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Abstract
Refusal-Aware Instruction Tuning (RAIT) aims
to enhance Large Language Models (LLMs)
by improving their ability to refuse responses
to questions beyond their knowledge, thereby
reducing hallucinations and improving relia-
bility. Effective RAIT must address two key
challenges: firstly, effectively reject unknown
questions to minimize hallucinations; secondly,
avoid over-refusal to ensure questions that
can be correctly answered are not rejected,
thereby maintain the helpfulness of LLM out-
puts. In this paper, we address the two chal-
lenges by deriving insightful observations from
the gradient-based perspective, and proposing
the Gradient-driven Refusal-Aware Instruction
Tuning Framework (GRAIT): GRAIT (1) em-
ploys gradient-driven sample selection to ef-
fectively minimize hallucinations and (2) intro-
duces an adaptive weighting mechanism during
fine-tuning to reduce the over-refusal. Experi-
ments on open-ended and multiple-choice ques-
tion answering tasks demonstrate that GRAIT
significantly outperforms existing RAIT meth-
ods in the overall performance. The source
code and data will be available at https://
github.com/opendatalab/GRAIT.

1 Introduction

Large Language Models (LLMs), including no-
table turbos like GPTs (OpenAI, 2022, 2023) and
LLaMA (Touvron et al., 2023; Dubey et al., 2024),
have achieved remarkable advances, demonstrating
exceptional capabilities across a diverse range of
downstream tasks (Kaplan et al., 2020; Vu et al.,
2024; Achiam et al., 2023; Bai et al., 2024a; Jiang
et al., 2024b,a). Despite this success, critical chal-
lenges persist, particularly in the generation of hal-
lucinations—the models generate incorrect or fab-
ricated information when confronted with unfamil-
iar or ambiguous queries (Ji et al., 2023; Feng et al.,
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Figure 1: Descriptions of C1 & C2. After RAIT, the
initial LLM model will largely reject unknown questions
to avoid errors. However, the overly conservative nature
of RAIT also led to a decrease in accuracy.

2024; Kang et al., 2024), which ultimately limits
the reliability and usefulness of LLMs.

Ideally, the responsible LLM should decline to
answer questions beyond its knowledge to mini-
mize hallucinations (Wen et al.; Li et al., 2024).
Recent studies (Yang et al., 2023; Zhang et al.,
2024a; Xu et al., 2024a; Cheng et al., 2024; Bai
et al., 2024b; Zhu et al., 2024) have developed
Refusal-Aware Instruction Tuning (RAIT), which
constructs the refusal-aware dataset and employs
Supervised Fine-Tuning (SFT) (Dong et al., 2024;
Ouyang et al.; Luo et al., 2024) to teach models to
appropriately decline responses. Typically, refusal-
aware datasets (Zhang et al., 2024a,b) categorize
training samples into ik (correct) and idk (incor-
rect) groups based on response correctness. Sam-
ples with incorrect responses (idk) are treated as
unknown knowledge and the answers are replaced
with refusal responses like “I don’t know”, while
the correct (ik) remain unchanged. Despite RAIT’s
success in reducing hallucinations (Zhang et al.,
2024a; Yang et al., 2023; Zhang et al., 2025; Wan
et al., 2024), studies like (Varshney et al., 2023)
and (Cheng et al., 2024) highlight that models can
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become overly cautious, leading to over-refusals.
Therefore, as shown in Figure 1 and Figure 2,
the RAIT should address the following two chal-
lenges simultaneously: C1. How to effectively re-
duce the hallucinations by refusing the unknown
questions? C2. How to avoid over-refusal to en-
sure questions that can be correctly answered
are not rejected?

To address these challenges, we introduce the
Gradient-based Refusal-Aware Instruction Tuning
Framework (GRAIT), which has several advan-
tages over previous RAIT methods: (1) Unlike
prior methods that rely solely on the outputs of
LLMs, GRAIT utilizes gradients to achieve a more
accurate representation of LLMs’ internal knowl-
edge states, ensuring better alignment between
the constructed training samples and the LLMs’
knowledge. (2) Our gradient-based sample selec-
tion process is more efficient, achieving compara-
ble training results with fewer samples (Xia et al.,
2024; Xu et al., 2024b). (3) By incorporating gradi-
ent information, we account for influences among
training samples (Ren and Sutherland, 2024), ef-
fectively minimizing sample conflicts (Zhu et al.,
2024) and better addressing the aforementioned
two challenges.

In practical implementation, we first derive two
theoretical observations (O1 & O2) by progres-
sively addressing reduced inaccuracies (C1) and
mitigating over-refusal (C2), which form the ba-
sis for designing GRAIT. Then in the framework
designing: ❶ For C1, we leverage the Refusal In-
fluence formula within the idk set to select a small
subset, enabling the LLMs to learn the refusal
paradigm while filtering out inefficient samples.
❷ For C2, we implement an adaptive weighting
method derived from the Stable Influence formula
between the correct and incorrect sample sets, as-
signing varying sample weights during the RAIT
phase to alleviate the issue of over-refusal. In sum-
mary, our contributions are as follows:

• To the best of our knowledge, we are the first to
conduct a theoretical analysis of the causes un-
derlying the over-refusal phenomenon in LLMs.

• The GRAIT framework establishes a comprehen-
sive workflow encompassing data construction
and fine-tuning, utilizing two gradient-driven ob-
servations to enhance the model’s refusal capa-
bility while effectively mitigating over-refusal.

• Through extensive experimental evaluation
on both open-ended question answering and

How many times have Liverpool won 
the Europion Cup?

3. (Wrong) Before RAIT

Case of Mitigating Hallucination

I don’t know. (Refusal) After RAIT

How many times have Liverpool won 
the Europion Cup?

For how many years was Richard III 
king of England?

Two. (Correct) Before RAIT

Case of Avoiding Over-Refusal

I don’t know. (Refusal) After Previous RAIT

For how many years was Richard III 
king of England?

After GRAIT(Ours)

For how many years was Richard III 
king of England?

Two. (Correct)

Figure 2: Case of mitigating hallucination and avoiding
over-refusal.

multiple-choice tasks, we demonstrate that
GRAIT surpasses existing baselines by signifi-
cantly reducing hallucination rates and enhancing
overall performance.

The paper is organized as follows. In Introduc-
tion (c.f. Section 1), we present our research ques-
tion and its corresponding two challenges (C1 &
C2). The Related Work (c.f. Section 2) provides
a literature analysis concerning each challenge. In
the Preliminary section (c.f. Section 3), we define
the symbols and tasks relevant to GRAIT. Fol-
lowing this, the Theoretical Analysis section (Sec-
tion 4) derives two observations, O1 & O2, in
a progressive manner corresponding to C1 & C2.
The Method section (Section 5) aligns O1 with data
construction and O2 with the RAIT phase. Section
6 introduces the experiment settings and the exper-
imental results. Finally, Section 7 concludes this
paper and discusses future research directions.

2 Related Work

2.1 Refusal-Aware Instruction Tuning
RAIT is a supervised technique designed to en-
hance the ability of LLMs to handle unanswerable
or uncertain questions by training them to respond
directly with “I don’t know” (Zhang et al., 2024a;
Yang et al., 2023; Zhu et al., 2024) through super-
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vised fine-tuning (SFT). In Wan et al. (2024), a
knowledge-based verification mechanism is pro-
posed to ensure that the model’s knowledge re-
mains consistent with external trusted sources to
prevent the spread of misinformation. Moreover,
CoKE (Chen et al., 2024) probes LLMs’ knowl-
edge boundaries via internal confidence given a
set of questions and then informs the LLM’s deci-
sion on whether to respond with “I don’t know”
based on the knowledge boundaries. Addition-
ally, (Zhu et al., 2024) and (Wang et al., 2024)
refine data filtering and modification by leveraging
both response certainty and correctness. Recent
works have incorporated Low-Rank Adaptation
(LoRA) (Hu et al.) and AdaLoRA (Wolfe et al.,
2024) into RAIT to achieve further improvements.
However, those RAIT methods tend to make LLMs
more conservative, leading to incorrect and even
over-refusals (Cheng et al., 2024).

2.2 Gradient Effect on LLMs’ Learning

Gradient-based methods are central to recent ad-
vances in data selection. For instance, (Zhao et al.,
2021; Xia et al., 2024; Yang et al., 2024) propose
Dataset Condensation, where synthetic data is cre-
ated by matching the gradients or the learning tra-
jectory of a deep model trained on a small synthetic
set to those of a model trained on the full dataset.
Similarly, (Killamsetty et al., 2021; Killamsetty
and Iyer, 2021) extend this concept with their Grad-
Match framework, which selects subsets of data
that closely align with the gradient information
from the full dataset, allowing for efficient training
with minimal performance degradation. More re-
cently, (Ren and Sutherland, 2024; Zhao and Bilen,
2020; Qiao et al., 2024; Bai et al., 2023) empha-
size that gradients can dynamically influence the
learning process of LLMs during fine-tuning. (Liu
et al., 2020; Xiao et al., 2024) study the influence
of gradient signal-to-noise ratio’s result on the test
set. While gradient-based selection techniques are
widely studied, applying these methods to RAIT
to mitigate issues such as hallucinations and over-
refusal remains largely unexplored, which presents
an opportunity for further research in RAIT.

3 Preliminary

(Definition 1. RAIT Dataset) The RAIT process
can be described as follows: the initial LLM is
prompted to answer all questions in the training set
Dsrc. Based on the correctness of the responses, the

samples are categorized into two groups. ❶ Sam-
ples with correct responses are considered known
knowledge of the LLM. These answers will remain
unchanged and are referred to as ik samples, de-
noted as Dik = {(xik, yik)} (where ‘ik’ stands for
‘I know’, xik is the known question and yik is the
ground-truth label). ❷ Conversely, samples with
incorrect responses are treated as unknown knowl-
edge. Their original answers are replaced with
refusal responses such as “I don’t know” forming
Didk = {(xidk, yidk)} (where ‘idk’ stands for ‘I
don’t know’, xik is the unknown question and yik is
modified refusal response such as “I don’t know”).
The constructed RAIT dataset, Drait = Dik ∪Didk,
is used to fine-tune the initial LLM, parameterized
by θ, to improve its ability to refuse to answer ques-
tions beyond its knowledge.

(Definition 2. Influence Formulation) To es-
timate the influence of a training datapoint on a
validation sample, we use the first-order Taylor ex-
pansion of the loss function (Pruthi et al., 2020)1.
Specifically, for a model θt at step t, the loss
on unobservant validation sample xu can be ap-
proximated as: L(xu, yu; θt+1) ≈ L(xu, yu; θt) +
⟨∇L(xu, yu; θt), θt+1−θt⟩. If the model is trained
using Stochastic Gradient Descent (SGD) with
batch size 1 and learning rate ηt, for the obser-
vant training sample xo, the SGD update is written
as: θt+1 − θt = −ηt∇L(xo, yo; θt). At this point,
we can define the influence formula of (xo, yo):

I(xo, yo, xu, yu; θt)
△
= ηt⟨∇L(xo, yo; θt),

∇L(xu, yu; θt)⟩.
(1)

(Task Definition) The objective of this task is
to leverage Drait to fine-tune a model and mini-
mize the loss on two distinct types of test samples.
Specifically, for samples that were previously in-
correct, we aim for the model to output answers
like “I don’t know”, while for correct samples, the
predicted label should be as close as possible to the
ground-truth label yik . The task can be formalized
as minimizing the following loss:

min
{
Exu

idk∼Didk [∆L(xu
idk, y

u
idk; θ)]

+Exu
ik∼Dik [∆L(xu

ik, y
u
ik; θ)]

}
,

(2)

In addition to minimizing it, a key objective of this
task is to select the most suitable subset D̃rait ⊆
Drait for fine-tuning (c.f. Section 4 for proof).

1The reasons for using the influence formula are outlined
in the appendix A.2
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By selecting optimal data from the RAIT dataset,
we aim to improve the model’s ability to refuse
answers to unknown questions while minimizing
over-refusal.

4 Theoretical Analysis

This part is organized as O1 → O2. Before obtain-
ing formal observation results, we first propose two
assumptions:

Assumptions 1. Distribution Assumption We as-
sume that the distributions of ik or idk from train
and test sets are identically distributed, formally
expressed as: ΠDo

idk
∼ ΠDu

idk
,ΠDo

ik
∼ ΠDu

ik
.

Assumptions 2. Orthogonality of Means We fur-
ther assume that the means of the gradient distri-
butions for idk and ik are orthogonal as verified
in Appendix A.3, and we have:

〈
Ex∗ [∇L(x∗, yidk; θ)] ,Ex∗ [∇L(x∗, yik; θ)]

〉
≈ 0, (3)

where the ∗ denotes the symbol of either idk or ik.

4.1 Reducing Incorrectness (O1)
We begin by focusing on minimizing the
loss to improve the rejection rate, specifi-
cally aiming to minimize the first term of (2)
Exu

idk∼Didk [∆L(xuidk, y
u
idk; θ)]. Then, combining

equation (1), we can express this as:

Exu
idk∼Didk

[
∆L(xu

idk, y
u
idk; θ)

]
≈ −E(xu

idk,x
o
idk)∼Didk

[I(xo
idk, y

o
idk, x

u
idk, y

u
idk; θ)]

(4)

and the full proof is detailed in Appendix A.1.1.
Thus, samples with gradients similar to the aver-

age gradient direction of Didk are the most effective
in reducing the model’s hallucination rate.

4.2 Alleviating Over-Refusal (O2)
However, we observed that if we optimize the
model merely depends on RAIT, it leads to the
issue of over-refusal (i.e., ik samples also tend
to output “I don’t know”). Therefore, we delved
deeper into the whole target in (2) and derived the
following( the full proof is detailed in Appendix
A.1.2):

Exu
idk∼Didk [∆L(xu

idk, y
u
idk; θ)] + Exu

ik∼Dik [∆L(xu
ik, y

u
ik; θ)]

≈−
{
Exu

idk
,xo

idk
∼Didk

[I(xo
idk, y

o
idk, x

u
idk, y

u
idk; θ)] −

Exu
ik∼Dik,x

o
idk∼Didk [I(xo

idk, y
o
idk, x

u
ik, y

u
idk; θ)]

}

(5)

The first expectation term in equation (5) cap-
tures the reduction in the model’s error rate, while

the second term reflects the occurrence of over-
refusal. Training samples where the difference be-
tween these two terms is smaller tend to exacerbate
over-refusal, though they may also contribute to
stronger overall model performance.

5 Methodology

In this Section, we follow the two observations
(O1&O2) in Section 4 and split GRAIT into three
stages:

• Stage 1: Construct Dik & Didk, which obtain
Dik & Didk by querying the internal state of
LLMs and modifying the label of the incorrect
set to ‘I don’t know’.

• Stage 2: Dataset Construction based on O1,
select idk samples from the first observation.

• Stage 3: Influence-directed Refusal-aware In-
struction Tuning based on O2, which allocates
different weight when Refusal-aware Instruction
Tuning from the second observation.

Figure 3 presents a detailed overview of our pro-
posed GRAIT framework, Algorithm 1 details the
overall process with subsequent subsections detail-
ing each component.

5.1 Stage 1: Construct Dik & Didk

In the first stage, we compute the accuracy C(x) for
each sample x. Our research focuses on two dis-
tinct tasks: Multiple-Choice Question Answering
(MCQA) and Open-Ended Question Answering
(OEQA). For the MCQA task, we use the token
probability of the ground truth to evaluate the cor-
rectness of each sample. In the OEQA task, the
model generates answers N times (with N = 10)
for each question, and we calculate accuracy based
on the generated responses.

Next, we construct the dataset Dik using sam-
ples with C(x) of the correctness threshold TC or
higher. For samples with C(x) below TC , we mod-
ify their output to “I don’t know” and construct
these samples into a separate dataset, Didk.

5.2 Stage 2: Dataset Construction based on
O1

In this module, as outlined in Algorithm1, we select
the most efficient data to train the model. First, for
the idk set Didk, we identify the most impactful
idk samples that significantly enhance the model’s
ability to refuse unknown questions based on the
conclusion of O1. Specifically, we approximate
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Figure 3: Overview of our framework. GRAIT contains three stages: (1) Constructing datasets Dik and Didk by
querying the internal state of LLMs. (2) Distilling the datasets to select idk samples based on the first observation
O1. (3) Performing Influence-directed Refusal-aware Instruction Tuning using the second observation O2.

(4) and define Refusal Influence of each training
sample on the model’s loss as:

Iref(x) =
〈
∇L(x; θ),Exo∼Didk [∇L(xo

idk, y
o
idk; θ)]

〉
, (6)

where x denotes the training sample, L is the loss
function, and θ represents the model parameters.
This influence metric allows us to assess the contri-
bution of each idk sample towards minimizing the
incorrectness. Building upon the influence scores,
we employ a ranking strategy to select the most
influential idk samples for fine-tuning:

Dselected
idk = {x ∈ Didk | Rank

(
Iref(x)

)
≤ Nidk}. (7)

The selected idk samples, which exhibit the high-
est refusal influence, will form a distilled dataset
used for targeted training. Furthermore, to ensure
computational efficiency, we apply two techniques
following (Xia et al., 2024) to construct valuable
low-dimensional gradient features: parameter effi-
cient fine-tuning via LoRA (Hu et al., 2021) and
random projections (Johnson and Lindenstrauss,
1984).

Secondly, for the dataset Dik, we select the
subset of data with the highest accuracy. Previous
work (Ren et al., 2024b) has demonstrated that us-
ing this subset for fine-tuning does not negatively
impact the model’s overall performance. The selec-
tion of this data can be represented as:

Dselected
ik = {x ∈ Dik | Rank

(
C(x)

)
≤ Nik}. (8)

5.3 Stage 3: Influence-directed Refusal-aware
Instruction Tuning based on O2

In this stage, we introduce an Influence-directed
Refusal-aware Instruction Tuning based on the con-
clusions from O2, which mentions that the issue
of Over-Refusal is closely related to the difference
in influence between training samples. The larger
this difference, the more stable the accuracy of the
model remains when learning the ability to reject.
Therefore, we propose the concept of Stable Influ-
ence and assign each sample a weight ω, which is
calculated as follows:

Ista(x) =
〈
∇L(x; θ),Exo∼Didk [∇L(xo

idk, y
o
idk; θ)]

− Exo∼Dik [∇L(xo
ik, y

o
idk; θ)]

〉
,

(9)

ω(xo) =
eI

sta(xo)/τ

Exo∼Dselected
idk

[eIsta(xo)/τ ]
, (10)

where xo represents a training sample, and τ refers
to the temperature parameter. As τ approaches
0, the differences in weight distribution become
more pronounced, while as τ approaches 1, the
changes in weights become minimal. The con-
straint

∑
ω(xo) = 1 ensures that the model main-

tains its ability to reduce error rates.
Finally, during training, we apply a weight to

the loss of the idk samples to mitigate over-refusal.
The SFT loss is calculated as follows:
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Algorithm 1 GRAIT Process
Input: Dsrc = {x0, x1, ..., xN}, TC , τ Nik, Nidk
Output: Drait

1: Dik = {x |x ∈ Dsrc, C(x) ≥ TC}
2: Didk = {x |x ∈ Dsrc, C(x) < TC}
3: gidk(Didk) =

1
|Didk|

∑
x∈Didk

x.gidk

4: gidk(Dik) =
1

|Dik|
∑

x∈Dik
x.gidk

5: for xi in Didk do
6: xi.I ref = xi.gidk · gidk(Didk)
7: xi.Ista = xi.gidk · [gidk(Didk)− gidk(Dik)]
8: end for
9: Dik = sort(Dik, key = C, order=descend)

10: Didk = sort(Didk, key = I ref, order=descend)
11: Dselected

ik = TopK(Dik, Nik)
12: Dselected

idk = TopK(Didk, Nidk)
13: Initialize: Z = 0
14: for xi in Dselected

idk do
15: Z = Z + exi.Ista/τ

16: end for
17: for xi in Dselected

idk do
18: xi.ωi =

exi.I
sta/τ

Z/|Dselected
idk |

19: end for
20: Drait = Dik ∪Didk
21: return Drait

LSFT =
∑

(xo,yo)∈Dselected
idk

ω(xo)L(x, yo; θ)

+
∑

(xo,yo)∈Dselected
ik

L(xo, yo; θ).
(11)

6 Experiment

In this section, we provide detailed information on
experimental setup, and further analysis to validate
the performance and rationality of GRAIT.

6.1 Experiment Setup
Datasets. In this study, we assess the efficacy of
GRAIT in handling two distinct types of Question
and Answering tasks: the knowledge-based Mul-
tiple Choice Question Answering (MCQA) and
Open-ended Question Answering (OEQA). For the
MCQA task, the test split of MMLU (Hendrycks
et al., 2020) is adopted as the training dataset, while
the validation split of the same serves as the In-
Domain (ID) test set, and the ARC-c (Clark et al.,
2018) test split is utilized as the Out-Of-Domain
(OOD) test set. In the context of the OEQA task,
we use the training split of TriviaQA (Joshi et al.,
2017) for training purposes, the development split

𝑂 𝑈	(1	, 0)
𝑃!

𝑃"

𝑆#	(𝑃!#	, 𝑃"#)

𝑆$	(𝑃!$	, 𝑃"$)

𝑉	(0	, 1)

𝑆# : Initial Model

𝑆$ : Refined Model

THS = 
!"!×!""
!$×!""

Figure 4: Illustration of Truthful Helpfulness Score.

of TriviaQA as the ID test set, and the validation
split of NQ (Kwiatkowski et al., 2019) as the OOD
test set. Additional information is provided in Ta-
ble 1.

Table 1: Datasets Details.

MCQA OEQA

Train MMLU test (14,079) TriviaQA train (87,622)
ID Eval MMLU val (1,540) TriviaQA dev (11,313)
OOD Eval ARC-c dev (1,172) NQ dev (3,610)

Baselines. To evaluate the performance of
GRAIT, we conducted comparisons with several ex-
isting approaches: Init-Basic: Employs the initial
LLM setup, utilizing standard question-answering
prompts to guide the model in generating answers.
Init-Refuse: Builds on Init-Basic by incorporat-
ing instructions such as “If you do not know the
answer, please respond with ‘I don’t know.’” to pro-
mote safer responses (Bianchi et al., 2024; Zhang
et al., 2024b). Van-Tuning: Randomly selects
Nik +Nidk samples from Dsrc for straightforward
instruct-tuning, without any sample modification.
R-Tuning: Follows the settings from (Zhang et al.,
2024a), where samples in the RAIT dataset are
modified based on the correctness of the model’s
replies. CRaFT: This method is implemented ac-
cording to (Zhu et al., 2024), addressing both static
and dynamic conflicts within the RAIT dataset to
provide a thorough evaluation of potential issues.

Evaluation Metrics. We utilize the Truthful
Helpfulness Score (THS) as detailed by (Zhu et al.,
2024) to assess the performance of LLMs after
RAIT. Accuracy (Pc), error rate (Pw), THS, etc.
are key metrics for evaluating the performance of
models after RAIT. Among these, Pc and Pw form
a competing pair, where optimizing for Pc often
leads to a decline in Pw. Focusing on only one of
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these metrics is insufficient to evaluate the model’s
overall capability. Thus, a singular and comprehen-
sive metric is required to simplify the assessment
process and eliminate the complexity of balancing
multiple trade-off metrics.

For each test sample, we classify the response
as correct, incorrect, or refused. From these cate-
gories, we calculate the accuracy (Pc), error rate
(Pw), and refusal rate (Pr). We then set up a Carte-
sian coordinate system with Pc and Pw on the axes.
The point S1 represents the coordinates of the base-
line LLM, and S2 corresponds to the refined model.
If S2 is positioned below the line from the origin
O to S1 (denoted as OS1), then a larger area of the
triangle △OS1S2 signifies an improvement in the
model. If, however, S2 is above OS1, it indicates
a reduction in performance. As shown in Figure
4, THS is defined as the ratio of the cross product
of vectors

−−→
OS1 and

−−→
OS2 to the maximum possible

value of this cross product:

THS = (
−−→
OS2 ×

−−→
OS1)/(

−−→
OU ×−−→

OS1). (12)

Implementation Details. In our studies, we uti-
lized LLaMA2-7B-Chat and LLaMA3-8B-Instruct
as the initial LLMs θ0. For the MCQA task, we
selected 5,000 samples from the MMLU dataset for
training purposes, and for the OEQA task, 10,000
samples from TriviaQA were used. With the excep-
tion of the Van-Tuning setting, where all samples
were kept unchanged, other RAIT settings used
a 1:4 ratio of ik samples to idk samples. In the
MCQA and OEQA tasks, correctness is obtained
using 5-shot and 3-shot setups2, respectively. More
implementation details are listed in Appendix A.4.
In contrast to (Zhu et al., 2024), to ensure the fair-
ness of the experiments, we employ LoRA for train-
ing across both MCQA and OEQA tasks.

During both training and testing phases,
XTuner 3 was employed for RAIT experiments,
which were conducted over 3 epochs with a max-
imum context length set to 2048. The LoRA (Hu
et al.) was implemented with the parameters:
r = 64, α = 16, dropout rate of 0.1, and a learn-
ing rate of 2 × 10−4. For evaluations, the 0-shot
approach with greedy decoding was adopted. Open-
Compass 4 is used for all evaluations and correct-
ness calculations. In the GRAIT method, we as-

2The reasons for using the few-shot settings are outlined
in the appendix A.5

3https://github.com/InternLM/xtuner
4https://github.com/open-compass/opencompass

signed the hyperparameter TC a value of 0.5 and τ
a value of 0.05. All experiments were executed on
eight NVIDIA A100-80GB GPUs.

6.2 Experiment Results

We present the main experimental results, along
with an ablation study of GRAIT across various
models in Table 2. A summary of the key findings
is provided below.

6.2.1 Main Results
We assess the effectiveness of GRAIT by address-
ing the challenges C1 and C2, with the correspond-
ing experimental results presented in Table 2.
Comparison based on C1: C1 relates to the metric
Pw, where a lower Pw indicates better avoidance
of hallucinations by the model. As shown in the re-
sults, our proposed GRAIT achieves a significantly
lower Pw compared to other baselines, demonstrat-
ing its effectiveness in reducing hallucination rates.
Comparison based on C2: C2 focuses on minimiz-
ing hallucinations while maintaining accuracy, ad-
dressing the challenge of over-refusal. GRAIT sur-
passes existing methods in THS score with an av-
erage of 3.66. Specifically, the THS results clearly
show that our method significantly outperforms
other baselines on both in-domain (ID) and out-of-
domain (OOD) settings. For instance, on MMLU
dataset, the LLaMA2-7B-Chat model achieves a
THS score of 19.3, whereas the best-performing
baseline, CRaFT, only reaches 12.5. Moreover,
our approach consistently demonstrates superior
performance on OOD datasets as well.

6.2.2 Ablation Study
We conduct ablation studies to evaluate the contri-
bution of each component in GRAIT, as presented
in Table 2, using two variants: (1) GRAIT with-
out Refusal Influence, which follows the R-Tuning
approach during the dataset distillation phase (de-
noted as w/o O1), and (2) GRAIT without Stable
Influence, where no weight adjustment is applied
to emphasize the importance of idk samples (de-
noted as w/o O2). The results indicate that each
component contributes positively to the overall
performance of GRAIT and the removal of any
component leads to a noticeable decline in effec-
tiveness. Specifically, replacing Refusal Influence-
based dataset distillation with other baselines re-
sults in a significant increase in hallucination rate,
underscoring the importance of Refusal Influence
in addressing C1. Additionally, the use of Stable
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Table 2: Performance comparisons on MMLU, ARC-c, TriviaQA and NQ. The best performance is highlighted in
boldface, while the second-best performance is underlined.

LLMs
QA Type MCQA OEQA
Dataset MMLU (ID) ARC-c (OOD) TriviaQA (ID) NQ (OOD)
Metric Pc Pw ↓ THS↑ Pc Pw ↓ THS↑ Pc Pw ↓ THS↑ Pc Pw ↓ THS↑

Llama2-7B
Chat

Baselines

Init-Basic 45.6 52.8 00.0 53.9 46.0 00.0 54.0 46.0 00.0 28.9 71.1 00.0
Init-Refuse 36.4 38.9 03.9 44.4 35.7 02.6 37.1 21.7 11.5 19.8 34.8 05.6
Van-Tuning 46.9 53.0 01.2 54.5 45.5 01.2 55.5 44.5 03.2 23.2 76.8 -0.80
R-Tuning 44.5 39.6 11.3 55.8 38.1 11.1 52.2 35.9 10.0 22.6 60.9 -0.22
CRaFT 43.9 36.4 12.5 54.7 35.9 12.6 47.8 28.1 14.8 26.7 62.0 01.5

Ours GRAIT 43.5 27.1 20.1 55.2 26.5 24.2 43.6 18.4 22.0 20.8 49.7 00.0

Ablations w/o O1 44.7 39.8 10.3 55.4 37.9 11.0 52.4 36.5 09.6 23.9 63.5 -01.9
w/o O2 42.8 26.5 20.0 54.1 26.7 22.8 41.9 18.1 20.6 20.1 48.3 00.5

Llama3-8B
Instruct

Baselines

Init-Basic 66.8 33.1 00.0 80.6 19.5 00.0 66.8 33.2 00.0 40.3 59.7 00.0
Init-Refuse 50.0 17.0 15.7 65.3 14.4 05.6 53.9 20.8 12.0 31.1 38.6 05.0
Van-Tuning 69.5 30.5 08.0 80.3 19.7 -01.3 60.0 40.0 -19.0 21.0 48.5 -11.7
R-Tuning 63.9 21.6 20.4 79.4 16.2 12.2 56.6 28.3 -00.5 25.1 74.9 -25.6
CRaFT 53.3 09.6 34.0 74.1 12.7 21.4 57.8 27.7 02.0 27.0 57.6 -12.0

Ours GRAIT 50.4 06.9 36.4 70.2 08.7 34.3 55.3 18.3 18.5 21.9 38.8 -04.4

Ablations w/o O1 64.1 21.4 20.9 79.3 16.4 11.5 57.5 28.7 -00.2 25.6 75.0 -25.0
w/o O2 49.6 07.0 35.5 69.1 08.6 33.6 54.3 18.3 17.4 21.6 39.1 -04.8

Figure 5: Relationship between I ref and Iover in MMLU
performance on LLaMA2-7B-Chat and LLaMA3-8B-
Instruct.

Influence helps reduce over-refusal while maintain-
ing a stable hallucination rate, effectively address-
ing the challenges posed by C2. In addition, we
conducted sensitivity experiments, the details of
which can be found in the appendix A.6.

6.3 Analysis

The selection of ik samples is crucial. Our analy-
sis and experiments primarily focus on optimizing
the selection of idk samples. However, the selec-
tion of ik samples is also crucial. We employed
three different strategies: ik-random, where data
is randomly selected from Dik; ik-bottom, where
the data with the lowest correctness from Dik is
selected; and ik-top, the method used in GRAIT,
where the data with the highest correctness from
Dik is chosen. We used the MMLU (ID) and
ARC-c (OOD) datasets and conducted experiments
with the LLaMA3-8B-Instruct model. The results
are shown in Table 3. When using either the

Table 3: Performance comparisons on MMLU and ARC-
c for different ik selection methods on LLaMA3-8B-
Instruct.

Dataset MMLU (ID) ARC-c (OOD)
Metric Pc Pw ↓ THS↑ Pc Pw ↓ THS↑
ik-top 50.4 06.9 36.4 70.2 08.7 34.3

ik-random 61.4 20.5 20.0 78.7 15.6 14.2
ik-bottom 64.0 25.3 12.9 79.7 19.0 -00.2

ik-bottom or ik-random methods, the model’s
hallucination reduction does not improve, and the
refusal rate remains low. We believe the potential
reason for this is that the ik samples selected by
these methods may share similar characteristics
with the idk samples, but different supervision sig-
nals were applied during the SFT process. This
weakens the model’s ability to learn effective re-
fusals. In contrast, the ik-top strategy used in
GRAIT helps to distinctly separate the features of
the two types of samples, addressing the static con-
flict mentioned in (Zhu et al., 2024).

Over-Refusal can only be alleviated, but not
completely eliminated. During the RAIT pro-
cess, we observed and analyzed the idk influence
(corresponding to O2) of idk samples on Dik and
Didk using the LLaMA2-7B-Chat and LLaMA3-
8B-Instruct model on the MMLU dataset. As
shown in Figure 5, we identified a strong corre-
lation between the two, with a Pearson Correlation
Coefficient of 0.886. This correlation may be a con-
tributing factor to the occurrence of Over-Refusal.
While our proposed method, as indicated in Table 2,
cannot fully eliminate Over-Refusal due to certain
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limitations, it significantly mitigates the issue.

7 Conclusion and Future Work

In this paper, we present GRAIT, a Gradient-
based Refusal-Aware Instruction Tuning Frame-
work, which addresses the critical challenge of
over-refusal in existing RAIT approaches. By
leveraging insights derived from a gradient per-
spective, GRAIT effectively distills refusal-aware
datasets and incorporates an adaptive weighting
mechanism during fine-tuning. Our experimental
results demonstrate that GRAIT not only mitigates
hallucinations but also enhances the reliability and
accuracy of LLM outputs. Looking ahead, we aim
to further investigate two key avenues of research.
First, we plan to explore the dynamic trajectory in-
fluence of gradients throughout the RAIT process,
which could provide deeper insights into how vari-
ous training samples impact LLM refusal behavior.
Second, we intend to examine the role of GRAIT

in detecting knowledge boundaries within LLMs,
focusing on its potential contributions to enhancing
LLM safety.

Limitations

While our work has yielded promising results, it
is important to recognize several limitations. First,
the GRAIT framework currently treats the training
process as static, rather than incorporating the dy-
namic influence of gradient trajectories throughout
the RAIT process. Additionally, the idk and ik
sets are divided through a straightforward query
of the LLMs; future work could explore ways to
leverage GRAIT for more nuanced identification of
knowledge boundaries within LLMs for splitting.
Finally, although GRAIT has demonstrated strong
generalizability across various evaluation datasets,
expanding the dataset range to include a more di-
verse set of high-quality resources could enhance
the robustness and versatility of the framework.
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A Appendix

A.1 Theoretical Analysis Details

A.1.1 More Proof on O1
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A.1.2 More Proof on O2

RAIT can lead to the phenomenon of over-refusal,
where the model refuses to answer questions it is
inherently capable of addressing, thereby result-
ing in a decrease in accuracy. Accordingly, for
an unlabeled input query xuik, the output responses
will shift from yik to yidk. Assuming the use of a
symmetric loss function, the difference in the loss
function values for the same input xik with target
labels yik and yidk is approximately opposite in
sign: ∆L(xik, yik) ≈ −∆L(xik, yidk). Therefore,

the proof is as follows:
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Here, the first approximation is transformed as
follows:

• RAIT can lead to the phenomenon of over-
refusal, where the model refuses to answer
questions it is inherently capable of addressing,
thereby resulting in a decrease in accuracy. Ac-
cordingly, for an unlabeled input query xuik, the
output responses will shift from yik to yidk.

• Assuming the use of a symmetric loss function,
the difference in the loss function values for the
same input xik with target labels yik and yidk is
approximately opposite in sign:

∆L(xik, yik) ≈ −∆L(xik, yidk).

A.2 Reasons for Choosing Influence Formula
The reasons for choosing the influence formula of
Equations (4) and (5) instead of the optimizing of
Equation (2):

• The left-hand term, ∆L, in Equations (4) and (5)
represents our optimization objective on the test
set. Our goal is to identify the training samples
that minimize this ∆L.

• Computational complexity without approxi-
mation is O(m ·n): Directly computing the con-
tribution of each training sample to ∆L is com-
putationally expensive. Assuming the training
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set size is m and the test set size is n, we need to
compute the loss change for each test sample af-
ter training on each individual training sample,
with time complexity of O(m · n).

• Computational complexity is reduced to
O(m + n) after approximation: Inspired by
(Pruthi et al., 2020; Xia et al., 2024), we approx-
imate ∆L using the influence function. Using
the influence function to approximate ∆L only
requires computing the gradients of each training
sample and test sample without repeated calcula-
tions. Its time complexity is O(m+n), which sig-
nificantly reduces computational overhead. This
approximation arises from omitting the higher-
order terms in the Taylor expansion during the
derivation of the influence function.

A.3 Orthogonal Experiment
In our experiments, we observed that the gra-
dient distributions for idk and ik are nearly
orthogonal, as illustrated in Figure 6. Through
experiments conducted on the Llama2-7B-
Chat model and the MMLU dataset, we found
that the inner product distribution between
idk gradients and ik gradients is centered
around zero, with the computed value being〈
Ex [∇L(x, yidk; θ)] ,Ex [∇L(x, yik; θ)]

〉
=

0.008. In contrast, the inner product
of ik with itself is significantly larger,〈
Ex [∇L(x, yik; θ)] ,Ex [∇L(x, yik; θ)]

〉
=

0.103, and the inner product of
idk with itself is even greater,〈
Ex [∇L(x, yidk; θ)] ,Ex [∇L(x, yidk; θ)]

〉
=

0.513.

Our explanation for this phenomenon includes
the following points:

• ik samples and idk samples train different ca-
pabilities of the LLM: From the perspective of
the internal knowledge of the LLM, ik samples
help the LLM “learn knowledge”, while idk
samples grant the LLM the ability to “reflect on
self-knowledge”, that is, to predict the bound-
aries of its own knowledge.

• The different capabilities of the LLM are usu-
ally associated with different regions or acti-
vation patterns of the transformer: For exam-
ple, (Dai et al., 2022; Yu and Ananiadou, 2024)
indicates that knowledge is primarily stored in
specific neurons of the LLM, while some studies

show that different attention heads perform differ-
ent functions, such as the Successor Head (Gould
et al., 2023) and the Induction Head (Ren et al.,
2024a). Additionally, the multilingual capabil-
ities of the LLM mainly depend on the layers
near the input and output ends of the transformer,
rather than the middle layers (Wendler et al.,
2024).

• The abilities to “learn knowledge” (ik samples)
and “reflect on self-knowledge” (idk samples)
correspond to different regions or activation pat-
terns of the LLM transformer. Therefore, during
the training process, the gradients of ik samples
and idk samples act on different regions or ac-
tivation patterns of the transformer respectively.
This helps explain why the gradient distributions
of ik samples and idk samples exhibit a state of
near orthogonality.

A.4 Prompts in GRAIT

A.4.1 Prompts for Getting Correctness.
Prompts for getting correctness on MMLU and
TriviaQA datasets are shown in Table 4 and Table
5. They use 5-shot and 3-shot settings respectively.

A.4.2 Prompts for training.
For the Van-Tuning, we use the basic prompt as
shown in Table 4 and Table 5 without in-context ex-
ample. All other experiments use the refuse prompt
as shown in Table 6 and Table 7. Loss is only
computed on the target answer {answerrait}.

A.4.3 Prompts for evaluation.
The Init-Basic method uses the original ques-
tion format for evaluation, without any prior in-
structions. For the other methods, the evaluation
prompts are shown in Tables 8 and 9.

A.5 Reasons for Choosing Few-Shot Setting
We use few-shot prompting to calculate the correct-
ness of LLMs, aiming to ensure that LLMs strictly
follow instructions to achieve the following ob-
jectives:

• Easy-to-parse response: We extract answers
from the response using rules and then compare
them with the gt to calculate correctness. Both
research (Yu et al., 2024) and our practice show
that accurately extracting answers is challenging.
Therefore, we provide examples of easy-to-parse
answers through few-shot examples to ensure
compliance with instructions.
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Figure 6: The overview of our proposed GRAIT.

• Clear answers: Existing chat LLMs often have
a certain level of self-awareness and may choose
not to answer or give vague responses like “I’m
not sure” or “for reference only” when facing
uncertain questions. However, we expect the
LLM to answer the query directly, regardless of
whether the answer is correct.

• Concise answers to reduce inference costs: In
a 0-shot scenario, LLMs tend to produce longer
responses (chain of thought processes or detailed
descriptions). Using few-shot prompts helps ob-
tain concise answers.

Although descriptive instructions can be added
to 0-shot prompts to require LLMs to meet the
above standards, LLMs generally do not strictly
follow them. Furthermore, we believe that the risk
of introducing knowledge by few-shot prompt-
ing is minimal. When choosing few-shot samples,
we select from different dataset splits: for MCQA,
test samples are from the MMLU test split and few-
shot samples from the val split; for OEQA, test
samples are from the triviaqa train split, with few-
shot samples from the dev split.

A.6 Sensitive Experiment

Effect of temprature on idk samples’ weight.
We analyzed the Stable Influence of the samples
discussed in Stage 3 of GRAIT and found that their
values were relatively small. As a result, it was
necessary to adjust the temperature to better nor-
malize the weight assigned to each sample. To ex-
plore the specific effects of these adjustments, we
conducted experiments using the MMLU dataset
and the LLaMA3-8B-Instruct model. As shown
in Table 10, the weight of the idk samples only
becomes effective when τ is within a reasonable

range. When τ is set to 1, the weights of all samples
remain almost unchanged, being equal to 1.

Effect of correctness threshold. In our ex-
periments, we set the correctness threshold TC to
0.5. We conducted detailed experiments to deter-
mine this threshold, and as shown in Table 11,
the model’s performance is not highly sensitive
to the choice of TC . Within a reasonable range, our
method consistently delivers strong results. All ex-
periments were performed on the MMLU dataset
using the LLaMA3-8B-Instruct model.
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In-Context Examples

There is a single choice question about
{Task}. Answer the question by replying A,
B, C or D.
Question: {Question1}
A. {Content_of_A1}
B. {Content_of_B1}
C. {Content_of_C1}
D. {Content_of_D1}
Answer: {Answer1}

There is a single choice question about
{Task}. Answer the question by replying A,
B, C or D.
Question: {Question2}
A. {Content_of_A2}
B. {Content_of_B2}
C. {Content_of_C2}
D. {Content_of_D2}
Answer: {Answer2}

. . .
There is a single choice question about
{Task}. Answer the question by replying A,
B, C or D.
Question: {Question5}
A. {Content_of_A5}
B. {Content_of_B5}
C. {Content_of_C5}
D. {Content_of_D5}
Answer: {Answer5}

Instruction

There is a single choice question about
{Task}. Answer the question by replying
A, B, C or D.
Question: {Question}
A. {Content_of_A}
B. {Content_of_B}
C. {Content_of_C}
D. {Content_of_D}
Answer:

Table 4: The Prompt Template for Knowledge State
Query on MMLU. The Italic {text} in Curly Braces
Represents Variables That Need To be Replaced.

In-Context Examples

Answer the following question as simple as
possible.
Question: {Question1}
Answer: {Answer1}

Answer the following question as simple as
possible.
Question: {Question2}
Answer: {Answer2}

Answer the following question as simple as
possible.
Question: {Question3}
Answer: {Answer3}

Instruction

Answer the following question as simple as
possible.
Question: {Question}
Answer:

Table 5: The Prompt Template for Knowledge State
Query on TriviaQA. The Italic {text} in Curly Braces
Represents Variables That Need To be Replaced.

Instruction

There is a single choice question about
{Task}. If you know the answer, please di-
rectly respond with the correct answer A,
B, C, or D. If you do not know the answer,
please respond with “I don’t know.".
Question:{Question}
A. {Content_of_A}
B. {Content_of_B}
C. {Content_of_C}
D. {Content_of_D}
Answer: {Answerrait}

Table 6: The REFUSE Prompt Template for Training
on MMLU. The The Italic {text} in Curly Braces Rep-
resents Variables That Need To be Replaced.
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Instruction

Answer the following question, and if you
don’t know the answer, only reply with “I
don’t know”:{Question}
{Answerrait}

Table 7: The REFUSE Prompt Template for Training
on TriviaQA. The Italic {text} in Curly Braces Repre-
sents Variables That Need To be Replaced.

Instruction

There is a single choice question about
{Task}. If you know the answer, please di-
rectly respond with the correct answer A,
B, C, or D. If you do not know the answer,
please respond with “I don’t know.”.
Question:{Question}
A. {Content_of_A}
B. {Content_of_B}
C. {Content_of_C}
D. {Content_of_D}
Answer:

Table 8: The REFUSE Prompt Template for Evalua-
tion on MMLU. The Italic {text} in Curly Braces Rep-
resents Variables That Need To be Replaced.

Instruction

Answer the following question, and if you
don’t know the answer, only reply with “I
don’t know": {Question}

Table 9: The REFUSE Prompt Template for Evalu-
ation on TriviaQA. The Italic {text} in Curly Braces
Represents Variables That Need To be Replaced.

τ 0.01 0.05 0.1 0.2 0.5 1.0
THS 36.6 36.4 36.5 35.9 35.5 35.5

Table 10: Effect of temperature τ on idk samples’
weights.

TC 0.3 0.4 0.5 0.6 0.7
THS 37.4 36.7 36.4 36.4 36.3

Table 11: Effect of correctness threshold.
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