al., 2021; Elenberg et al., 2016) to solve
it. Similar with equation 1, our objective is to mini-
mize the difference between selected Dk

sub in k-th
cluster and the whole cluster Dk,

Err(wk, Dk
sub;D

k) ≜∥∥∥∥∥∥
∑

z∈Dk
sub

wk
z ∇̂θℓ(z; θ)−

1

|Dk|
∑

z∈Dk

∇̂θℓ(z; θ)

∥∥∥∥∥∥
(6)

Considering the regularization coefficient λ, we
can have Errλ(w, Dk

sub;D
k) as:

Errλ(w, Dk
sub;D

k) ≜Err(w, Dk
sub, D

k) (7)

+ λ ∥w∥2 .

Here, we approximately regard the centroids of
each cluster as the average gradients of the whole
cluster,

1

|Dk|
∑

z∈Dk

∇θℓ(z; θ) = cek. (8)

We next study the optimization algorithm for
solving equation 6. Our goal is to minimize
Errλ(w, Dk

sub;D
k) subject to the constraint Dk

sub :
|Dk

sub| < dk. We can convert this into maximiza-
tion problem over the set Dk

sub , i.e.,

max
Dk

sub

Fλ(D
k
sub;D

k), (P-k)

s.t., |Dk
sub| ≤ dk and Dk

sub ⊆ Dk,

Here the objective Fλ(D
k
sub;D

k) is defined as

Fλ(D
k
sub;D

k) ≜ Lk
max −min

w
Errλ(w, Dk

sub;D
k),

where Lk
max is a constant to make the objective

non-negative. Note that we minimize Errλ(Dk
sub)
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subject to the constraint Dk
sub : |Dk

sub| < dk until
Errλ(Dk

sub) < ϵ, where ϵ is the tolerance level and
tk is the target num of samples in the selected sub-
set. Note that minimizing Errλ(Dk

sub) is equivalent
to maximizing Fλ(D

k
sub). Given this, we use OMP

to solve this optimization problem, details of OMP
are presented in Algorithm 2.

Algorithm 2 OMP
Require: full dataset D, Target subset size M , er-

ror function Err(·)
Dsub ← ∅
r ← ∇wErrλ(w, Dsub;D)

∣∣
w=0

while |Dsub| ≤ M and Errλ(w, Dsub;D) ≥ ϵ
do
e = argmaxj |rj |
Dsub ← Dsub ∪ {e}
w← argminw Errλ(w, Dsub;D)
r ← ∇wErrλ(w, Dsub;D)

end while
return Dsub,w

In each cluster k, we select data samples that
can minimize Errλ(Dk

sub) with the above-described
OMP algorithm. After finishing the selection on
each cluster, we combine the selected subset Dk

sub

to be Dsub and use it to train the target model.

4 Theoretical Analysis

In this section, we analyse the benefits of our gra-
dient clustering in coreset selection. The general
conclusion is that coreset selection problem for-
mulated in Problem (P) is essentially a Submodu-
lar Function Maximization (SFM) problem (Bach
et al., 2013), which is NP-hard. Solving large-
scaled SFM problems is extremely challenging, po-
tentially leads to inferior solution. For the discus-
sion about the assumpation here, one may refer to
appendix B. Our gradient clustering strategy natu-
rally decomposes the original problem into several
small scaled problems, significantly reduces the
difficulty in optimization, making finding solutions
with high-precision possible. The detailed results
are presented in the following theorems. These
theorems are adapted from the classical analysis
on OMP, which can be found in the studies (Elen-
berg et al., 2018; Wolsey, 1982). We adopt them to
understand the superiority of our coreset selection
approach.

To unify the problems of coreset selection with
and without clustering, we extend the problem (P-

k) as follows:

max
Dsub

Fλ(Dsub;D), (P)

s.t., |Dsub| ≤M and Dsub ⊆ D,

where Dsub and D are the coreset and the full
dataset, respectively. c is the constant to control the
coreset size.

Lemma 1 If the coreset size |Dsub| ≤ c and
maxz∈D ∥∇θℓ(z; θ)∥2 ≤ G, then Fλ(Dsub;D) is
γD-weakly submodular with γD = λ

λ+MG2 .

Theorem 1 If maxz∈D ∥∇θℓ(z; θ)∥2 ≤ G and
maxz∈Dk ∥∇θℓ(z; θ)∥2 ≤ Gk for cluster k. Let
D∗

sub and Dk∗
sub be the optima of Problems P and

P − k, with k = 1, . . . ,K. Then, the followings
hold:

(i) For problem (P), OPM runs with stopping cri-
teria Fλ(Dsub;D) ≤ ϵ achieves set Dsub with
|Dsub| ≤ |D∗

sub|
γD

log(Lmax
ϵ ).

(ii) For problem (P-k), OPM runs with stopping
critia Fλ(D

k
sub;D

k) ≤ ϵk achieves set Dk
sub

with |Dk
sub| ≤

|Dk∗
sub|

γ
Dk

log(L
k
max
ϵk

).

Since γD = λ
λ+MG2 and γDk = λ

λ+dkG
2
k

with

M =
∑K

k=1 dk, it can be expected that γD ≪ γDk .
Noting that a proper clustering method would make
D∗

sub ≈ ∪Kk=1D
k∗
sub and it is reasnonable to set

Lk
max
ϵk
≈ Lmax

ϵ to ensure comparable precisions.
Thus the above theorem demonstrates that

K∑

k=1

|Dk∗
sub|

γDk

log(
Lk
max

ϵk
)≪ |D

∗
sub|
γD

log(
Lmax

ϵ
).

That is, to achieve comparable accuracy, the union
of the coreset selected from each cluster can be
much smaller than that from the whole datasets,
which verifies the benefits of gradient clustering.
This is also consistent with our experimental ob-
servation. i.e., the running time of OMP without
gradient clustering is significantly longer than that
with gradient clustering.

5 Experiment

In this section, we conduct experiments to answer
the following research questions:

• Does TAGCOS achieve superior performance
over other unsupervised selection methods?
(Table 2, Table 3)
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TydiQA MMLU BBH average
Uniform 52.08 46.9 41.39 46.79
Hardest 51.58 45.68 38.15 45.13
Perplexity 51.66 46.89 40.74 46.43
K-Center 38.83 48.73 41.48 43.01
OMP 53.64 46.10 40.47 46.82
TAGCOS 52.78 +0.7 48.01 +1.11 44.26 +2.87 48.35 +1.65

Table 2: Evaluations used TydiQA, MMLU, and BBH benchmarks. Results reflect Llama-2 7B models trained on
5% of data selected by each method. Note that we tested K-Center and OMP data selection methods with gradient
embedding on 17 instruction datasets.

• How effective is the generalization of TAG-
COS, and can it be transferred to different
models? (Table 4)

• What is the best configuration for TAGCOS,
including the selection proportion, the num-
ber of clusters, and the selection of gradient
checkpoints? (Table 5, Table 6, Table 7)

5.1 Setup
To illustrate that TAGCOS is task agnostic, we
chose diverse tasks for both training and evalua-
tion. For the training set, we combined 17 popular
instruction datasets totaling 1,068,549 examples,
following Wang et al. (2023a); Ivison et al. (2023).
These datasets vary in format and reasoning tasks,
with annotations by humans or the OpenAI API.
For details, please refer to Appendix G.

For evaluation, we selected TydiQA (Clark
et al., 2020), MMLU (Hendrycks et al., 2020), and
BBH (Suzgun et al., 2022). For the Implementation
Details, please refer to appendix A.

5.2 Experimental Results
Baseline. The main experiment results are pre-
sented in Table 2. Several baselines were consid-
ered for comparison: (1) Uniform: randomly se-
lecting the data samples from the original dataset.
(2) Hardest Sampling: select the data samples
with the highest perplexity. (3) Perplexity Sam-
pling (Marion et al., 2023; Marcus et al., 1993):
select the data samples with the lowest perplexity.
(4) K-Center-Greedy with different representa-
tions (Chen et al., 2023a): converting instruction
data into gradient embedding vectors, performing
K-means clustering, and selecting samples by it-
eratively choosing the one closest to the cluster
center among the remaining instances. For details
about other clustering methods, we include them
in the appendix 11. (5) OMP (Killamsetty et al.,

2021): using the OMP algorithm over the entire
dataset, with the mean gradient feature across the
dataset as the matching target.

Main Experiments. As shown in Table 2, TAG-
COS achieves the best performance across all tasks,
confirming its effectiveness in data selection for
instruction tuning. TAGCOS is the only base-
line that consistently performs well. Although
K-CenterGrad excels on the MMLU benchmark,
it fails on TydiQA and is equivalent to uniform
sampling on BBH, underscoring TAGCOS’s ro-
bustness.

Effectiveness of each Component in TAG-
COS. The key difference between TAGCOS and
Grad+K-Center lies in their selection mechanisms.
While K-means clustering on gradient features can
achieve strong results on individual benchmarks, it
is insufficient for consistent overall performance.
This further demonstrates the effectiveness of the
OMP coreset selection algorithm. Compared to
OMP, which does not use clustering, TAGCOS de-
livers better results. This reinforces our perspective
that clustering is essential for managing the diver-
sity in instruction datasets.

TydiQA MMLU BBH average
Uniform 52.08 46.9 41.39 46.79
K-Center

BERT 50.05 47.16 39.91 45.7
Llama 52.72 46.07 39.07 45.95
Grad 38.83 48.73 41.48 43.01

K-Center+OMP
BERT 52.21 45.65 42.95 46.93
Llama 52.01 46.04 44.26 46.08
Grad 52.78 48.01 44.26 48.35

Table 3: We compare the selection results of clustering
and optimal matching pursuit methods across various
embedding spaces. All outcomes are based on 5% of
the data samples chosen by the respective methods and
trained using Llama-2 7B models.
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Gradient Features vs. Other Embeddings. As
shown in table 3, we evaluated the K-Center al-
gorithm with various data representation schemes,
including BERT, Llama, and Gradient. In the ab-
sence of a selection mechanism, gradient features
exhibits great improvement over MMLU and BBH
while dropping a lot on TydiQA. We attribute the
multilingual features to TydiQA which evaluates
some low-resource languages performance. As
shown in appendix C, we can learn that K-center
with gradient overfits to English. We argue that
the reason is OMP considers the entire cluster dis-
tribution to find a representative subset, whereas
K-center focuses on sample-centroid distances.

5.3 Ablation Study and Analysis

Performance of TAGCOS on Different Models.
Table 4 demonstrates that the dataset generated by
the Llama-2-7B model can be effectively utilized
to train a superior Mistral-7B and Llama-3-8B in-
struction models. By leveraging the datasets se-
lected by TAGCOS on the Llama-2-7B model, the
trained Mistral-7B and Llama-3-8B models show
significant improvements over uniform selection
methods, consistently outperforming their counter-
parts. This highlights TAGCOS’s ability to identify
transferrable and valuable data samples, indicating
its potential for future proxy data selection tasks.

TydiQA MMLU BBH Average
Llama-2 7B

Uniform 52.08 46.9 41.39 46.79
TAGCOS 52.78 48.01 44.26 48.35

Mistral 7B
Uniform 57.59 61.34 56.48 58.47
TAGCOS 61.49 61.79 57.87 60.38

Llama-3 8B
Uniform 67.96 64.56 64.63 66.30
TAGCOS 69.20 65.18 65.93 67.57

Table 4: Experiments showing the impact of transferring
TAGCOS-selected datasets from Llama-2 7B to Mistral-
7B. Consistent improvement on TydiQA, MMLU, and
BBH benchmarks demonstrate the transferability.

5% data can achieve comparable results with
full dataset. Our method is not specifically opti-
mized for selecting 5% of the data. It is designed
to work with any percentage of data selection. The
results shown in Table 5 verify that our method
consistently maintains high performance across dif-
ferent selection ratios. As shown in Table 5, which
involves a set of 17 datasets forming an instruction

dataset collection, we empirically observed that
selecting 5% of the data already achieves strong
performance. Thus, we used this percentage to
compare the performance of different methods.

Also, Table 5 reveals that training with only 5%
of the data selected by TAGCOS results in per-
formance comparable to that of the entire dataset.
This can be attributed to the presence of noisy sam-
ples in the full dataset, which are less effective for
fine-tuning.

prop TydiQA MMLU BBH Average
5% 52.78 48.01 44.26 48.35
20% 51.76 48.87 42.95 47.86
25% 52.13 49.95 43.33 48.47
100% 51.44 52.96 44.35 49.58

Table 5: Results of experiments with different selection
proportions using the Llama-2 7B model.

How to determine the cluster numbers. Ta-
ble 6 shows that the ideal cluster number for our
setup is 100. Fewer clusters, especially less than
the original dataset size of 18, fail to achieve good
results. Additionally, merely increasing the number
of clusters does not ensure improved performance.
TAGCOS tends to degrade to plain OMP as the
number of clusters increases. When the cluster
count matches the number of samples, the perfor-
mance is identical to plain OMP. For more detailed
results for cluster numbers, please refer to 12.

# Cluster TydiQA MMLU BBH Average
10 54.04 47.71 40.00 47.25
20 52.58 45.76 41.11 46.48
50 54.84 47.09 42.96 48.30
100 52.78 48.01 44.26 48.35
200 52.57 46.87 42.87 47.44

Table 6: Experimental results show the results on select-
ing different numbers of clusters.

Selecting early stopped checkpoints for com-
puting gradients. In Table 7, “Checkpoints with
significant loss reduction” means all the warmup
checkpoint used for computing gradient features
comes from the steps before convergence. “Evenly
spaced checkpoints” represents that these check-
points are sampled across the entire training pro-
cess evenly. We argue that “early-selecting”, i.e.,
sample checkpoints from steps before convergence,
works better since the gradients before convergence
provide more effective reactions for data samples
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for training. The results in this table also support
this idea. In total, it is better to have a warmup
checkpoint sampled from steps before convergence
to get better results on TAGCOS.

Selected Steps TydiQA MMLU BBH Average
Checkpoints with significant loss reduction

1,10,20,30 52.78 48.01 44.26 48.35
1,5,10,20 53.36 47.74 42.15 47.75
1,5,10,15 53.29 47.08 43.26 47.84

Evenly spaced checkpoints
1,8348, 16696, 25044 53.14 47.16 39.54 46.61

Table 7: In the study of warmup checkpoint selection,
minimal loss reduction is observed after step 40 out of
a total of 33,392 steps. Notably, each step processes a
batch size of 32.

6 Conclusion

This paper focuses on the effective selection of
coresets for LLMs in instruction tuning. We uti-
lize gradient features to act as data representations,
which indicate the influence of each data sample
on the training process. Additionally, to handle
diverse collections of instruction data and ensure
selection efficiency, we propose clustering similar
data and applying an efficient greedy algorithm for
selection. Our experimental results demonstrate
the effectiveness of the entire pipeline.

7 Limitation

Despite its impressive performance, TAGCOS is
bottlenecked by gradient feature estimation. The
gradient feature computation stage limits its scal-
ability to larger datasets. To effectively run TAG-
COS on extensive datasets, improvements in the
efficiency of gradient computation are needed.
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A Implementation Details

In this work, we performed warmup training on a
randomly selected 5% of the dataset for 4 epochs
and computed 8192-dimensional gradient features
on the full dataset D. The learning rate for warmup
training was set to 2e-5, with a batch size of 32.
Using these gradient features, we selected 5% of
the original dataset using our selection methods,
totaling approximately 53,427 samples. We used
100 clusters for K-means clustering and set the
OMP algorithm tolerance at 0.01. After obtaining
the subset, we fine-tuned the Llama-2-7B (Touvron
et al., 2023) and Mistral-7B (Jiang et al., 2023)
models using LoRA (Hu et al., 2022) to reduce
memory usage. For LoRA training, we used the
AdamW optimizer with a learning rate of 2e-5 and
4 epochs. The context length was set to 1,024, with
a batch size of 32.

B Assumpation about the Selected
Optimal Subset

Actually, our result can hold with a weaker assump-
tion. To be precise, from the definition of γD and
γDk , when the problems P − k are not too un-
balanced, it can be expected that γD ≤ γDk/κγ
with a large number κγ > 0. As problem P

is decomposed into the subproblems by cluster-
ing, it is natural to assume that the optimal solu-
tion Dk∗

sub do not have significant overlap, that is∑K
k=1 |Dk∗

sub| ≤ κD|D∗
sub| with 1 ≤ κD ≪ κγ .

Thus, letting Lk
max
ϵk
≈ Lmax

ϵ , we have

K∑

k=1

|Dk∗
sub|

γDk

log(
Lk
max

ϵk
)

≤ 1

κγγD
log(

Lmax

ϵ
)

K∑

k=1

|Dk∗
sub|

≤κD|D∗
sub|

κγγD
log(

Lmax

ϵ
)

≪|D
∗
sub|
γD

log(
Lmax

ϵ
).

Table 8 are some empirical results about quality
and speed differences with and without clustering.
The results show that clustering improves quality
with minimal added time.

Method TydiQA MMLU BBH Average Time
without Clustering 53.64 46.10 40.47 46.82 -
with Clustering 52.78 48.01 44.26 48.35 +1.2h

Table 8: Comparison of Methods with and without Clus-
tering

C Language Overfitting of
K-Center_grad

Language BERT Llama Grad
Bengali 24.7 30.0 23.8
English 66.5 66.5 71.5
Korean 80.5 78.5 78.0

Table 9: Details of several language results for K-
Center_BERT, K-Center_Llama and K-Center_Grad.

We argue that the reason that K-Center_grad
significantly deteriorates only for TydiQA is that
K-center_grad overfit to English. As shown in
table 9, OMP considers the entire cluster distri-
bution to find a representative subset, whereas K-
center focuses on sample-centroid distances. Here
is the statistic of recall in English and several lan-
guages for K-Center_BERT, K-Center_Llama and
K-Center_Grad.

D Detailed Hidden Time Cost of
TAGCOS

Table 10 shows that the gradient feature computa-
tion stage is the most time-consuming, highlighting
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Task Time

Warmup Training 80.5h
Gradient Feature Computation 144.8h
Gradient-based Clustering 1.2h
Coreset Selection via OMP 0.8h
Selected Subset Training 3.8h

Total 231.1h

Table 10: TAGCOS detailed time summary.

the need for future optimization.

E Clustering Exploration

Other cluster methods. We tried several clus-
tering methods different from K-means like DB-
SCAN, Agglomerative clustering, BIRCH and
Ward hierarchical clustering here 11. We find that
they can not achieve convergence and failed to give
clustering results. We suggest that the reason is
that these other clustering methods are not suitable
for this extremely large dataset (with > 1,000,000
examples).

Method TydiQA MMLU BBH Average Convergence
minibatch k-means 53.63 46.2 41.48 47.1 True
Agglomerative - - - - False
BIRCH - - - - False
Ward Hierarchical - - - - False
DBSCAN - - - - False

Table 11: Clustering Method Performance and Conver-
gence

Number of Clusters. As shown in table 12, the
cluster number lies in [50,100] can all provide great
results, which proves that the effectiveness of the
proposed method is robust to choices of # of clus-
ters.

#Cluster TydiQA MMLU BBH Average
50 54.84 47.09 42.96 48.30
60 54.56 47.46 42.22 48.08
70 53.19 47.78 43.56 48.18
80 54.21 47.00 43.06 48.09
90 53.05 47.45 44.01 48.17
100 52.78 48.01 44.26 48.35

Table 12: Performance Metrics Across Different Clus-
ters

OMP selected data samples in each cluster. Ta-
ble 13, Table 14 and Table 15, show the detailed

distribution of how the selected examples fall into
different clusters.

F OMP further exploration

OMP is different with different embedding
spaces. As shown in table 16, it is worth noting
that Llama+Cluster+OMP costs much more time
on OMP, which reflects that Llama embedding is
not very well on telling different data examples
apart.

OMP with Clustering showing differences. Ac-
cording to our formulation, this coreset selection
problem is a submodular function maximization
problem. As referenced in [1], it is an NP-hard
problem, typically requiring polynomial-time ap-
proximation algorithms like local search, which
aligns with our approach here.

we have compiled statistics for the OMP selec-
tion results (OMP Selected Data) on the full dataset
and its intersection with cluster results in table 17.
To better illustrate how the selected examples are
distributed across different clusters, we include a
baseline with the same 53,427 samples, artificially
evenly distributed among the 10 categories with
the largest data volumes (reDistributed in Top 10
Categories):

• Entropy: The entropy value is higher for the
OMP Selected Data , indicating a more evenly
distribution.

• Gini Coefficient: The Gini coefficient is
higher for the OMP Selected Data , suggesting
slightly more inequality.

• Coefficient of Variation: The coefficient of
variation is higher when data is distributed in
the top 10 categories, showing greater relative
differences among these categories.

G Training Dataset Details

In this section, we provide the detailed sources,
statistics and licenses of each training dataset used
in our experiment, which is shown in table 18. We
conduct coreset selection from a mixture of 17 in-
struction tuning datasets with various scales and
properties, which demonstrates superior effective-
ness compared with baseline approaches.
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Cluster ID Cluster Size Union with OMP Union with Baseline redistributed in Top 10 Categories
0 90019 4978 5343
1 23935 1349 5343
2 14912 1499 5343
3 9731 498 5343
4 45696 4694 5343
5 5760 247 0
6 5620 241 0
7 6634 440 0
8 2578 114 0
9 10192 604 5343
10 8529 416 5343
11 1296 70 0
12 53419 2776 5343
13 1567 114 0
14 5148 143 0
15 30084 702 5343
16 11126 673 0
17 635 38 0
18 7953 332 0
19 1404 22 0
20 9763 504 0
21 10499 363 0
22 3017 105 0
23 7239 265 0
24 2623 96 0
25 1369 69 0
26 20374 764 0
27 18827 1114 0
28 988 17 0
29 1416 11 0
30 10861 468 0
31 12974 568 0
32 11466 131 0
33 4527 106 0
34 4809 215 0
35 59075 3290 5343
36 39980 2128 5343
37 1345 16 0
38 678 37 0
39 190 2 0
40 5770 307 0
41 3174 108 0
42 10373 894 0
43 2478 115 0
44 6649 243 0
45 299 5 0

Table 13: Cluster Information and Union Metrics
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Cluster ID Cluster Size Union with OMP Union with Baseline redistributed in Top 10 Categories
46 3562 203 0
47 12200 214 0
48 10348 630 0
49 9308 443 0
50 3751 136 0
51 1 0 0
52 11090 625 0
53 30081 1307 0
54 21439 191 0
55 19520 810 0
56 8250 382 0
57 6886 242 0
58 3512 167 0
59 3774 206 0
60 3570 219 0
61 1444 29 0
62 919 40 0
63 2 0 0
64 11750 637 0
65 7532 682 0
66 23828 1095 0
67 11880 669 0
68 6717 165 0
69 1999 103 0
70 4106 214 0
71 2753 128 0
72 1409 63 0
73 15517 524 0
74 14888 692 0
75 478 24 0
76 15419 681 0
77 530 51 0
78 1401 73 0
79 40549 2534 5343
80 2496 51 0
81 12687 393 0
82 1019 19 0
83 5147 70 0
84 2012 99 0
85 5495 257 0
86 4158 131 0
87 159 2 0
88 4845 243 0
89 9668 376 0
90 40217 2115 5343

Table 14: Cluster Information and Union Metrics
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Cluster ID Cluster Size Union with OMP Union with Baseline redistributed in Top 10 Categories
91 53787 2354 5340
92 5105 249 0
93 595 13 0
94 7469 232 0
95 1411 40 0
96 2079 84 0
97 698 20 0
98 6584 396 0
99 5504 213 0

Table 15: Cluster Information and Union Metrics

Methods TydiQA MMLU BBH Average OMP Time
BERT+Cluster+OMP 52.21 45.65 42.95 46.93 1h
Llama+Cluster+OMP 52.01 46.04 40.2 46.08 9.5h
Grad+Cluster+OMP (TAGCOS) 52.78 48.01 44.26 48.35 0.8h

Table 16: Performance Comparison of Different Methods

Metric OMP Selected Data reDistributed in Top 10 Categories
Entropy 5.467 3.322
Gini Coefficient 0.963 0.900
Coefficient of Variation 1.636 3.000

Table 17: OMP Selected Data Features.

Dataset Sourced from # Instances License
SuperNI NLP datasets + Human-written Instructions 96,913 Apache-2.0
CoT NLP datasets + Human-written CoTs 100,000 ODC-BY
Flan V2 NLP datasets + Human-written Instructions 100,000 Apache-2.0
Dolly Human-written from scratch 15,011 Apache-2.0
Self-instruct Generated w/ vanilla GPT3 LM 82,439 Apache-2.0
Unnatural Instructions Generated w/ Davinci-002 68,478 MIT
Code-Alpaca Generated w/ Davinci-003 20,022 Apache-2.0
GPT4-Alpaca Generated w/ Davinci-003+GPT4 52,002 Apache-2.0
Baize Generated w/ ChatGPT 210,311 GPL-3.0
ShareGPT User prompts + outputs from various models 168,864 Apache-2.0
WizardLM Generated w/ GPT-3.5-Turbo 30,000 -
Oasst1 Human-written from scratch 33,919 Apache-2.0
Hardcoded - 14 ODC-BY
LIMA Human-written from scratch 1,030 CC-BY-NC-SA
Science Literature NLP datasets 7,544 ODC-BY
Open-Orca Generated w/ GPT4 30,000 MIT
Standford Alpaca Generated w/ Davinci-003 52,002 Apache-2.0

Table 18: Details of datasets used in our paper.
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