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Abstract

This paper conducts a comprehensive layer-
wise analysis of self-supervised learning (SSL)
models for audio deepfake detection across di-
verse contexts, including multilingual datasets
(English, Chinese, Spanish), partial, song, and
scene-based deepfake scenarios. By system-
atically evaluating the contributions of differ-
ent transformer layers, we uncover critical in-
sights into model behavior and performance.
Our findings reveal that lower layers consis-
tently provide the most discriminative features,
while higher layers capture less relevant in-
formation. Notably, all models achieve com-
petitive equal error rate (EER) scores even
when employing a reduced number of layers.
This indicates that we can reduce computa-
tional costs and increase the inference speed
of detecting deepfakes by utilizing only a few
lower layers. This work enhances our un-
derstanding of SSL models in deepfake de-
tection, offering valuable insights applicable
across varied linguistic and contextual settings.
Our models and code are publicly available at
https://github.com/Yaselley/SSL_Layerwise
_Deepfake.

1 Introduction

Recent advancements in speech synthesis and voice
conversion have resulted in high-fidelity synthetic
audio, which can convincingly mimic real human
voices (Kumar et al., 2023; Huang et al., 2023;
Yi et al., 2023b). As a result, distinguishing be-
tween authentic speech and sophisticated deepfake
audio has become increasingly challenging (Khan
et al., 2022). This poses a significant threat, partic-
ularly for Automatic Speaker Verification (ASV)
systems which are widely used for authentication
in access control, telephone banking, and forensic
investigations (Anjum and Swamy, 2017; Li et al.,
2024). The potential for social and economic harm
is evident, as highlighted by many incidents like
the $243,000 scam, which exploited voice mimicry

to deceive a CEO (Damiani, 2019). Such threats
underscore the urgent need for effective audio deep-
fake detectors to ensure the security and trustwor-
thiness of ASV systems.

In light of these challenges, SSL has emerged as
a promising approach in speech processing. They
are capable of extracting rich features from vast
amounts of unlabeled audio data, which have en-
hanced the accuracy in speaker verification and
speech recognition tasks (Mohamed et al., 2022;
Borgholt et al., 2022; Yang et al., 2021; Tsai et al.,
2022; Shon et al., 2022). Many studies show that
features derived from SSL methods consistently
outperform traditional acoustic features across var-
ious tasks (Babu et al., 2021; Xie et al., 2021;
Martín-Doñas and Álvarez, 2022; Wang and Yam-
agishi, 2021). This suggests a new direction for
enhancing the resilience of speech systems against
deepfake threats.

While previous studies have highlighted the po-
tential of SSL models in deepfake detection, a thor-
ough layer-wise analysis of SSL models remains
largely unexplored. Most current research focuses
on deepfakes created exclusively in English within
full-utterance audio scenarios, leaving several im-
portant questions unanswered: (1) How effectively
do SSL models detect deepfakes across diverse sce-
narios, including multiple languages, partial, song,
and scene deepfakes? (2) How do different layers
of SSL models behave in these varying conditions,
and is their performance consistent across different
setups? (3) Which layers yield the most discrimi-
native features for differentiating real audio from
deepfakes?

In this paper, we address these gaps by undertak-
ing a comprehensive analysis of SSL models across
various settings. This includes (1) full speech utter-
ance deepfake detection in English (En), Chinese
(Zh), and Spanish (Es); (2) partial speech utter-
ance detection in English and Chinese; and (3)
detection song-based and scene-based (acoustic en-
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vironment) deepfakes. By examining layer-wise
contributions, we aim to provide insights into the
effectiveness of SSL models in multiple languages
and contexts.

Our main contributions in this paper are as fol-
lows:

• We show that the lower layers of the SSL mod-
els (Wav2Vec2, Hubert, and WavLM) play a
more crucial role than the upper layers in de-
tecting audio deepfakes. This is consistent
across multiple languages and setups (full,
partial deepfakes, song, scene) using differ-
ent back-end classifiers.

• We demonstrate that utilizing only the lower
layers of SSL models: 4-6 layers for Small
models and 10-12 layers for Large models,
achieves performance comparable to, or even
surpassing, that of the full model while main-
taining generalizability across diverse datasets
and setups.

This research represents a pioneering effort to con-
duct a comprehensive layer-wise analysis of SSL
models in the context of deepfake detection, encom-
passing a wide range of languages and settings.

2 Background

Traditional audio deepfake detection methods rely
on hand-crafted acoustic features like MFCC,
LFCC, or CQCC (Chakroborty et al., 2008; Alegre
et al., 2013; Li et al., 2023; Sahidullah et al., 2015;
Todisco et al., 2017). These methods require expert
knowledge and may overlook essential discrimi-
native information (Tak et al., 2020). As a result,
while effective on some datasets, such methods
struggle to generalize to new or unseen spoofing
attacks due to the static nature of the features. This
limitation leaves systems vulnerable to emerging
spoofing techniques. Therefore, more robust and
flexible anti-spoofing strategies are needed that can
automatically learn and extract relevant features
from raw speech data.

With advancements in deep neural network
(DNN) approaches, DNN-based methods have gen-
erally been adopted in two ways. First, they
can be used as back-end models with traditional
hand-crafted features as front-ends (Zhang12 et al.,
2021). In light of this, light convolutional neu-
ral network (LCNN) (Lavrentyeva et al., 2017;
Tomilov et al., 2021), residual neural network

(ResNet) (Lai et al., 2019), and siamese convolu-
tional neural network (Lei et al., 2020), have been
successfully applied to anti-spoofing systems using
MFCC, LFCC, or CQCC features. On the other
hand, end-to-end DNN modeling techniques have
been used to extract learnable embeddings directly
from raw audio and automatically extract features
relevant to anti-spoofing techniques. For instance,
AASIST (Tak et al., 2021) used SincNet (Ravanelli
and Bengio, 2018) to directly extract front-end fea-
tures from raw audio, with fixed cut-off frequencies.
Other structures as well, as explored in Bartusiak
and Delp (2022); Shim et al. (2022); Khan et al.
(2024), are applied directly to raw audio data or
combined with hand-crafted features to construct
deep embeddings through supervised training.

SSL models are large pre-trained frameworks
that serve as the backbone for various speech tasks.
These models excel in capturing high-quality repre-
sentations that can be fine-tuned for specific down-
stream applications. In the field of speech deepfake
detection, this approach has been widely adopted,
leading to state-of-the-art results. Studies have
shown that fine-tuning SSL models like Wav2Vec2
(Baevski et al., 2020) with a classifier can signifi-
cantly improve detection performance (Tak et al.,
2022). Alternatively, fine-tuning the XLS-R (Babu
et al., 2021) model and using features from the fifth
layer’s hidden states instead of the last layer has
also proven effective (Lee et al., 2022). Research
highlights that utilizing hidden state features from
various layers of pre-trained models can be highly
beneficial for deepfake detection (Martín-Doñas
and Álvarez, 2022).

Consequently, recent studies have focused on
leveraging multi-layer features from SSL models
to further enhance detection performance. Meth-
ods such as multi-fusion attentive classifiers (Guo
et al., 2024), attentive merging techniques (Pan
et al., 2024) with 10 & 12 layers, and their im-
proved versions (Guragain et al., 2024) have been
explored. Additionally, expert fusion techniques,
such as the Mixture of Experts method, have been
proposed to extract and integrate relevant features
for fake audio detection from multiple layers of
SSL models (Wang et al., 2024).

Recent advancements in multi-layer fusion tech-
niques underscore the importance of a deeper ex-
amination of layer-wise contributions in SSL mod-
els. While previous research has largely focused
on specific SSL models, particular classifiers, and
predominantly English datasets (Lee et al., 2022;
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Figure 1: Layer-wise Contribution Framework. The framework consists of SSL models as front-ends to extract features
and a back-end classifier. The front-end SSL models remain frozen during the experiments to evaluate the layer-wise feature
contribution. FF stands for Linear feed-forward layer.

Pan et al., 2024), our study provides a broader per-
spective. Unlike prior work, our methodology ex-
tends beyond these limitations by comprehensively
assessing deepfake detection tasks across various
SSL models, languages, and scenarios. This ap-
proach enables a thorough analysis of layer-wise
contributions. Our detailed analysis identifies the
most critical layers for audio deepfake detection,
enabling the development of computationally ef-
ficient models that maintain effectiveness across
diverse datasets.

3 Methodology

Figure 1 shows our Layer-wise Contribution Frame-
work. This framework provides insights into the
layer-wise contribution of different transformer lay-
ers in detecting deepfakes. This framework em-
ploys SSL models as front-ends to extract features
and a back-end classifier to perform classification
(real vs deepfake). To systematically assess layer-
wise contributions, we freeze the SSL model and
evaluate the contribution of each transformer layer
to the final detection performance.

Let x represent the input audio signal, which is
passed through an SSL model. This model is com-
posed of L transformer layers, where the output of
each layer l can be denoted as hl. The features hl

extracted from each layer l ∈ {1, 2, ..., L} are then
weighted by a layer-wise importance factor wl.

We follow a weighted aggregation of the ex-
tracted features, where the final representation
hfinal used for classification is given by:

hfinal =

L∑

l=1

wlhl (1)

The weights wl are learnable parameters, and
their values are constrained to sum to one by apply-
ing a softmax function:

wl =
exp(wl)∑L

k=1 exp(wk)
(2)

This normalization ensures that the contributions
from different transformer layers are appropriately
scaled. The back-end classifier receives hfinal as
input and generates the prediction ŷ for the detec-
tion task. This setup allows us to investigate which
layers contribute most to the detection of audio
deepfakes across various settings.

3.1 Front-Ends: SSL Models

We experiment with 6 different front-end SSL mod-
els: small (base) and large versions of Wav2Vec2,
Hubert (Hsu et al., 2021), and WavLM (Chen et al.,
2022). These models are the most commonly
used SSL models for audio deepfake detection.
Wav2Vec2, Hubert, and WavLM also differ in their
pre-training objectives.

Wav2Vec2.0 Wav2Vec2 is a contrastive SSL
model designed to learn speech representations by
predicting latent features from masked audio re-
gions. The architecture consists of two main com-
ponents: a feature extractor and a stack of trans-
former layers. The feature extractor is a convolu-
tional network (CNN) with 512 channels, designed
to process audio segments of approximately 25ms
from 16kHz sampled audio. The CNN compresses
the input with strides and kernel sizes optimized
to operate every 20ms. The model comes com-
monly in 2 configurations: the base version with
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Figure 2: Heatmap of Normalized Layer-wise weights Across Various Datasets using Small SSL Models. AVERAGE
row representing the average weights across datasets.

12 transformer layers and a hidden state dimen-
sion of 768, and the large version with 24 layers
and a dimension of 1024. Wav2Vec2 is trained
using Contrastive Predictive Coding (CPC) loss,
which distinguishes between positive and negative
samples by learning contextualized audio represen-
tations. This contrastive approach enables it to ef-
fectively model the underlying structure of speech
data.

Hubert Hubert follows a similar architecture to
Wav2Vec2.0, consisting of a convolutional feature
extractor followed by a stack of transformer layers.
However, it differs in its self-supervised training ob-
jective. Instead of contrastive loss, Hubert employs
a masked prediction approach, where the model is
trained to predict discrete target representations de-
rived from clustered speech features. Initially, these
targets are obtained through k-means clustering
on MFCC features, and in later stages, the model
learns from its embeddings. This iterative refine-
ment enables Hubert to capture meaningful speech
representations without requiring frame-level la-
bels.

WavLM WavLM follows the same overall archi-
tecture as Wav2Vec2.0 and Hubert, consisting of a
convolutional feature extractor and a stack of trans-
former layers. Like Hubert, it employs a masked
prediction objective, but it extends this approach by
incorporating speech enhancement techniques and

training on both clean and noisy speech. This addi-
tional training data improves its robustness in real-
world scenarios, particularly for speaker-related
tasks such as speaker verification and separation.
Compared to Hubert, WavLM introduces an auxil-
iary denoising task, enabling better performance in
diverse acoustic environments.

Model Selection and Multilingual Setup For
our experiments, we use publicly available pre-
trained models for both Wav2Vec2, Hubert, and
WavLM. Specifically, we utilize multilingual ver-
sions of Hubert1, WavLM (both small and large)2,
and Wav2Vec2 Large3. For the Wav2Vec2 small
model, we opt for the English pre-trained variant
due to the absence of a small multilingual pre-
trained version.

3.2 Back-End Classifiers: FFN vs AASIST

We explore two different back-end models: (1)
a simple lightweight feedforward neural network
(FFN), and (2) the state-of-the-art AASIST (Jung
et al., 2022) model. We experiment with these two
back-end models to demonstrate the generalizabil-
ity of layer-wise contributions across different clas-
sifier architectures. This ensures that our findings
are not limited to a specific back-end structure.

1mHuBERT-147
2unilm/blob/master/wavlm
3fairseq/blob/main/examples/wav2vec/xlsr
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Figure 3: Heatmap of Normalized Layer-wise weights Across Various Datasets using Large SSL Models. AVERAGE
row representing the average weights across datasets.

3.2.1 FFN

We use the lightweight back-end classifier ap-
proach from (Martín-Doñas and Álvarez, 2022) for
our deepfake detection task as shown in Figure 1.
Let H = [h1,h2, . . . ,hT ] represent the weighted
sequence of feature vectors extracted from the
front-end SSL model, as defined in Equation 1.
Each vector ht ∈ Rd, where d = 768 for SSL
base models & d = 1024 for SSL large models,
is first passed through a batch normalization layer.
The normalized vectors are then processed by two
feedforward (FF) layers with a hidden dimension
of 128, using the SELU activation function and
dropout for regularization. Next, the processed vec-
tors ht are aggregated using an attentive statistical
pooling layer (Okabe et al., 2018), which computes
a weighted mean and standard deviation over the
time steps, producing a fixed-length representation
for the entire utterance. This attentive pooling con-
denses the variable-length input sequence into a
single vector of size 256. Finally, the pooled repre-
sentation is projected into 2 classes.

3.2.2 AASIST

AASIST (Jung et al., 2022) is a state-of-the-art
model that utilizes graph-based attention mecha-
nisms to capture both spectral and temporal audio
features. Its key components include: (1) Graph
Attention Layer (GAT), which computes attention
maps for spectral and temporal features using lin-

ear layers, batch normalization, and SELU acti-
vation; (2) Heterogeneous Graph Attention Layer
(HtrgGAT), which processes and refines both spec-
tral and temporal nodes; (3) a graph pooling layer,
which selects the top-k nodes based on attention
scores; (4) residual blocks, which apply convolu-
tional layers and SELU activation to process fea-
tures; and (5) an attention mechanism that extracts
spectral and temporal features from encoded data.

4 Experimental Design

4.1 Datasets
Table 2 summarizes datasets used in this study.
These datasets are very diverse including both full
utterance deep fakes (Full Fake) and partial ut-
terance deepfakes (Partial Fake) in multiple lan-
guages: English (En), Chinese (Zh), and Spanish
(Es). Additionally, Scene-based and Song deep-
fake setups are included. All datasets leverage
cutting-edge TTS and VC generation techniques
for creating audio deepfakes. Additional details on
the different setups can be found in Appendix A,
while Appendix B provides further information on
the datasets.

4.2 Training setup
We employ the cross-entropy (CE) loss function
and the Adam optimizer, setting the learning rate
to 1e−4 and a dropout rate of 0.2, with a batch
size of 32 for training our models. During training,
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Datasets
Back-End Front-end #Layers LA19 LA21 DF21 ADD23.1.2.1 ADD23.1.2.2 HABLA PartialSpoof HAD† SceneFake CtrSVDD
Wav2Vev2-Small FFN 2 0.63 6.31 15.09 58.31 67.14 9.80 3.13 22.47 13.06 19.34

4 0.58 7.08 12.1 60.07 69.73 9.87 2.64 24.18 11.20 17.10
6 0.48 5.53 14.02 63.30 73.77 9.87 2.58 19.55 9.99 17.73
12 0.68 6.33 15.58 64.43 74.10 9.94 2.69 17.63 9.26 17.83

AASIST 2 0.63 5.09 15.01 62.59 66.85 9.96 2.97 37.43 12.48 15.92
4 0.55 5.69 12.17 56.12 63.03 10.02 1.82 36.41 9.87 20.42
6 0.92 6.48 12.50 57.78 65.62 10.09 2.11 34.65 10.87 16.80
12 1.02 5.08 15.80 58.59 64.91 10.11 2.25 30.24 9.54 16.67

WavLM-Small FFN 2 3.41 27.13 17.98 57.27 63.22 9.91 3.36 31.32 12.27 19.18
4 2.55 30.15 13.90 57.19 63.57 9.88 2.86 22.43 7.64 14.47
6 1.85 25.03 12.34 57.46 62.73 9.99 2.12 21.74 4.07 12.61
12 2.92 29.73 13.19 61.12 66.18 10.14 2.14 19.00 2.44 15.10

AASIST 2 0.55 21.26 17.70 64.33 70.01 10.08 3.00 28.5 8.45 17.92
4 0.26 21.51 12.42 54.47 58.86 10.14 2.18 31.03 5.79 15.89
6 0.26 25.26 11.76 55.85 60.02 10.05 1.84 30.87 3.80 14.83
12 0.57 39.87 15.48 58.55 66.05 10.10 1.97 23.21 2.68 14.25

Hubert-Small FFN 2 0.98 11.7 13.3 56.46 64.14 9.97 3.28 25.65 11.29 18.09
4 0.60 6.78 9.40 57.92 65.09 9.94 2.33 18.67 4.83 17.33
6 0.44 6.92 9.39 59.81 67.63 9.86 2.54 15.99 3.25 16.24
12 0.63 6.61 11.01 64.53 72.18 9.89 2.09 18.49 4.33 16.51

AASIST 2 0.68 5.5 15.11 57.69 63.17 10.03 3.37 32.62 8.70 17.73
4 0.37 5.42 11.53 58.10 66.38 10.04 2.05 26.46 4.31 14.72
6 0.39 4.55 11.33 61.07 70.54 10.01 1.96 29.72 4.52 13.72
12 0.96 4.35 12.37 60.25 66.11 10.08 1.88 29.65 6.31 18.73

Table 1: Mean EER Results Across Datasets Using Full and Partial Transformer Layers of SSL Small Models. #
Indicates the Number of Layers Used from the Front-End SSL Models. Best Average EER is Highlighted in yellow.
†We trained on the HAD training set and reported results on PartialSpoof eval set.

Dataset Language Split

Full Fake

ASVspoof 2019 (19LA) (Nautsch et al., 2021) En Train & Eval
ASVspoof 2021 (21LA)* (Yamagishi et al., 2021) En Eval
ASVspoof 2021 (21DF)* (Yamagishi et al., 2021) En Eval
ADD23 (Track 1.2)+ (Yi et al., 2023a) Zh Train & Eval
HABLA (Flórez et al.) Es Train & Eval

Partial Fake

PartialSpoof (Zhang et al., 2021) En Train & Eval
Half-Truth (HAD)† (Yi et al., 2021) Zh Train

Song

CtrSVDD (Zhang et al., 2024) Multilingual Train & Eval

Scene

SceneFake (Yi et al., 2024) En Train & Eval

Table 2: Summary of datasets used in this study. *Evaluated
on models trained with LA19; + focused on Track 1.2 (Full
Fake) with two eval sets, ADD23.1.2.1 and ADD23.1.2.2.
†We trained on the HAD training set and reported results on
PartialSpoof eval set.

we freeze the SSL model parameters and update
only the back-end classifier’s parameters with the
weights in Equation 1 initialized to ones. We train
our models for 50 epochs, applying early stopping
with patience of 10 epochs based on evaluation
loss. We use a single NVIDIA H100 GPU to run
our experiments. Each experiment is repeated 3
times with different seeds for reliable results and
the average results are reported. We either crop
or concatenate the audio data to create segments
of approximately 4 seconds in duration (64,600
samples)4. We evaluate the model performance
using the standard equal error rate (EER) metric.

4For Partial Fake, we used full audio

5 Results and Discussion

5.1 Layer-wise Contribution Analysis
After training SSL Model + Back-end classifiers
with different datasets, we extract the layer-wise
weights as outlined in Equation 2 to study the con-
tribution of each layer to the task. For analysis,
we first normalize these weights and then visualize
them as heatmaps (we reported the average across
3 experiments for each dataset), as illustrated in
Figures 2 and 3.

Small SSL Models Figure 2 presents the normal-
ized layer-wise weights after training Wav2Vec2-
Small, Hubert-Small, and WavLM-Small front-end
models, using FFN and AASIST back-ends across
various datasets. The results consistently show that
the highest contributions come from lower layers
(1-6) across all datasets and setups (speech, scene,
and song), indicating that these layers capture the
most discriminative features for the deepfake de-
tection task. This pattern holds regardless of the
back-end classifier used, suggesting that the clas-
sifier choice does not significantly impact the task
reliance on lower layers. However, slight variations
are observed in certain cases, such as PartialSpoof
where intermediate layers contribute more signifi-
cantly using FFN.

Looking at the average (AVERAGE) layer-wise
weights across datasets, the trend becomes even
clearer, with lower layers (1-4) consistently show-
ing the highest contributions. This confirms the
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Datasets
Back-End Front-end #Layers LA19 LA21 DF21 ADD23.1.2.1 ADD23.1.2.2 HABLA PartialSpoof HAD† SceneFake CtrSVDD
Wav2Vev2-Large FFN 4 0.37 19.77 14.45 55.59 69.45 9.92 4.43 35.19 9.09 17.65

6 0.18 13.35 7.74 51.08 65.51 9.89 3.81 24.89 4.02 14.19
8 0.15 9.82 5.85 45.82 60.75 9.91 2.92 21.92 3.01 14.73
10 0.17 6.43 5.27 46.78 60.98 9.99 2.91 19.64 2.73 13.61
12 0.21 5.96 4.20 45.17 57.76 9.96 2.91 18.42 3.65 14.31
24 0.21 4.63 4.14 46.29 59.91 10.01 2.48 16.83 2.96 13.18

AASIST 4 0.69 13.41 18.77 61.76 70.28 10.05 8.11 43.73 6.40 19.3
6 0.54 9.61 12.40 52.83 66.10 10.04 5.78 33.27 4.15 15.04
8 0.90 11.05 9.80 46.56 61.11 10.05 3.56 30.58 4.38 14.37
10 0.80 8.65 10.51 46.57 59.28 10.05 3.66 27.09 3.08 14.12
12 0.21 7.95 9.38 45.83 60.05 10.04 2.99 24.74 3.58 14.19
24 0.73 10.24 8.12 49.69 61.31 10.11 1.87 26.51 4.25 13.34

WavLM-Large FFN 4 1.32 13.17 15.97 57.85 69.87 9.99 5.99 27.05 5.14 21.27
6 0.43 8.82 12.36 55.01 68.51 10.03 5.05 24.93 4.89 19.88
8 0.33 8.00 9.32 52.11 68.02 10.03 3.57 19.02 4.19 16.62
10 0.23 8.30 7.83 54.27 69.84 10.00 3.57 14.17 3.75 15.98
12 0.30 4.95 8.29 51.96 67.98 9.99 3.32 13.59 3.27 15.84
24 0.38 6.97 6.24 56.54 68.19 9.99 2.63 9.90 3.17 16.84

AASIST 4 0.89 8.33 19.63 54.17 68.11 10.06 12.85 39.79 3.61 17.25
6 0.44 10.14 13.88 55.05 67.69 10.11 8.45 41.48 2.96 15.84
8 0.38 8.04 12.72 53.57 68.03 10.11 7.96 37.36 3.31 16.14
10 0.57 6.77 14.71 54.56 68.72 10.15 5.43 36.21 3.49 13.74
12 0.52 7.79 12.98 48.50 65.10 10.14 9.09 43.26 4.85 14.00
24 0.57 8.17 9.29 51.21 67.32 10.12 3.53 43.43 3.96 15.51

Hubert-Large FFN 4 0.44 12.40 12.27 53.30 65.08 9.96 4.09 38.25 8.90 17.22
6 0.19 10.34 8.69 52.77 65.82 9.89 3.63 29.58 4.71 14.67
8 0.19 9.57 6.09 49.37 63.84 9.90 3.13 21.57 3.80 12.19
10 0.22 7.25 5.24 48.61 62.74 9.89 2.81 16.20 4.02 12.49
12 0.20 5.70 4.47 49.36 62.43 9.96 2.57 15.59 3.34 12.71
24 0.28 4.81 5.12 52.11 63.85 9.95 2.33 13.20 2.97 12.01

AASIST 4 0.70 12.26 16.98 53.29 63.53 10.06 6.54 34.97 4.79 17.18
6 0.64 10.58 15.07 48.54 61.47 10.04 6.38 29.40 5.38 13.58
8 0.32 6.70 12.59 45.35 58.91 10.08 4.19 29.45 4.14 11.17
10 0.23 7.84 10.64 45.4 59.06 10.05 2.50 27.29 4.47 10.52
12 0.27 5.41 10.29 46.27 56.97 10.06 2.47 17.05 3.11 11.04
24 0.47 6.65 8.46 45.44 59.84 10.09 2.37 22.67 3.64 11.16

Table 3: Mean EER Results Across Datasets Using Full and Partial Transformer Layers of SSL Large Models. #
Indicates the Number of Layers Used from the Front-End SSL Models. Best Average EER is Highlighted in yellow.
†We trained on the HAD training set and reported results on PartialSpoof eval set.

dominant role of lower layers in the deepfake per-
formance of small SSL models.

Large SSL Models Figure 3 shows the nor-
malized layer-wise weights for Wav2Vec2-Large,
Hubert-Large, and WavLM-Large front-end mod-
els. Unlike the concentrated lower-layer contri-
butions seen with small SSL models, large SSL
models display a lesser concentrated pattern of
layer importance, especially with the FFN back-
end. For Wav2Vec2-Large, Hubert-Large, and
WavLM-Large, lower layers (2-13) still contribute
significantly across most datasets when using both
FFN and AASIST back-ends. However, a shift to-
wards middle layers (12-21) is observed in Partial-
Spoof. When looking at the average (AVERAGE)
layer-wise weights, this trend remains stable across
SSL models and back-end classifiers, with the high-
est contributions emerging in lower layers (1-12),
particularly around the 4-7th layers.

Focus on Local Features Across Models Across
all models, there is a consistent reliance on the
lower layers, particularly layers 1-6 in Small SSL
models and layers 1-12 in Large SSL models. This
trend suggests that the models focus on local fea-
tures, which aligns with how audio deepfake de-

tectors identify artifacts left by VC and TTS al-
gorithms. These artifacts often reside in specific
frequency sub-bands or temporal segments, high-
lighting the significance of local feature extraction
(Sriskandaraja et al., 2016; Tak et al., 2020).
Particularly, in our investigation of the PartialSpoof
data, we observed significant disfluency in certain
speech segments, indicating that the model tends
to focus more on the transitions between fake and
real segments as shown in (Liu et al., 2024). This
may explain the model’s increased reliance on in-
termediate and upper SSL layers, which are more
effective at capturing disfluent speech patterns, as
demonstrated in (Shih et al., 2024).

5.2 Performance of Reduced-Layer SSL
Models

This section investigates the capabilities of SSL
models when limited to a reduced number of
transformer layers. We evaluate Wav2Vec2-Small,
Hubert-Small, and WavLM-Small using 2, 4, and 6
layers, as well as Wav2Vec2-Large, Hubert-Large,
and WavLM-Large using 4, 6, 8, 10, and 12 lay-
ers. These configurations are guided by our ear-
lier layer-wise analysis. The reduced-layer mod-
els are trained under the same conditions as the
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Wav2Vec-Small WavLM-Small Hubert-Small AVGout

#Layers FFN AASIST AVGin #Layers FFN AASIST AVGin #Layers FFN AASIST AVGin

2 21.53 22.89 22.21 2 24.51 24.18 24.35 2 21.49 21.46 21.48 22.68
4 21.46 21.61 21.54 4 22.46 21.26 21.86 4 19.29 19.94 19.62 21.01
6 21.68 21.78 21.73 6 20.99 21.45 21.22 6 19.21 20.78 20.00 20.98
12 21.85 21.42 21.64 12 22.20 23.27 22.74 12 20.63 21.07 20.85 21.74

Wav2Vec-Large WavLM-Large Hubert-Large
#Layers FFN AASIST AVGin #Layers FFN AASIST AVGin #Layers FFN AASIST AVGin

4 23.59 25.25 24.42 4 22.76 23.47 23.12 4 22.19 22.03 22.11 23.22
6 19.47 20.98 20.23 6 20.99 22.6 21.80 6 20.03 20.11 20.07 20.70
8 17.49 19.24 18.37 8 19.12 21.76 20.44 8 17.97 18.29 18.13 18.98
10 16.85 18.38 17.62 10 18.79 21.44 20.12 10 16.95 17.80 17.38 18.37
12 16.26 17.90 17.08 12 17.95 21.62 19.79 12 16.63 16.29 16.46 17.78
24 16.06 18.62 17.34 24 18.09 21.31 19.7 24 16.66 17.08 16.87 17.97

Table 4: Reported average EER across datasets using different Wav2Vec2, Hubert, and WavLM SSL models with
different back-end layers. AVGin represents the average EER across datasets for each SSL model, calculated by
first averaging the EER for different back-ends (FFN and AASIST) within the same reduced-layer model. AVGout

indicates the overall average of AVGin, calculated separately for SSL Small and SSL Large models. #L indicates
the number of transformer layers.

initial full models described in Section 4.2, and
their performance is assessed across the same
datasets and setups. We introduce a notation where
"SSLModel-X" represents a model with X layers
(e.g., Wav2Vec2-Small-4 denotes Wav2Vec2-Small
with 4 layers).

Performance Comparison Across Deepfake Sce-
narios Our analysis demonstrates that reduced-
layer SSL models perform on par with, or even
better than, full-layer models in various deepfake
detection scenarios. As shown in Tables 1 and 3,
no single configuration consistently outperforms
across all datasets and back-end classifiers. While
full models excel in some cases, reduced mod-
els—especially 4- and 6-layer configurations for
small models and 8-, 10-, and 12-layer configura-
tions for large models—achieve comparable and
superior results in others.

For example, Wav2Vec2-Small-6+FFN achieves
a lower EER of 0.48% on LA19 compared to
0.68% for the full model, with better generalization
on LA21 and DF21. WavLM-Small-6+FFN outper-
forms the full model on 6 out of 10 datasets. The
WavLM-Small-4+AASIST configuration yields an
EER of 54.47% on ADD23.1.2.1, compared to
58.55% for the full model, indicating the effec-
tiveness of reduced layers. Hubert-Small shows
similar trends, with reduced-layer models perform-
ing either comparably or better than the full model.
For instance, the Hubert-Small-6+ASSIST model
scores 13.72% on the CtrSVDD dataset, outper-
forming the full model’s 18.73%. However, on the
SceneFake datasets, full models for both Wav2Vec-
Small and WavLM-Small consistently outperform

the reduced-layer versions, although the difference
is minimal, ranging from 0.5% to 1.5% EER.

For Large SSL models, the Wav2Vec2-Large-
12+AASIST configuration significantly reduces the
EER to 0.21% on LA19, outperforming the full
model while maintaining as well generalization on
LA21 and DF21. Specifically, it shows a 2.29%
gain on LA21, with only a slight 1.26% reduction
on DF21. The WavLM-Large-12+FFN configu-
ration achieves 15.84% EER on CtrSVDD, out-
performing the full model. Hubert-Large follows
a similar trend, with the 8-layer model reaching
0.19% EER on LA19, and Hubert-Large-12+FFN
achieving the best result on DF21 with an EER of
4.47%.

Across critical datasets such as ADD23, reduced-
layer models consistently outperform full models:
Wav2Vec2-Large-12+FFN achieves 45.17% EER
on ADD23.1.2.1, WavLM-Large-12+FFN reaches
51.96%, and Hubert-Large-10 hits 48.61%. In
contrast, for PartialSpoof, full models consistently
outperform the reduced-layer SSL models, align-
ing with our observation in Figure 3, where the
upper-middle layers contribute most to this dataset.
Nonetheless, despite the reduced-layer SSL mod-
els not significantly lowering the results, the differ-
ences between the best reduced-layer models and
full models remain minimal, with EER differences
ranging from 0.24% to 1.9%.

5.3 Optimal Layer Configuration Across
Datasets

Our results reveal that using 4-6 layers for the
Small models (Wav2Vec-Small, Hubert-Small,
WavLM-Small) and 10-12 layers for the Large
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models (Wav2Vec2-Large, Hubert-Large, WavLM-
Large) consistently delivers strong average perfor-
mance across various datasets. As illustrated in
Table 4, AVGin represents the average EER across
datasets for each SSL model, computed by av-
eraging the EER for the different back-end con-
figurations (FFN and AASIST) within the same
reduced-layer model. The AVGout column pro-
vides the overall average of AVGin, calculated sep-
arately for Small and Large SSL models. Notably,
Wav2Vec2-Small-6, Hubert-Small-6, and WavLM-
Small-6 achieve an AVGout of 20.98%, while
Wav2Vec2-Small-4, Hubert-Small-4, and WavLM-
Small-4 reach 21.01%, outperforming both the
full SSL model and other reduced-layer configu-
rations. Likewise, the 12-layer configuration for
the Large models also demonstrates optimal per-
formance, with an AVGout of 17.78%, showing its
robustness across datasets. However, in some cases,
the full model outperforms other configurations,
such as with Wav2Vec-Small-AASIST, Wav2Vec2-
Large-FFN, and WavLM-Large-AASIST. Despite
this, the reduced-layer models come close in perfor-
mance, with minimal degradation in EER, ranging
from a 0.31% to 0.72% difference.

6 Small vs Large SSL Models

When comparing Small and Large SSL models
across various datasets, no significant performance
difference is observed for most datasets, including
LA19, LA21, HABLA, PartialSpoof, and Scene-
Fake. However, for more recent datasets, where
deepfake models are more advanced, such as DF21,
ADD23.1.2.1, and ADD23.1.2.2, larger architec-
tures are essential for capturing subtle deepfake
artifacts and improving generalization across lan-
guages, as demonstrated with HAD5. For instance,
Tables 1 and 3 show a 10.95% difference in EER is
observed when comparing the best performance of
Wav2Vec-Small on ADD23.1.2.1 with Wav2Vec-
Large. A 6.2% difference in EER is also noted
between WavLM-Small and WavLM-Large on
ADD23.1.2.2. On the other hand, Hubert-Large
achieves its best performance on CtrSVDD with an
EER of 10.53%, lagging behind the best Hubert-
Small configuration by 3.19% EER difference.

5Models trained on HAD training set but evaluated on
PartialSpoof eval set.

7 Conclusion

This study provides a comprehensive layer-wise
analysis of SSL models for audio deepfake detec-
tion, covering multilingual datasets and a range of
deepfake types, including Full Fake, Partial Fake,
and Song- and Scene-based scenarios. Our results
show that using only first 4-6 layers for Small mod-
els and 10-12 layers for Large models consistently
delivers optimal performance across datasets, re-
ducing parameters by at least half. This signifi-
cantly lowers computational costs while maintain-
ing competitive EER scores.

8 Limitations

Our study provides a comprehensive layer-wise
analysis of SSL models for deepfake detection
across languages and contexts, but it has some limi-
tations. We did not investigate the latest Audio Lan-
guage Models and Speech tokenizers used for audio
deepfake generation (Xie et al., 2024), which might
lead to different artifacts and model behavior. Ad-
ditionally, we focused solely on speech-based SSL
models, excluding acoustic SSL models. Future
work could explore these models, especially for
tasks involving non-speech artifacts, like those in
the SceneFake dataset. We also plan to investigate
alternative fusion strategies, such as attentional fu-
sion, beyond a simple weighted-sum layer-wise
combination.
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A Setup Description

In this study, various types of audio deepfakes are
utilized to evaluate the performance of SSL. These
deepfakes are categorized as follows:

Full Fake: The entire utterance is generated us-
ing voice conversion (VC) or text-to-speech (TTS)
technologies. No part of the original speech re-
mains intact.

Partial Fake: Only specific segments or words
from the original utterance are replaced with VC
or TTS-generated content. The remainder of the
utterance is real.

Song: These setups involve utterances accom-
panied by background music, with corresponding
speech content either real or deepfaked.

Scene: In these cases, the speech itself is real,
but the background environment or context has
been altered (e.g., a different ambiance or noise is
introduced to simulate a new scene).

B Datasets

In this section, we provide information about dif-
ferent datasets used in the study:

B.1 ASVSpoof19 (LA19):

Our work focuses on the LA subset of the
ASVSpoof19 database, which contains both
bonafide (real) and spoofed speech (deepfake) data.
The spoofed data is generated using 17 different
TTS and Voice VC systems. While the TTS and
VC systems were trained on data from the VCTK6

database, there is no overlap with the data in the
2019 database. Of the 17 systems, 6 are categorized
as known attacks, and the remaining 11 are clas-
sified as unknown. The training and development
sets consist exclusively of known attacks, while
the evaluation set includes 2 known attacks and 11
unknown spoofing attacks. Among the 6 known
attacks, 2 are VC systems and 4 are TTS systems.

B.2 ASVSpoof21 (LA21 & DF21):

The ASVspoof21 evaluation dataset contains
bonafide and spoofed speech transmitted over vari-
ous telephony systems, including VoIP and PSTN.
While no additional noise is introduced, transmis-
sion introduces variability and artifacts from both
spoofing and encoding. Unlike previous LA tasks,
LA21 includes acoustic propagation, with all data
featuring reverberation and noise. The evaluation

6https://datashare.ed.ac.uk/handle/10283/2651
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set includes recordings from the same 48 speak-
ers (21 male, 27 female) as ASVspoof 2019. The
DF21 task simulates an attack where the attacker
has access to a victim’s voice data, such as audio
from social media. The dataset is sourced from the
VCTK corpus and additional undisclosed datasets.

B.3 ADD23 (Track1.2):

ADD23 Track 1.2 focuses on detecting fake ut-
terances, particularly those generated in Track 1.1
(from the ADD23 challenge). The training and
development sets are the same as those used in
Track 3.2 of ADD 2022(Yi et al., 2022), com-
prising both real and fake utterances based on the
AISHELL-3 dataset (Shi et al., 2020). The evalua-
tion phase includes two distinct datasets, referred
to as ADD23.1.2.1 and ADD23.1.2.2.

B.4 HABLA:

The HABLA dataset is a Spanish-language anti-
spoofing corpus that includes accents from Ar-
gentina, Colombia, Peru, Venezuela, and Chile.
It contains more than 22,000 genuine speech sam-
ples from both male and female speakers across
these five countries, alongside 58,000 spoofed sam-
ples generated using six different speech synthesis
methods. We use the train/dev/eval split provided
by the dataset authors.

B.5 PartialSpoof:

The PartialSpoof database is derived from the
ASVspoof 2019 LA dataset, which includes 17
types of spoofed data generated by advanced
speech synthesizers, voice converters, and hy-
brid systems. The same bonafide data from the
ASVspoof19 LA corpus is used to create partially
spoofed audio by following these steps: first, voice
activity detection (VAD) algorithms are applied,
and based on the detected boundaries, a randomly
selected segment of a bonafide utterance are re-
placed with a spoofed segment.

B.6 Half-Truth (HAD):

The HAD (Half-Truth Audio Detection) dataset is
focused on detecting partially fake audio, where
only a small portion of an utterance—such as indi-
vidual words—is altered using advanced TTS sys-
tems. It is based on the AISHELL-3 speech corpus,
which includes multi-speaker recordings designed
for TTS model training. The dataset provides the
challenging task of identifying subtle manipula-

tions in audio where most of the content remains
genuine.

B.7 CtrSVDD:
CtrSVDD is a diverse dataset focused on detect-
ing deepfake singing vocals. It consists of 47.64
hours of bona fide singing and 260.34 hours of
deepfake vocals generated using state-of-the-art
synthesis techniques. Deepfake songs span 14 dif-
ferent methods, including 7 speech synthesis and
7 voice conversion (VC) techniques. The dataset
includes 164 singer identities and provides a total
of 188,486 deepfake song clips and 32,312 genuine
song clips, with an average clip length of 5.02 sec-
onds. CtrSVDD offers a rich resource for studying
deepfake detection in singing, making it a valuable
tool for advancing research in this area.

B.8 SceneFake:
SceneFake is a dataset developed for scene fake au-
dio detection, focusing on manipulated audio sam-
ples generated by altering the acoustic scene of real
utterances using advanced speech enhancement
technologies. Unlike traditional datasets that mod-
ify timbre, prosody, or linguistic content, Scene-
Fake specifically addresses the challenge of de-
tecting audio where the background environment
has been tampered with. The dataset includes a
variety of real utterances paired with their manip-
ulated counterparts, and initial experiments indi-
cate that existing models trained on datasets like
ASVSpoof19 struggle to reliably detect scene fake
utterances.
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