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Abstract

Large Vision-Language Models (LVLMs) have
demonstrated outstanding performance across
various multimodal tasks. However, they suf-
fer from a problem known as language prior,
where responses are generated based solely on
textual patterns while disregarding image infor-
mation. Addressing the issue of language prior
is crucial, as it can lead to undesirable biases or
hallucinations when dealing with images that
are out of training distribution. Despite its im-
portance, current methods for accurately mea-
suring language priors in LVLMs are poorly
studied. Although existing benchmarks based
on counterfactual or out-of-distribution images
can partially be used to measure language pri-
ors, they fail to disentangle language priors
from other confounding factors. To this end,
we propose a new benchmark called VLind-
Bench, which is the first benchmark specifi-
cally designed to measure the language priors,
or blindness, of LVLMs. It not only includes
tests on counterfactual images to assess lan-
guage priors but also involves a series of tests
to evaluate more basic capabilities such as com-
monsense knowledge, visual perception, and
commonsense biases. For each instance in our
benchmark, we ensure that all these basic tests
are passed before evaluating the language pri-
ors, thereby minimizing the influence of other
factors on the assessment. The evaluation and
analysis of recent LVLMs in our benchmark re-
veal that almost all models exhibit a significant
reliance on language priors, presenting a strong
challenge in the field.!

1 Introduction

Recent Large Vision-Language Models (LVLMs)
have demonstrated remarkable performance across
various tasks through pre-training on massive mul-
timodal datasets and visual instruction tuning. (Liu

*Corresponding authors.

"Evaluation code and benchmark data are available at
https://github.com/klee972/vlind-bench.

et al., 2023; Dai et al., 2023a; Zhu et al., 2024; Ye
et al., 2024; Peng et al., 2023). However, these
models tend to generate responses based solely on
spurious text patterns, leaving the given image un-
considered. We refer to this problem as language
prior, borrowing the term from the Visual Ques-
tion Answering (VQA) community (Agrawal et al.,
2018). Such language priors can lead to undesir-
able biases (Hall et al., 2023) and hallucinations
(Wang et al., 2023). For example, when a model
is presented with an image of a red banana and a
yellow apple along with the question, “Is the ba-
nana yellow?,” it has been observed that the model
frequently responds with “Yes,” ignoring the image
content (Zhou et al., 2023). To develop a trustwor-
thy LVLM, resolving the language prior issue is
crucial; however, it has not been explored much
nor has benchmarks that can accurately measure
the issues.

One approach to measure language priors is as-
sessing performance on VQA benchmarks con-
sisting of counterfactual images (e.g., WHOOPS!
(Bitton-Guetta et al., 2023) and ROME (Zhou et al.,
2023)). If a model bears language priors, it will
answer the question based on learned facts or com-
mon sense from its parametric knowledge with-
out collaborating information in the given context
(i.e., image); easily failing on answering coun-
terfactual VQA tasks. However, it is challeng-
ing to distinguish the models’ misbehaviors solely
caused by language priors from those caused by
other deficiencies in LVLMs. For example, there
could be multiple factors affecting performance in
counterfactual-contents VQA tasks — not only lan-
guage priors but also commonsense knowledge, vi-
sual perception capabilities, and the model’s reluc-
tance to counterfactual responses. Such confound-
ing factors make it difficult to evaluate methodolo-
gies for improving language prior problems and to
assess progress in the research field.

In this paper, we propose VLind-Bench, the first
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/ (a) Benchmark structure \
i: Commonsense Knowledge (CK) W
The Statue of Liberty is holding a torch.  True
L The Statue of Liberty is holding a sword.  False
ii: Visual Perception (VP)
There is the Statue of Liberty.  True
L There is umbrella. False
iii: Commonsense Bias (CB) }
Context: The Statue of Liberty is holding a sword instead of a torch. True
Statement: The Statue of Liberty is holding a sword.
Context: The Statue of Liberty is holding a sword instead of a torch. False
KStatement: The Statue of Liberty is holding a torch.
iv: Language Prior (LP) J
The Statue of Liberty is holding a sword.  True
g L+ Counterfactual image |_The Statue of Liberty is holding a torch.  False )
f (b) Evaluation pipeline ™~
[ The model lacks related commonsense knowledge. ] [The model favors commonsense-compatible responses. J
i: Commonsense Knowledge (CK) ﬁm iii: Commonsense Bias (CB)
iv: Language Prior (LP)
ii: Visual Perception (VP) } *
[The model cannot recognize objects in the image. J [ The model relies on a language prior. J

Figure 1: (a) An example from VLind-Bench. Our benchmark consists of four types of questions (i-iv). (b)
Evaluation pipeline of VLind-Bench. In the pipeline, both true and false statements of the current stage must be

correctly evaluated to proceed to the next stage.

benchmark that can accurately measure the lan-
guage priors, or blindness, of various LVLMs and
disentangle the root causes of their failures. To
precisely measure language priors, it is necessary
to create test instances that models fail if and only
if they rely on language priors. For this purpose,
we meticulously design a sequence of tests and
measure the accuracy on each of them (Figure 1
(a)). Specifically, each instance in VLind-Bench
involves four tests that can check whether a model
possesses (1) commonsense knowledge, (2) visual
perception, (3) commonsense bias, and (4) lan-
guage prior. The first three serve as a sanity check
performed before the test of language prior, which
is the ultimate goal of our benchmark (Figure 1
(b)). To the best of our knowledge, existing bench-
marks can only show the individual task-level per-
formance of LVLMs.

With VLind-Bench, we evaluate recent open-
source and proprietary LVLMs’ language priors.
The results show that all of the models except GPT-
40 (OpenAl, 2024) suffer from excessive reliance
on language priors, demonstrating the challenging
nature of our benchmark and the need for further

improvements. Furthermore, our experiment and
analysis on existing LVLMs show that the influ-
ence of language priors is inversely proportional
to the scale of the backbone LLM. We also reveal
that Reinforcement Learning from Human Feed-
back (RLHF) techniques (Yu et al., 2024a,b), which
are designed to mitigate hallucinations, can help
reduce the reliance on language priors.

2 Related Work
2.1 Large Vision-Language Models

Recently, there has been a lot of effort in extend-
ing Large Language Models (LLMs) to include vi-
sual inputs, forming a new class of models known
as Large Vision-Language Models (LVLMs) (Liu
et al., 2023; Dai et al., 2023a; Zhu et al., 2024;
Ye et al., 2024; OpenAl, 2023b, 2024; Google,
2024). These LVLMs are gaining attention as a
new paradigm in vision-language learning by trans-
ferring the exceptional properties of LLMs, such
as multi-step reasoning ability and in-context learn-
ing, to the multimodal domain. However, these
LVLMs are not free from the bias and hallucina-
tion issues inherent in LLMs (Hall et al., 2023; Li
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et al., 2023; Gunjal et al., 2024; Zhou et al., 2024a;
Dai et al., 2023b; Min et al., 2024). Despite this,
creating benchmarks to diagnose these problems
is more challenging with the image modality, lead-
ing to slower progress in benchmark development
compared to LLMs.

2.2 Benchmarks with Counterfactual Context

Since counterfactual contexts can assess the ro-
bustness and generalization capabilities of LLMs
or LVLMs, several benchmarks utilizing this ap-
proach have been proposed. These benchmarks as-
sume that if a model responds based on memorized
facts without properly understanding the context of
text or images, it would fail to correctly solve tasks
conditioned on counterfactual contexts. Bench-
marks such as IfQA (Yu et al., 2023) and DisentQA
(Neeman et al., 2023) counterfactually augment
textual contexts to determine whether the language
model accurately incorporates augmented informa-
tion when answering questions. Wu et al. (2024)
evaluate LL.Ms on reasoning tasks based on coun-
terfactual contexts. Benchmarks like WHOOPS!
(Bitton-Guetta et al., 2023), ROME (Zhou et al.,
2023), HALLUSIONBENCH (Guan et al., 2024),
and ViLP (Luo et al., 2024) evaluate the counter-
factual reasoning abilities of multimodal models
by conducting VQA tasks conditioned on counter-
factual images. However, these benchmarks cannot
disentangle the reliance on language priors and
commonsense biases of a model.

3 Benchmark Structure

VLind-Bench conducts four types of assessments,
each designed to test different capabilities, as il-
lustrated in Figure 1 (a). By providing multiple
tests concerning the exact same image or text that
are used in the language prior test, it is possible
to check if the model has the essential abilities
to make the language prior test meaningful. De-
pending on the problem’s characteristics, each test
utilizes one of two images, either factual or coun-
terfactual, as input.

First, we provide a counterfactual image along
with two statements and evaluate whether the
model can correctly classify these statements as
true or false based on the image (Figure 1 (a) - iv:
Language Prior). If the model relies on language
priors, it will not incorporate the counterfactual
circumstances presented in the image into its rea-
soning, achieving low performance on this test.

However, merely answering questions about
counterfactual images is insufficient to accurately
measure the language priors due to several con-
founding factors. Firstly, when a model fails a
task involving a counterfactual image, it is unclear
whether this failure is due to the model’s reliance
on language priors or because the model possesses
commonsense bias. Here, commonsense bias refers
to the tendency of models, including unimodal lan-
guage models, to avoid responding in ways that
contradict common sense. Therefore, we evaluate
whether the model can overcome such common-
sense bias regardless of modality, by providing the
model with the image and a text description of the
image as input (Figure 1 (a) - iii: Commonsense
Bias).

Additionally, the failure in the counterfactual
task might stem from an inability to recognize the
objects in the counterfactual image. Conversely,
the model may simply lack common sense and pass
the test merely by chance. To this end, we provide
two tests to check commonsense knowledge and
visual perception abilities. The statements used for
checking commonsense knowledge are identical
to those for language priors, but factual images
are given instead of counterfactual images, and the
models are instructed to evaluate the truth values
based on common sense (Figure 1 (a) - i: Common-
sense Knowledge). In the case of visual perception,
counterfactual images are still used; however, the
statements are designed to assess the model’s abil-
ity to recognize objects (Figure 1 (a) - ii: Visual
Perception).

If we introspect how a human solves an counter-
factual vision-language task, the three additional as-
sessment types we propose appear more convincing.
Humans first understand the image through visual
perception, then retrieve real-world information
about the objects using commonsense knowledge,
and finally reason about how the given situation
deviates from real-world common sense. Decom-
posing multimodal counterfactual reasoning into
these three steps is a very natural approach, and
each of these steps directly corresponds to our Vi-
sual Perception, Commonsense Knowledge, and
Commonsense Bias tasks.

If a model fails any test assessing its basic abil-
ity, evaluating it on more complex tests that rely
on that basic ability would be meaningless. There-
fore, the evaluation of our benchmark proceeds se-
quentially, starting with easier problems that assess
fundamental abilities and gradually advancing to
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more difficult problems that are counterfactual and
multimodal in nature (Figure 1 (b)). This pipelined
evaluation paradigm could be more universally ap-
plied, not only for measuring language priors but
also for more accurately assessing the varying ca-
pabilities of Al systems.

3.1 Commonsense Knowledge (CK)

First, it is essential to verify whether the model
possesses commonsense knowledge about the in-
stances of the benchmark. This step allows us to
determine whether the model’s success at counter-
factual tests is genuine or due to a lack of common
sense. Therefore, we introduce a Commonsense
Knowledge test (CK) to assess the model’s com-
monsense knowledge about the given instances.
Specifically, the CK comprises one image It and
two statements sgr and s¢r. The image Ip,¢ de-
picts a factual circumstance that aligns with com-
mon sense (e.g., an image of the Statue of Liberty).
Among the two statements, sg,¢ 1S a factual state-
ment that is true based on real-world common sense
(e.g., “The Statue of Liberty is holding a torch.”),
while s.f is a counterfactual statement that is false
(e.g., “The Statue of Liberty is holding a sword.”).
Also, we use the prompt template, prc, to instruct
the LVLM to evaluate the truth value of the input
text based on common sense.

1 fact

Prex(Saer) = ‘Statement: The Statue of Liberty is
holding a torch.

Based on common sense, is the given statement true
or false? Only respond in True or False.

prek(Ser) = ‘Statement: The Statue of Liberty is
holding a sword.

Based on common sense, is the given statement true
or false? Only respond in True or False.

To pass the CK, the model must accurately pre-
dict the truth value of both statements:

PCK :]l(LVLM(IfaCtyprCK(Sfact)> = “True”
A LVLM(Zgact, preg (Ser)) = “False”),
(D
where Pck indicates whether the model passed CK
or not. LVLM(i, t) is a composition of two func-
tions: one that maps the image input ¢ and text
input ¢ to the LVLM’s response, and another that

maps the LVLM’s response to “True” or “False”
using a string match.

3.2 Visual Perception (VP)

The fundamental ability underpinning all multi-
modal tasks is visual perception, particularly the

ability to recognize objects (Locatello et al., 2020;
Burgess et al., 2019). Similar to the CK, evaluating
a model on more complex tasks would be meaning-
less when it fails in object recognition. Therefore,
we introduce the Visual Perception test (VP) to
assess whether LVLMs can recognize objects in
a given counterfactual image. VP consists of one
counterfactual image I.r and two statements Sexist
and spj. Contrary to the CK, the image I shows a
counterfactual scene, which contradicts the world
knowledge or common sense (e.g., an image of the
Statue of Liberty holding a sword). The reason for
using counterfactual images is that the VP needs
to evaluate visual perception capabilities on the
same images that are used for language prior as-
sessments, where the use of counterfactual images
is essential.

In VP, both the two statements say that “There
is object in the image.”, while the objects are set
such that seys 1S true and sp; is false under the
given image (e.g., “There is the Statue of Liberty.”
and “There is umbrella.”). To this end, we define
Pyp to indicate whether the model passed VP, with
a prompt template pryp to instruct the models to
evaluate the truth value of input text based on the
given image.

Prye(Sexist) = ‘Statement: There is Statue of Liberty.
~~  Based on the image, is the given statement true or
\ false? Only respond in True or False’

Ul pryp(syi) = ‘Statement: There is umbrella.
Based on the image, is the given statement true or

1, .
of false? Only respond in True or False’

The indicator for passing the VP, Pyp, is defined
similarly:

Pyp =1(LVLM(I¢t, pryp(Sexist)) = “True”

2
A LVLM( I, pryp(sni1)) = “False”) @

3.3 Commonsense Bias (CB)

It has been observed that LVLMs, including LLMs,
exhibit a reluctance to provide responses that con-
tradict common sense or learned world knowledge,
even when they are explicitly instructed to respond
based on counterfactual contexts (Bitton-Guetta
et al., 2023; Zhou et al., 2023; Neeman et al., 2023;
Yu et al., 2023). We propose a Commonsense Bias
test (CB) to disentangle this bias from language
priors, which is the goal of this benchmark. To
eliminate the influence of modality in the evalu-
ation of commonsense bias, we provide LVLMs
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with a counterfactual textual context 7f and a coun-
terfactual image I ¢ as input. Also, we provide the
models with two statements, s.f and Sg,et, Which
are true and false respectively under the given con-
text. We wrap the context and statement with a
prompt template pr-g, which instructs the model
to explicitly follow the information provided in the
context, rather than common sense.
Based on the context, is the given statement true or

" false? Forget real-world common sense

Lt and just follow the information provided in the
context. Only respond in True or False.

prep(Ter, [Ser /Sact]) = ‘Context: The Statue of Liberty
is holding a sword instead of a torch.

Statement: [The Statue of Liberty is holding a sword.
/The Statue of Liberty is holding a torch.]

The indicator for CB is as follows:

PCB :]l(LVLM(ICf,pI‘CB (ch, Scf)) = “True”
AN LVLM(ICf, Preg (ch, Sfact)) = “False”
A Pcx = 1)
3)

Note that Pcg = 1 only if Pcx = 1, according to
the proposed evaluation pipeline (Figure 1 (b)).

3.4 Language Prior (LP)

The evaluation of the language prior, which is the
final and most crucial issue, is conducted through
the Language Prior test (LP) involving a counter-
factual image I+ and two statements scf and Sgact.
Basically, the LP is nearly identical to the CB in all
aspects except for the absence of text context Tt
and a slight difference in prompt template prj p.
-
% Based on the image, is the given statement true or
v false? Forget real-world common sense

Is and just follow the information provided in the
context. Only respond in True or False.

prip([Sce /Sgce]) = ‘Statement:
[The Statue of Liberty is holding a sword.
/The Statue of Liberty is holding a torch.]

The indicator for LP is as follows:

Pip =1(LVLM(I¢t, pryp(scf)) = “True”
A LVLM( I, pry p(Stact)) = “False” (4)
ANPcg =1AN Pyp = 1)

4 Data Generation

Here, we explain the data generation process of
VLind-Bench. As described in the previous sec-
tion, the benchmark consists of four types of tests,

incorporating various forms of images and texts.
First, at the core of the benchmark data, there are
counterfactual textual context 7T¢r and image I.f,
accompanied by two statements S¢r and Sgyc, for
CB and LP. To evaluate CK and VP, there are also a
factual image It,¢¢ and two statements Sexigt and Sy
regarding object recognition. To ensure the high
quality of the data samples, we proceed with the
following procedure.

Counterfactual Textual Contexts and State-
ments First, we generate counterfactual textual
context T and corresponding statements S and
Sfact, Which are true and false, respectively, based
on the context. The contexts must describe a wide
range of real-world topics and be suitable for vi-
sual depiction. To achieve this goal, we selected
11 concepts that span various aspects of common-
sense knowledge, ranging from natural sciences
such as climate and habitat, to humanities such
as history and landmark.

For each selected concept, we employed GPT-4
(gpt-4-0125-preview) (OpenAl, 2023a) to create
50 instance triples, each consisting of a context, a
true statement, and a false statement. We provided
a detailed instruction with 3-shot prompt as input,
using hand-crafted concept-specific examples to
reflect the characteristics of each concept.

To ensure the quality of the generated data, three
graduate students manually checked the correctness
of the triples. We then conducted a majority vote
among the three annotations to determine whether
each triple should remain in our benchmark. As
a result, the initial set of 550 instance triples was
reduced to 421.

Counterfactual Images Next, we proceed with
the generation of counterfactual image I ¢ from the
filtered textual contexts. Given the significance of
LP in our benchmark, we generate multiple im-
ages per test for LP, unlike factual images where
we generate only one image per test. The images
are generated using DALL-E 3 (OpenAl, 2023c),
where the textual context Tt is provided as input,
and 12 images are sampled. To provide diversity of
image style, we produce four images each in pho-
torealistic, illustration, and cartoon styles per one
textual context. Consequently, for the 421 contexts,
a total of 5,052 images are generated.

The generated images must provide sufficient
context to accurately classify the statements as true
or false and be free of artifacts. Similar to the previ-
ous stage, each image is verified by three graduate
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Climate Color Diet Folklore Habitat History Landmark Location Size Time Weight Total
Num. triples 21 13 43 13 42 23 26 17 29 39 36 302
Num. images 200 77 502 109 493 168 200 121 222 335 149 2576
Table 1: The number of instance triples and images for each concept.
Dataset Num. category/tags Num. images Num. image-question pairs
WHOOPS! (Bitton-Guetta et al., 2023) 26 500 10,874
ROME (Zhou et al., 2023) 5 1,563 10,941
IfQA (Yu et al., 2023) 7 - 6,606
VLind-Bench 11 2,576 14,248

Table 2: Dataset size comparison with similar counterfactual benchmarks.

student reviewers and filtered using a majority vote.
Contexts with no accepted images are also filtered
at this stage. After this filtering process, 302 con-
texts and 2,274 images remained in the benchmark
dataset.

Commonsense Knowledge and Visual Percep-
tion Tests In the final stage of data generation,
we produce factual images I, for CKs and state-
ments Sexigt and spj for VPs. For the factual image,
since it needs to describe a circumstance where
Sfact AS true, we input sg¢ directly into DALL-E
3 to generate the image. However, some Sgc¢’s
are very difficult to translate into images using this
method. In such cases, we convert 7 into factual
textual context using GPT-4, or alternatively, we
use existing images from the web.

Statements for visual perception tests are simply
sentences about the presence of objects and thus
can be generated using a template. We first prompt
GPT-4 to extract one key noun from 7¢; and gener-
ate one arbitrary noun not present in 7¢¢. Then, we
construct Sexist and sy;; using the template “There
is [noun] in this image.”.

To verify the quality of the generated g, Sexists
and spj;, we evaluate whether OpenAl GPT-40
(gpt-40-2024-05-13) (OpenAl, 2024), which is
the most advanced available LVLM, passes the CK
and VP. For instances where GPT-4o0 fails, human
verification was conducted. If the failure was due
to an error in the data generation process, we ad-
dressed the cause of the error by either regenerating
the factual image or manually correcting the nouns
in statements.

Details for human verification and input prompts
are provided in Appendix A.

Statistics The statistics of the benchmark data
generated through the process are presented in Ta-
ble 1. The difficulty of data generation varies for

each concept, resulting in different proportions of
samples being filtered out during the human re-
view process. Ultimately, a total of 302 instance
triples and 2,576 images, encompassing both coun-
terfactual and factual images, were included in the
benchmark. We compare the size of VLind-Bench
with other counterfactual benchmarks in Table 2.
Data samples for each concept can be found in
Appendix E.

5 Experiments

5.1 Metrics

In section 3, all indicator values for the four tests
have been defined for a single instance. For some
test 7 € {CK,VP,CB,LP}, the final VLind-
Bench score S, is represented as the average of
the indicator values Pfr’s across all instances that
have passed previous tests.

1N
Sp=—>) P} Q)
T MTZZ;T

Here, i is the data index, IV is the number of total
instances in our benchmark, and My is the num-
ber of instances that have passed all the previous
tests before 7 (which is essentially the number of
instances considered by 7). To be more concise,
Mck = Myp = N, Mcp = \{Z | Pl = 1}

and Mip = |{i | Pl = 1 A Pyp = 1}|. We re-
fer to these four scores as pipeline scores, as they
reflect the pipelined evaluation structure of VLind-
Bench (columns under “Pipeline Score” in Table
3). Alternatively, following the common definition
of accuracy, the performance can be expressed as
the ratio of correct instances to the total number of
instances (columns under “Accuracy” in Table 3).
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Models

Accuracy
St CB LP

Pipeline Score
SCK SVP SCB

Proprietary LVLMs
GPT-40 (OpenAl, 2024)
GPT-4V (OpenAl, 2023b)
Gemini Pro Vision (Google, 2024)

93.0 96.0 968 898 97.0 894
90.1 854 90.8 776 91.1 756
80.5 904 770 79.0 755 655

Open-source LVLMs

LLaVA-NEXT 72B (Qwen 1.5 72B Chat) (Li et al., 2024) 944 957 761 586 755 467
LLaVA-NEXT 34B (Nous Hermes 2 Yi 34B) (Lietal,, 2024) 80.5 858 61.7 61.1 672 445

LLaVA-1.5 13B (Vicuna v1.5 13B) (Liu et al., 2024)

LLaVA-1.5 7B (Vicuna v1.5 7B) (Liu et al., 2024)
+ RLAIF-V (Yu et al., 2024b)

InstructBLIP 13B (Dai et al., 2023a)
InstructBLIP 7B (Dai et al., 2023a)

OmniLMM 12B (Zephyr 7B (3) (Yu et al., 2024a)
MiniCPM-V-2 2.8B (Yu et al., 2024a)

599 921 409 420 315 209
0.0 00 - - 0.0 0.0

179 83 48.1 250 543 357
66.6 79.5 542 578 467 280
586 735 282 146 272 210
88.1 977 78.6 814 795 664
762 983 565 68.1 49.0 34.1

Backbone LLMs
Qwen 1.5 72B Chat (Bai et al., 2023)
Nous Hermes 2 Yi 34B (NousResearch, 2023)
Vicuna v1.5 13B (Team, 2023)
Vicuna v1.5 7B (Team, 2023)
Zephyr 7B 3 (Tunstall et al., 2023)

75.8 - 699 - 742 -
831 - 753 - 778 -
579 - 80.0 - 692 -
0.0 - - - 0.0 -
623 - 457 - 40.7 -

Table 3: Main experimental results on VLind-Bench.

5.2 Models

We have selected and evaluated recent proprietary
and open-source LVLMs on the VLind-Bench. The
open-source LVLMs were chosen to represent a
diverse range of scales and training methodologies.
Unfortunately, the performance of the InstructBLIP
models could not be evaluated using the prompt
template from section 3, as they completely failed
to generate responses. Therefore, we utilized a
modified prompt, in which the question sentence
was placed at the end. Additionally, we assessed
the performance of some backbone LLMs on CK
and CB tasks without the image input. To ensure
the reproducibility of the experiments, all infer-
ences were conducted under a zero temperature
setting. All the experiments are conducted using 4
NVIDIA RTX A6000 GPUs.

5.3 Main Results

The overall model performance is shown in Table 3.
Surprisingly, numerous models demonstrated some-
what low scores in Sck, implying a deficiency of
commonsense knowledge in LVLMs. Conversely,
Svp scores concerning object recognition ability
exhibited relatively high scores. This pattern of low
commonsense knowledge scores and high visual
perception scores aligns with observations from
previous work (Zhou et al., 2023). Additionally,
the lower Scp and CB scores compared to Sck in-
dicate that LVLMs are reluctant to respond contrary

to commonsense knowledge.

When comparing LP and Spp scores, it is evi-
dent that some models with similar LP scores ex-
hibit differing Sy p scores. For instance, while the
LLaVA 1.5 13B model and the InstructBLIP 7B
model have similar LP scores, the LLaVA model
achieves nearly three times higher St p score. This
clear lack of correlation between LP and Sy p scores
indicates that our pipelined evaluation provides ad-
ditional information beyond what can be obtained
by conducting task-level evaluation alone.

Finally, the generally low Sip score suggests
that all models, except for GPT-40, exhibit a re-
liance on language priors. This reliance was more
pronounced in open-source models compared to
proprietary ones. The reliance on language pri-
ors appeared inversely proportional to the scale of
the backbone LLM. This trend can be observed by
comparing the Spp scores across various sizes of
models within the same LLaVA and InstructBLIP
series.

To verify the validity of the VLind-Bench, we
conducted experiments on a small handcrafted eval-
uation set, and the results are provided in Appendix
D.

RLHF-V An exception to such trend between
model scale and language prior is the superior
performance of models that applied the RLHF-V
(Yu et al., 2024a) methodologies. Models such as
OmniLMM and MiniCPM trained using RLHF-V,
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Model (Score Type) Climate Color Diet Folklore Habitat History Landmark Location Size Time  Weight Total
GPT-40 (Sck) 95.2 769 977 615 92.9 100.0 84.6 88.2 93.1 100.0 100.0 93.0
GPT-40 (SLp) 83.3 93.3 97.1 912 98.2 92.0 69.7 100.0 99.2  100.0 61.0 89.8
OmniLMM (Sck) 100.0 846 977 1769 92.9 87.0 92.3 82.4 414 100.0 94.4 88.1
OmniLMM (Sip) 73.7 819  99.0 878 86.7 88.2 479 98.2 455 80.7 0.0 814

Table 4: Performance of selected models for different concepts.

demonstrated superior performance compared to
models of similar or greater scale. Specifically,
RLHF-V employs a method called Dense Direct
Preference Optimization (DDPO) to mitigate mul-
timodal hallucination. DDPO constructs win-lose
pairs by having humans modify only the hallucina-
tory spans in the model responses to align with im-
age information, thereby forcing the use of visual
modality to increase the reward. Such construction
of training data might be the reason for the reduced
reliance on language prior. Additionally, the high
performance of these methods on counterfactual
images suggests that the ability to utilize image
information generalizes to out-of-distribution sam-
ples. Applying RLAIF-V (Yu et al., 2024b), an Al-
feedback variant of RLHF-V, to LLaVA 1.5 7B also
results in significant performance improvement.

LILM performance Some might question
whether the performance of LVLM is significantly
influenced by the performance of its backbone
LLM. To answer this question, we conducted an
evaluation of several backbone LL.Ms on CK and
CB tasks. The results, as illustrated in columns
Sck and Scp, indicate that the performance of the
LLMs is not highly correlated to the performance
of the LVLMs. Consequently, we can conclude
that the absolute scale of the backbone LLMs and
the training methodology have a more substantial
impact on the final performance of LVLMs than the
performance of the backbone LLMs themselves.

Another finding is that the LVLMs are some-
times superior to their original backbone LLMs
on Scp. Given that Scg encompasses the same
content in both image and text formats, this sug-
gests that, in certain scenarios, learning from the
visual modality may enhance robustness in the text
modality.

6 Discussion

Performance by Concept One particularly inter-
esting finding is that the model performance varies
significantly depending on the concept. For in-
stance, high-performing open-source models such
as OmniLMM scored zero in S.p for the concept

of “weight,” and even GPT-40 only managed to
achieve a score of 61.0% (Table 4). This suggests
that although LVLMs might possess real-world
knowledge about physical properties like weight,
they lack robust concepts of these properties that
can be generalized under counterfactual situations.

Chain-of-Thought Prompting LLMs are known
to respond more comprehensively by generating
intermediate reasoning steps. In this section, we
assess the effect of Zero-shot-CoT (Kojima et al.,
2022) on VLind-Bench tasks by replacing the in-
struction in our prompts “Only respond in True or
False.” to “Let’s think step by step.”.

Pipeline Score Accuracy

Models SCK Svp SCB SLP CB LP
Zero-shot-CoT

GPT-40 914 947 931 894 930 878

GPT-4V 914 957 93.1 87.1 927 850

LLaVA-NEXT 72B 940 92.1 70.1 72.8 709 549

OmniLMM 12B 81.5 944 602 508 632 355

MiniCPM-V-22.8B 82.1 874 633 564 619 378

Table 5: Zero-shot-CoT performance of selected models.
Compared to True/False prompting, improvements are
shown in blue, while declines are shown in red.

As shown in Table 5, the impact of CoT varies
depending on the model type and the scores mea-
sured. CoT produces significant performance im-
provements in certain large models, particularly
in Sip and LP scores. However, in other in-
stances, the advantages of CoT are negligible, and
in some cases, CoT even hinders performance. Ad-
ditionally, we found that smaller models, such as
OminLMM and MiniCPM-V-2, struggled to effec-
tively follow CoT instructions; they generated final
answer before the reasoning steps. For these rea-
sons, we adopted an evaluation setting that forces
responses to be limited to either “True” or “False.”

Language Priors and Model Scale The ten-
dency for the language prior to be inversely propor-
tional to the scale of backbone LLMs may appear
counterintuitive (i.e., LLaVA in Table 3). We have
not identified the precise cause of this trend. One
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possible explanation is that larger pre-trained mod-
els are less prone to overfitting to the dataset during
the visual instruction tuning process, thereby better
maintaining their ability to attend to visual infor-
mation.

In the experiments, we employ models with vari-
ous scales of image encoders (ranging from approx-
imately 300M to 5B), however, no clear correlation
was observed between the language prior and the
size of the image encoder.

Diagnosing LVLMs VLind-Bench can diagnose
a model’s capabilities in multiple aspects and com-
ponents, providing clues on where to focus for com-
prehensive improvements. For instance, a low Spp
score suggests that enhancements should be in the
vision-language training aspect, while a low Sck
score indicates that improvements should focus on
the knowledge aspect of the backbone LLM. In
the case of the former, utilizing the RLHF-V tech-
niques can significantly reduce the model’s reliance
on language priors, as observed in Section 5.

7 Conclusion

In this work, we proposed VLind-Bench, a bench-
mark designed to precisely measure language pri-
ors in LVLMs. We evaluated several LVLMs using
this benchmark and analyzed the results, finding
that the reliance on language priors is inversely
proportional to the model scale. Additionally, the
RLHF-V technique turned out to significantly aid
in reducing such reliance. As demonstrated with
VLind-Bench, we endorse a pipelined evaluation
paradigm for the general construction of bench-
marks to disentangle the specific abilities intended
for measurement.

Limitations

Although VLind-Bench minimized potential con-
founding factors in assessing language priors, there
may still be unconsidered factors that contribute to
the benchmark scores. VLind-Bench used only a
single fixed prompt for evaluation, but recent stud-
ies have shown that LLMs and LVLMs respond
sensitively to even small changes in such prompts
(Zhou et al., 2024b; Lee et al., 2024).
Additionally, the CBs in our benchmark does
not necessarily need to receive both text and image
as input to check the commonsense bias. Such de-
sign choice is mostly due to a lack of established
practices for feeding text-only inputs to LVLMs.
As alternatives to I.¢, we conducted experiments

using a plain single-color image or rendered text
prompts as visual input (refer to Appendix B); how-
ever, none of these approaches works — these kinds
of images can be considered out-of-distribution
samples, and some proprietary models output error
messages for these inputs. Exploring more estab-
lished methods for text-only inputs in LVLMs falls
outside the scope of our paper, but further research
in this area is necessary both from a practical per-
spective and for a deeper understanding of how
individual components of LVLMs operate.

Although VLind-Bench addressed various as-
pects of language priors and commonsense biases,
its limitation is that it did not cover social bias (Hall
et al., 2023; Lee et al., 2023) or toxicity (Kim et al.,
2024; Koh et al., 2024).

Finally, we did not train the LVLMs with the data
we constructed. While our primary goal in Section
4 was to generate data for a benchmarking purpose,
we can also use this process to generate training
data automatically. Training LVLMs with such
dataset could help mitigate reliance on language
priors, but we leave this as future work.
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A Human Verification and Model Prompt
Details

Criteria for Instance Triple Verification The
reviewers are provided with the context, the true
statement, and the false statement (which was de-
fined as instance triple in the Section 4). For each
instance triple, the reviewers are given two options:
Accept and Reject. The appropriateness is verified
based on the following criteria.

1. Decisions are made based solely on the
text without considering image genera-
tion.

2. If a true (false) statement is not clearly
true (false), it should be rejected.

3. If the context is not counterfactual, it
should be rejected.

4. Even if a true (false) statement is indeed
true (false), it should be rejected if it does
not address the counterfactual aspect of
the context.

5. If the truth values of statements cannot
be inferred from the context, it should be
rejected.

6. Annotators may use internet searches to
determine the appropriateness of the con-
text and statement.

Criteria for Image Verification The reviewers
are provided with the context, the true statement,
the false statement, and the generated image. For
each image, the reviewers are given two options:
Accept and Reject. The appropriateness is verified
based on the following criteria.

1. If a true (false) statement is not clearly
true (false), it should be rejected.

2. Accept the image if it is sufficient to de-
termine the truth values of the statements,
even if the image does not precisely de-
pict the context.

3. Reject if the generated image is of signif-
icantly poor quality.

4. Annotators may use internet searches to
determine the appropriateness of the im-
age.

Each instance triple or image was reviewed by

a total of three reviewers. Only those instance
triples or images that were accepted by at least two
reviewers were included in our benchmark.

Prompt Template for Instance Triple Genera-
tion We used the following prompt template for
instance triple generation. To facilitate understand-
ing of the reader, the template is filled with exam-
ples of the concept “location,” with the filled-in
sections indicated in italics.

Given a concept, create related counterfac-
tual situation (context) which can be described
with an image. Also generate two statements
with different truth values for each situation.
Make only clear statements so that there is no
room for vague or different truth value of the
statement depending on the point of view. For
example, through the concept of "location”,
we can create a counterfactual situation such
as "A variety of marine life lives in the city
built underwater.” and describe it with an im-
age of a underwater city. And then we can
make two statements, "The city’s buildings
are surrounded by marine life." and "The city
has human residents."”, which is true and false
under given counterfactual situation, respec-
tively. List 50 context and statement pairs for
the concept of "location.” Output the results
using the following json template.

[{"id": I, "context": "A ship is located in
the middle of a large city.", "true_statement":
"The ship is surrounded by buildings.",
"false_statement":  "The ship is in the
ocean."}, {"id": 2, "context": "A glacier is
found in a tropical jungle.", "true_statement":
"The glacier coexists with tropical trees.",
"false_statement": "The glacier is in the polar

region."}, ...]

Prompt Template for Generating Nouns for VPs
As described in Section 4, we employed GPT-4 to
extract one key noun from 7,¢ and generate one
arbitrary noun not present in Z¢f, to construct Sexist
and sy;;. To ensure appropriateness, two instances
of each noun were initially generated, after which a
manual selection process was conducted to choose
the better option between the two.

We used the following prompt template for gen-
erating nouns for the VPs.

Extract nouns from the following context. If
there are more than two nouns, pick the two
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most important nouns. Also generate two ran-
dom nouns that are not included in the context.
Here are some examples.

Context: Wombats burrow in the frozen
tundra, their tunnels creating intricate net-
works under the snow. {"nouns": ["wom-
bat", "tunnel"], "non-existent_nouns": ["ze-
bra", "closet"]}

Context: The jellybean is heavier than the
digital piano. {"nouns": ["jellybean", "pi-
ano"], "non-existent_nouns": ["car", "oven"]}

Context: Context

B Experiments Using a Plain White
Image and Rendered Text Prompts

As discussed in Section 6, we conducted experi-
ments using a plain white image and rendered text
prompts as visual inputs instead of If,¢ and I.f
in CK and CB. When employing the plain white
image, we replaced all images in the CK and CB in-
puts with a plain white image. In the case of using
rendered text prompts, we substituted all CK and
CB input images with images that had the content
of the textual prompts rendered in black text on a
white background.

Table 6: Experimental results on VLind-Bench using
various visual inputs.

Pipeline Score Accuracy
Models Sck  Sv S S CB LP
Itact / It as visual input
GPT-40 93.0 960 96.8 898 97.0 894
LLaVA-NEXT 72B 944 957 76.1 58.6 755 467
OmniLMM 12B 88.1 9777 786 814 795 664

plain white image as visual input
GPT-40 851 960 957 884 964 894
LLaVA-NEXT 72B 884 957 749 548 742 467
OmniLMM 12B 791 977 724 81.0 728 664

rendered text prompts as visual input
GPT-40 86.1 960 965 885 97.0 894
LLaVA-NEXT 72B 89.1 95.7 70.6 542 728 46.7
OmniLMM 12B 742 977 652 714 682 664

Table 4 presents the results of this experiment,
showing a notable performance decline, particu-
larly in the CK. This performance decline can be
attributed to the absence of information that was
present in the original images. Additionally, both
plain white image and rendered text prompts can be
considered out-of-distribution inputs (OOD), lead-
ing to unstable performance.

C Model Performance by Image Style

Here, we observed how performance varies across
different image styles. As mentioned in Section 4,
we generated images in photorealistic, illustration,
and cartoon styles.

Table 7: Experimental results on VLind-Bench with
varying image styles.

Pipeline Score Accuracy
Models SCK Svp SCB SLP CB LP
photorealistic
GPT-40 93.1 962 97.1 923 973 91.6
LLaVA-NEXT 72B  94.6 958 772 650 765 524
OmniLMM 12B 88.8 977 818 828 831 705
illustration
GPT-40 927 954 975 90.1 97.7 90.0
LLaVA-NEXT 72B 943 962 785 59.1 778 473
OmniLMM 12B 88.5 98.1 814 804 824 677
cartoon
GPT-40 94.1 967 972 919 974 915

LLaVA-NEXT 72B  94.8 955 788 582 78.8 48.0
OmniLMM 12B 877 978 822 820 825 684

Table 5 shows that the performance across these
styles in the CK, VP, and CB did not vary signif-
icantly. A notable variation in performance was
observed only in LP, where the photorealistic style
yielded better results compared to the other two
styles. This could be due to the model’s assessment
that images in the illustration or cartoon styles lack
realism compared to photorealistic images, lead-
ing it to generate responses that align more closely
with common sense.

D Model Performance on Handcrafted
Evaluation Set

To verify the validity of automatically generated
text and images, we created a small handcrafted
evaluation set and assessed the performance of sev-
eral models, comparing it with their performance
on the original VLind-Bench. All the text in the
handcrafted evaluation set was written by humans,
with three “triples” for each concept. For each
triple, we generated three counterfactual images
and one factual image. It was extremely challeng-
ing to find real images that depict counterfactual
situations, and even if such images were found
online, there was no way to verify whether they
were outputs from generative models. To eliminate
any potential advantage that OpenAl models might
have from using DALL-E 3-generated images, we
generated all the images using Stable Diffusion and
Adobe Firefly, incorporating various styles such
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as photorealistic, illustration, and cartoon. This
handcrafted evaluation set ultimately consists of
33 triples and 132 images, and the performance on
this set is as follows.

Table 8: Experimental results on handcrafted evaluation
set.

Pipeline Score Accuracy
Models Sck  Sve Scs Sip CB LP
GPT-40 90.9 909 100.0 93.8 100.0 93.9
GPT-4V 909 81.8 900 758 879 727
LLaVA-NEXT 72B 879 97.0 79.3 609 788 475
OmniLMM 12B 818 970 852 768 879 70.7

MiniCPM-V-228B 63.6 97.0 66.7 50.0 57.6 39.4

As shown in Table 8, the performance on the
original VLind-Bench and the gold evaluation set
does not differ significantly (refer to Table 3 for the
original VLind-Bench scores).

E Data Samples

Here, we provide some data samples for each con-
cept (next page). For the notations, please refer to
the section 3.

F Information About Use Of Al
Assistants

In writing this paper, we utilized ChatGPT 2 for
paraphrasing.

Zhttps://chatgpt.com/
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Concept: climate

T : The city of Athens is now a snowy landscape, with the
Acropolis covered in a blanket of snow.

Ser - Athens is a snowy landscape.
Stact - Athens is known for its Mediterranean climate and ancient

ruins.

Sexist - Athens
Syil : pineapple

Concept: color

T.; : Apples are bright blue and the sky is apple red.
. - The apples are bright blue.

Stact - The apples are red.

Sexist : apple
Sy © ocean

Concept: diet
T, : A moose is savoring a bowl of macaroni and cheese.

Ser - The moose is eating macaroni and cheese.
Spaer : The moose is eating shrubs.

Sexist | MOOSE
Spil - skateboard

Concept: folklore

T+ : A dragon is baking cookies using an oven in a modern
kitchen.

Ser - The dragon is using an oven.
St - The dragon is breathing fire at a castle.

Sexist - dragon
Snil - bicycle

Concept: habitat

T¢ : Flamingos dance on the icy surfaces of glacial lakes, their
pink feathers contrasting with the snow.

Ser - The flamingos are found on glacial lakes.
Staet - The flamingos are native to warm, shallow lakes.

Sexist - flamingo
Spil - notebook

Figure 2: Data samples for concept of climate, color, diet, folklore, and habitat.
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I fact *

Concept: history
Ter : Viking settlements thriving in a rainforest.

Ser : Vikings established colonies in a rainforest.
Sraet ¢ Vikings did not colonize a rainforest.

Sexist - Tainforest
Sni - laptop

Concept: landmark

T+ : The Sphinx in Egypt is depicted with a lion's head instead of
a human head.

Ser - The Sphinx has a lion's head.
Spaee - The Sphinx has a human head.

Sexist - Sphinx
Sqit : bicycle

Concept: location
T.s : A ski resort is operating on a tropical island.

ser - Skiers are going down slopes next to palm trees.
Sract © The ski resort is located in a cold, mountainous region.

Sexist - Ski resort
Snit + lighthouse

Concept: size

T, : A person is playing with a pet ant, with the ant being as big
as a dog.

ser - The ant is bigger than the person's foot.
Srae © The person's foot is bigger than the ant.

Sexist © Person
Spit - waterfall

Concept: time

T.s : A knight in armor is seen riding a motorcycle instead of a
horse.

s.r - Knights rode motorcycles.
Staet - Motorcycles were not available during the time of knights.

Sexist - knight
Spil - waterfall

Concept: weight

T : A gummy bear is making a metal filing cabinet rise when
placed on a seesaw.

Ser - The gummy bear is heavier than the metal filing cabinet.
Spaer : The metal filing cabinet is heavier than the gummy bear.

Sexist © gUMmMYy bear
Spil : Mountain

Figure 3: Data samples for concept of history, landmark, location, size, time, and weight.



