
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 3953–3967

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

ImaRA: An Imaginative Frame Augmented Method for Low-Resource
Multimodal Metaphor Detection and Explanation

Yuan Tian1,2, Minzheng Wang2,1, Nan Xu3, Wenji Mao1,2*

1State Key Laboratory of Multimodal Artificial Intelligence Systems,
Institute of Automation, Chinese Academy of Sciences

2School of Artificial Intelligence, University of Chinese Academy of Sciences
3Beijing Wenge Technology Co., Ltd

{tianyuan2021,wangminzheng2023,wenji.mao}@ia.ac.cn;nan.xu@wenge.com

Abstract
Multimodal metaphor detection is an impor-
tant and challenging task in multimedia com-
puting, which aims to distinguish between
metaphorical and literal multimodal expres-
sions. Existing studies mainly utilize typical
multimodal computing approaches for detec-
tion, neglecting the unique cross-domain and
cross-modality characteristics underlying mul-
timodal metaphor understanding. According
to Conceptual Metaphor Theory (CMT), the
inconsistency between source and target do-
mains and their attribute similarity are essen-
tial to infer the intricate meanings implied in
metaphors. In practice, the scarcity of anno-
tated multimodal metaphorical contents in the
real world brings additional difficulty to the de-
tection task and further complicates the under-
standing of multimodal metaphors. To address
the above challenges, in this paper, we pro-
pose a novel Imaginative FRame Augmented
(ImaRA) method for low-resource multimodal
metaphor detection and explanation inspired
by CMT. Specifically, we first identify imag-
inative frame as an associative structure to
stimulate the imaginative thinking of multi-
modal metaphor detection and understanding.
We then construct a cross-modal imagination
dataset rich in multimodal metaphors and cor-
responding imaginative frames, and retrieve
an augmented instance from this imagination
dataset using imaginative frames mined from
the input. This augmented instance serves
as the demonstration exemplar to boost the
metaphor reasoning ability of the multimodal
large language model (MLLM) in low-resource
multimodal scenarios. Experiments on two pub-
licly available datasets show that our method
consistently achieves robust results compared
to MLLM-based methods for both multimodal
metaphor detection and explanation in low-
resource scenarios and meanwhile surpasses
existing multimodal metaphor detection meth-
ods with full training data.
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Figure 1: Illustration of the imaginative frame in the
multimodal metaphor. The target concept dancer in the
image and the source concept swan in the text encourage
the imaginative thinking of corresponding domains and
their relations. The higher-level imaginative frame of
domain inconsistency and attribute similarity between
source and target domains help infer the implicit mean-
ing conveyed by this metaphor.

1 Introduction

Metaphor is an important figurative expression in
literary works, advertisements, and online discus-
sions. According to Merriam-Webster Dictionary,
metaphor is “a figure of speech in which a word
or phrase literally denoting one kind of object or
idea is used in place of another to suggest a like-
ness or analogy between them”. Metaphor detec-
tion is a fundamental research topic in natural lan-
guage processing (Li et al., 2013; Ge et al., 2023),
which aims to distinguish between metaphorical
and literal expressions. Traditional research on
metaphor detection focuses on textual metaphors
(Li et al., 2013; Ge et al., 2022; Tian et al., 2023).
With the rapid development of social media, mul-
timodal metaphors are widely used to implicitly
convey users’ meanings and emotions online. Mul-
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timodal metaphor detection, which aims to deter-
mine whether an image-text pair is metaphorical or
literal, has attracted increasing attention in recent
research (He et al., 2024; Xu et al., 2024). It can
also benefit multiple multimodal applications in
domains such as multimodal emotion recognition
(Zhang et al., 2024) and hateful meme detection
(Wang et al., 2024).

Existing studies on multimodal metaphor detec-
tion primarily focus on fusing visual and textual
representations (Xu et al., 2022; He et al., 2024).
Other studies incorporate additional lexicon knowl-
edge (Zhang et al., 2023), implicit knowledge from
other tasks (Wang et al., 2024) or commonsense
knowledge distilled from a multimodal large lan-
guage model (MLLM) (Xu et al., 2024) to enhance
the performance. Despite the success of current
methods, they mainly take the approaches typical
in multimodal computing for multimodal metaphor
detection, ignoring the unique cross-domain and
cross-modality research challenges underlying mul-
timodal metaphor detection and understanding. Un-
like the aligned image-text pairs commonly used
in multimodal computing, multimodal metaphors
often utilize partially inconsistent yet implicitly
related image and text contents to convey compli-
cated meanings. Taking the multimodal metaphor
in Figure 1 as an example, the dancer in the image
and the swan in the text are seemingly inconsistent
yet share similar characteristics.

To explain the cognitive mechanism underlying
the characteristics of metaphor, Lakoff and John-
son (1980) introduced Conceptual Metaphor The-
ory (CMT), suggesting that a metaphor implies
inconsistent source and target domains and their
association of similar attributes in human cogni-
tion (Lakoff and Johnson, 1980). For a multimodal
metaphor, a unique characteristic is that the source
and target concepts are represented exclusively or
predominantly in different modalities (Forceville
and Urios-Aparisi, 2009). As illustrated in Figure 1,
for understanding multimodal metaphors, the imag-
inative thinking is essential to conceive of source
and target domains from source and target concepts
as well as their associations in domain inconsis-
tency and attribute similarity (Ricoeur, 1978).

Moreover, another critical challenge is the low-
resource issue due to the scarcity of annotated mul-
timodal metaphorical data compared to literal ones
in practical applications. Existing research has not
addressed the challenging issue inherent in the char-
acteristics of multimodal metaphor detection and

understanding. In practice, the low-resource issue
is also ignored by current research. Both issues
require a deeper understanding of metaphor reason-
ing at the semantic and cognitive levels to bridge
the cross-domain and cross-modality gaps, and de-
velop the computational construct of associative
imagination based on this understanding to help
alleviate the low-resource situations.

To tackle the above issues, in this paper, we
propose a novel Imaginative FRame Augmented
(ImaRA) method for low-resource multimodal
metaphor detection and explanation inspired by
CMT. We first identify the imaginative frame as the
computational construct of imaginative thinking
for multimodal metaphor understanding. We then
introduce an approach to construct a cross-modal
imagination dataset rich in multimodal metaphors
along with corresponding imaginative frames, and
retrieve an augmented instance from this imag-
ination dataset using imaginative frames mined
from the multimodal input as the associative struc-
ture. The augmented multimodal metaphor in-
stance is used as the demonstration exemplar, stim-
ulating the imaginative thinking to bridge the cross-
domain and cross-modality gaps and further boost-
ing MLLM’s metaphor reasoning ability in low-
resource scenarios. The main contributions of our
work are summarized as follows:

• Based on the implications of conceptual
metaphor theory, we identify the imaginative
frame as an associative structure to bridge
the cross-domain and cross-modality gaps in-
herent in multimodal metaphor understand-
ing, and construct a cross-modal imagination
dataset to enrich multimodal metaphor re-
source with the associated imaginative frames.

• To tackle the challenges in low-resource mul-
timodal metaphor detection and explanation,
we propose a novel imaginative frame aug-
mented method, which mines imaginative
frames from multimodal input and retrieves
the augmented instance from cross-modal
imagination dataset to stimulate MLLM’s
imaginative thinking ability.

• Extensive experiments verify the effectiveness
of our method for robust multimodal metaphor
detection and explanation in low-resource set-
tings, and also verify that our method sur-
passes previous SOTA multimodal metaphor
detection methods with full training data.
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2 Related Work

Traditional metaphor detection mainly identifies
the metaphorical information in texts (Tsvetkov
et al., 2014; Ge et al., 2022; Tian et al., 2024a).
With the prevalence of multimodal data in social
media, many people often use metaphors to ex-
press their thoughts and emotions within multi-
modal messages. Although some studies (Shutova
et al., 2016; Kehat and Pustejovsky, 2020; Su et al.,
2021) have incorporated visual features to enhance
textual metaphor detection, they struggle with mul-
timodal metaphor detection that requires a deep
understanding of cross-modal relations.

To advance research on multimodal metaphor
detection, some researchers have constructed mul-
timodal metaphor datasets from social media plat-
forms and advertisement resources (Zhang et al.,
2021; Xu et al., 2022; Zhang et al., 2023). After
that, He et al. (2024) propose a multi-interactive
cross-modal residual network to improve the iter-
ative information fusion between modalities. In
addition, Wang et al. (2024) adopt inter-modality
attention to capture the metaphorical features be-
tween image and text, and meanwhile exploits a
multi-task framework to boost the performance.
The work by Xu et al. (2024) achieves SOTA re-
sults via distilling commonsense knowledge from
MLLMs with a chain-of-thought method to im-
prove the pretrained model’s ability on multimodal
metaphor detection. Despite the success of current
studies, they ignore multimodal metaphor detec-
tion in low-resource settings. Moreover, none
of them have addressed another important task of
multimodal metaphor explanation, which aims
to explain the underlying meanings conveyed by
multimodal metaphors.

Multimodal metaphor explanation has not been
explored in previous studies, though several works
have focused on building datasets for cartoon joke
understanding (Hessel et al., 2023) and figurative
meme captioning (Hwang and Shwartz, 2023). In
addition, Saakyan et al. (2024) propose a task of
explainable visual entailment and provide a dataset
containing memes employing figures of speech
and paired captions, requiring models to determine
whether the paired caption explains the meme’s
figurative meaning. However, these datasets only
contain image caption information to explain the
figurative meanings.

Conceptual metaphor theory (CMT) (Lakoff
and Johnson, 1980) is the most influential work in

metaphor research, widely accepted and utilized
in computational metaphor research (Stowe et al.,
2021; Ge et al., 2022; Tian et al., 2024b). CMT
provides a fundamental basis for metaphor expla-
nation going beyond merely descriptive captions.
However, existing research only employs CMT for
the analysis of textual metaphors, neglecting its po-
tential for assisting the detection and explanation
of multimodal metaphors. Thus, in this paper, we
take advantage of the imaginative frame that con-
tains the source and target domains along with their
relations of the domain inconsistency and attribute
similarity implied by CMT, and develop a compu-
tational method to mitigate the low-resource issue
in multimodal metaphor detection and explanation.

3 Problem Definition

Formally, Dtr={(vk, tk), lk, (srck, tgtk)}Ntr
k=1 de-

notes the training dataset with Ntr instances, where
(vk, tk) is an image-text pair and lk is the label
(metaphorical/literal) for the k-th instance. For
metaphorical instances, the source and target con-
cepts (srck, tgtk) are provided, while for literal in-
stances, they are labeled as None. The test dataset
is Dte = {(vk, tk), lk, (srck, tgtk)}Nte

k=1. The goal
of multimodal metaphor detection and explanation
is to predict the label of each image-text pair and
the source and target concepts for metaphorical
instances in Dte by training a model on Dtr.

4 Proposed Method

We propose a novel imaginative frame augmented
method ImaRA, which can detect multimodal
metaphors and generate source and target concepts
as explanations for identified metaphors in low-
resource scenarios. Figure 2 shows its overview,
containing four components: (1) Cross-Modal
Imagination Data Construction, which constructs a
cross-modal imagination dataset rich in multimodal
metaphors and corresponding imaginative frames;
(2) Cross-Modal Imaginative Frame Mining, which
mines the imaginative frames in image-text input;
(3) Imaginative Frame Augmented Retrieval, which
uses the mined imaginative frames in image-text
input as queries to retrieve the augmented instance
from cross-modal imagination dataset; and (4) In-
struction Fine-Tuning, which uses the augmented
instance and the input to fine-tune an MLLM for
multimodal metaphor detection and explanation.
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# Example 1
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Question: Does this multimodal expression use metaphor to express its 
meaning? Give me an answer selected from YES or NO. If the answer is YES, 
please explain the source and target concepts of this metaphorical expression.
Answer: YES. The source concept is the swimmer and the target concept is 
the dolphin.

# Example 2

Multimodal expression:                   A dolphin is swimming in the sea. 

Question:  Does this multimodal expression use metaphor to express its 
meaning? Give me an answer selected from YES or NO. If the answer is YES, 
please explain the source and target concepts of this metaphorical expression.
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The question you need to answer is as follows.

Multimodal expression:               A group of swans spread their wings on stage.

Question: Does this multimodal expression use metaphor to express its 
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please explain the source and target concepts of this metaphorical expression.
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Figure 2: Overview of our proposed ImaRA for low-resource multimodal metaphor detection and explanation.

4.1 Cross-Modal Imagination Dataset

To mitigate the low-resource issue in multimodal
metaphor research and take advantage of imagina-
tive frames, we introduce an approach to construct
a cross-modal imagination dataset containing mul-
timodal metaphors paired with their imaginative
frames. In this section, we explain how we convert
large textual simile datasets into a multimodal for-
mat, detail the transformation of these multimodal
similes into a cross-modal imagination dataset con-
taining multimodal metaphors, and give the quality
control and data analysis.

Multimodal Simile Data Construction Differ-
ent from metaphor, which makes an implicit com-
parison between two objects, the simile compares
two things explicitly using the words “like” or “as”.
A simile has three explicit components: (1) tenor,
which is the subject of the comparison; (2) vehicle,
which is the object of the comparison; and (3) com-
parator, which is the trigger word such as “like”
or “as”. A metaphor has two important compo-
nents: (1) target, which we try to understand, and
(2) source, which we implicitly draw metaphorical
expressions from. The tenor-vehicle pair in simile
and the target-source pair in metaphor are similar
and interchangeable (Cope, 1877). They both al-
low us to understand one thing in terms of another
and can stimulate imaginative frames (Lakoff and
Johnson, 1980).1 Thus, textual similes can serve

1For example, the simile “Time is as valuable as money”
and the metaphor “I have invested a lot of time in her” reflect
the same comparison between the tenor/target time and the
vehicle/source money. They evoke an imaginative frame where

as resources to construct a metaphor dataset rich in
imaginative frames.

We collect publicly available simile datasets
where each sample is labeled with its tenor, vehicle
and comparator. For each textual representation
of a tenor or vehicle (denoted as T ), we utilize
the Bing Image Search API to retrieve n images,
represented as I = [I1, I2, . . . , In]. To ensure the
relevance and concreteness of the collected data,
we design a filtering module that distinguishes con-
crete tenors/vehicles (e.g., “flower”) from abstract
ones (e.g., “love”). The image set Simg for T is

Simg = {Ii ∈ I | CLIP(T, Ii) ≥ θsim}, (1)

where CLIP(T, I) is a model to calculate the simi-
larity score between a text and an image (Radford
et al., 2021), and θsim is the similarity threshold.
If |Simg| ≥ nsim, we classify T as a concrete con-
cept, and regard Simg as the paired image set for T ;
otherwise, T is categorized as an abstract concept.
We determine the optimal values for θsim and nsim

in Eq. (1) by maximizing classification accuracy for
distinguishing concrete and abstract concepts on a
randomly sampled dataset of tenors and vehicles
pre-annotated with concrete/abstract labels. Finally,
we obtain a multimodal simile dataset by selecting
simile instances with concrete tenors/vehicles and
their corresponding paired image sets.

Multimodal Metaphor Data Construction We
convert each simile into a metaphor by apply-

TIME is the target domain, MONEY is the source domain, and
valuable commodity is the similar attribute shared by source
and target domains.
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Samples Bilingual English Chinese

#Total Instances 6071 2328 3743
#Instances with Visual Src & Textual Tgt 3415 1949 1466
#Instances with Visual Tgt & Textual Src 2656 379 2277
#Unique Sentences 6066 2328 3738
#Mean Words per Instance 32 25 36

Table 1: Statistics of cross-modal imagination dataset.
Src/Tgt denotes the abbreviation of Source/Target.

ing a rule-based method. Details of these rules
are provided in Appendix A. We then replace the
tenor/vehicle with a randomly sampled image from
its paired set while keeping the vehicle/tenor as text
for each instance in the multimodal simile dataset.
The tenor and vehicle are regarded as the target
concept and source concept in the cross-modal
metaphor, respectively. To construct the imagina-
tive frame for each instance, we mine the concep-
tual target and source domains using the conceptual
domain mining algorithm illustrated in Section 4.2.
We then employ ChatGPT (OpenAI et al., 2024) to
generate similar attributes for each instance using
source concept, target concept and corresponding
domains as the inputs. More details of the attribute
generator are provided in Appendix A.

Quality Control and Data Analysis To ensure
the quality of the concrete tenor/vehicle concept
identified by CLIP using Eq. (1), we randomly sam-
pled 100 English and 100 Chinese tenor/vehicle
concepts from simile datasets, and invited two PhD
students to annotate these concepts as either con-
crete or abstract. The Cohen’s kappa coefficient
κ (Cohen, 1960) of the inter-rater agreement is
0.74 (note that 0.6 ≤ κ ≤ 0.8 means substan-
tial agreement). We use this sampled annotated
dataset to select optimal values of θsim and nsim

in Eq. (1). To ensure the quality of the similar
attributes generated by ChatGPT, we employ a self-
verification mechanism. Specifically, we prompt
ChatGPT whether the generated attribute is applica-
ble to the source/target concept. Samples that pass
this verification are included in the final dataset. We
finally obtain a bilingual cross-modal imagination
dataset with 6K multimodal metaphors and corre-
sponding imaginative frames, where the source and
target concepts of each metaphor are in different
modalities. Its statistics are provided in Table 1.

4.2 Cross-Modal Imaginative Frame Mining

To obtain imaginative frames for the image-text
input, we first develop a conceptual domain mining
algorithm to mine the conceptual domains of en-

tities from different modalities. We then consider
inconsistent domains from different modalities as
domain pairs, and train a model to generate similar
attributes between domains in each domain pair.

Conceptual Domain Mining Previous metaphor
research (Lakoff and Johnson, 1980; Forceville and
Urios-Aparisi, 2009) indicates that, in a multimodal
metaphor, the source and target concepts are repre-
sented separately in image and text, and imply in-
consistency between source and target domains. In-
spired by this, we propose an approach to mine the
conceptual domains for entities in the multimodal
input. We first utilize an MLLM-based image cap-
tioning method to generate a textual description of
the image, and then extract nouns and pronouns
from both the image description and text to form
the image entity set EI = {eiI}nI

i=1 and the text
entity set ET = {eiT }nT

i=1, respectively.
To establish a solid foundation for conceptual

domain mining, we first create a conceptual do-
main set Sd, based on the master metaphor list
(Lakoff et al., 1991). This list includes the concep-
tual source and target domains found in represen-
tative metaphors developed by cognitive linguists.
Details of Sd are provided in Appendix A. The
large lexical semantic database WordNet (Miller,
1995) organizes words into hierarchical structures
through conceptual relations. The richness and tran-
sitivity of hypernym relations in WordNet make it
a valuable resource for identifying conceptual do-
mains. Our conceptual domain mining algorithm
leverages Sd and WordNet to find an appropriate
conceptual domain for each entity in image entity
set EI and text entity set ET , resulting in image
domain set DI = {diI}nI

i=1 and text domain set
DT = {diT }nT

i=1. For the term with multiple word
senses, we treat each word sense as a distinct entity.
For each entity, we traverse its hypernym path in
WordNet. If one or more hypernyms are present
Sd, the lowest hypernym is assigned as the entity’s
conceptual domain. If no hypernyms belong to Sd,
we regard the first hypernym in the hypernym path
as its conceptual domain.

Domain Consistency Mapping We use path sim-
ilarity to measure the consistency/inconsistency be-
tween the image and text domains:

sim(dI , dT ) =
1

1 + l(dI , dT )
, (2)

where l(dI , dT ) calculates the number of edges
in the shortest path that connects dI and dT in
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WordNet. If sim(dI , dT )≤θincon, the pair (dI , dT )
is considered as a cross-modal domain pair, where
θincon is a hyperparameter. We then construct the
cross-modal domain pair set Pd = {(diI , diT )}nd

i=1,
where diI and diT are the inconsistent conceptual
domains for the i-th image-text entity pair (eiI , e

i
T ).

Similar Attribute Generation We use concept
pairs and domain pairs along with similar attributes
in cross-modal imagination dataset as training data
to fine-tune an MLLM as the similar attribute gen-
erator that can employ the concept pair (eI , eT )
and its domain pair (dI , dT ) as inputs and then
generate the similar attributes A = {ai}na

i=1 shared
between the concepts in concept pair. Details of
this attribute generator are shown in Appendix A.
We label the similar attributes for each cross-modal
domain pair in Pd and obtain the candidate cross-
modal imaginative frames for the multimodal input
F={(diI , diT , Ai

I−T )}
nf

i=1, where diI , diT and Ai
I−T

denote the image domain, text domain and similar
attribute set in the i-th imaginative frame.

4.3 Imaginative Frame Augmented Retrieval

To improve MLLM’s performance on multimodal
metaphor detection and explanation, we obtain an
augmented instance from the cross-modal imagina-
tion dataset via leveraging the imaginative frame
as the associative structure. We first introduce how
we compare the similarity between imaginative
frames and then illustrate the retrieval process of
augmented exemplar based on the similarity be-
tween imaginative frames in multimodal input and
instances from cross-modal imagination dataset.

Frame Similarity Calculation The structure of
an imaginative frame consists of two key compo-
nents: a domain pair and the attribute. To calcu-
late the similarity between two imaginative frames,
we compute the similarity of these components in-
dividually and balance their contributions in the
overall frame similarity. FI−T = (dI , dT , AI−T )
represents an imaginative frame in the multimodal
input. Similarly, Fs−t = (dsrc, dtgt, As−t) de-
notes an imaginative frame in cross-modal imagina-
tion dataset, where dsrc, dtgt and As−t denote the
source domain, target domain and similar attribute
set, respectively.

To calculate the similarity score αdom between
two domain pairs in FI−T and Fs−t, we leverage
the path similarity in WordNet to measure the simi-

larity of two domains, which is computed as

α1 = sim(dI , dsrc) + sim(dT , dtgt), (3)

α2 = sim(dT , dsrc) + sim(dI , dtgt), (4)

αdom = max(α1, α2), (5)

where sim(·) is the path similarity function as il-
lustrated in Eq. (2) and max(α1, α2) returns the
maximum value between α1 and α2.

To calculate the similarity score αattr between
attribute sets FI−T and Fs−t, we compute their
semantic similarity, which is computed as

αattr = cos(emb(AI−T ), emb(As−t)), (6)

where emb(A) embeds the concatenation of simi-
lar attributes in A using a pretrained model XLM-
RoBERTa (Conneau et al., 2020) and cos(·) is the
cosine similarity function.

Finally, we balance the different components in
the imaginative frames and obtain the similarity
score αf between FI−T and Fs−t:

αf = αdom + λαattr, (7)

where λ is the balance parameter.

Retrieval Process After calculating the similar-
ity scores between the imaginative frames in the
multimodal input and cross-modal imagination
dataset, we retrieve the instance Xm from the cross-
modal imagination dataset that can calculate the
highest imaginative frame similarity score with
imaginative frames in the multimodal input:

(imax, kmax) = argmax
(i,k)

(αf
(i,k)), (8)

where αf
(i,k) is the similarity score between the i-th

imaginative frame in the multimodal input and the
imaginative frame of k-th instance in cross-modal
imagination dataset, and kmax is the index of the in-
stance Xm in cross-modal imagination dataset. We
use this multimodal metaphor Xm as the exemplar.

4.4 Instruction Fine-Tuning

We treat the retrieved instance Xm as the metaphor-
ical exemplar. To help the MLLM differentiate
between metaphorical and literal expressions, we
construct its literal multimodal exemplar Xl by con-
necting the same image from Xm and a literal im-
age caption generated by an MLLM-based image
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captioning model. The instruction for an image-
text input X is denoted as T . Our training objective
is represented as

L(θ)=−
N∑

i=1

log p (Ri | T ,Xm,Xl,X ,R<i;θ) ,

(9)
where R is the ground truth response, N is its
length and θ denotes the parameters of the MLLM.
We fine-tune the MLLM using low-rank adaptation
(LoRA) method (Hu et al., 2022).

5 Experiments

5.1 Datasets
Multimodal Metaphor Dataset We evaluate our
method using two publicly available multimodal
metaphor datasets, which are as follows:

• MET-Meme (Xu et al., 2022) contains 4,000
English and 6,045 Chinese multimodal in-
stances. Each instance is labeled as either
metaphorical or literal, with each metaphori-
cal instance further labeled with its source and
target concepts. Following the convention of
previous research (Xu et al., 2024), we ran-
domly divided it into training, validation and
test sets with a ratio of 6:2:2.

• MultiCMET (Zhang et al., 2023) is a Chi-
nese multimodal metaphor detection dataset,
where each text-image pair is labeled as either
metaphorical or literal. This dataset comprises
two parts: one collected from public service
announcements, and the other collected from
commercial advertisements on e-commerce
platforms. Due to the low quality of the latter,
we only use the former for evaluation, exclud-
ing samples with inaccessible images. We
randomly divided it into training, validation
and test sets with a ratio of 7:1:2.

We employ MET-Meme to evaluate our method
for both multimodal metaphor detection and expla-
nation tasks, while MultiCMET is utilized only for
multimodal metaphor detection. Table 2 shows the
statistics of these datasets.

Textual Simile Datasets To construct cross-
modal imagination dataset, we use five pub-
licly available English and Chinese textual simile
datasets, including Xiang (Liu et al., 2018), SPGC
(He et al., 2022), CMC (Li et al., 2022), MAPS
(He et al., 2023), and CMRE (Chen et al., 2023).

Samples MET-Meme MultiCMET

English Chinese Chinese

#Total 4000 6045 6645
%Metaphorical Sample 28% 39% 46%
#Avg. Words per Sample 12 7 30

Table 2: Statistics of MET-Meme and MultiCMET
datasets. Avg. denotes the abbreviation of average.

These datasets comprise simile sentences labeled
with tenor, vehicle and comparator components.
More details are illustrated in Appendix B.

5.2 Baselines

Unimodal Methods We employ several repre-
sentative visual baseline models, which only use
visual information as the input, including VGG (Si-
monyan and Zisserman, 2015), ViT (Dosovitskiy
et al., 2021) and Swin Transformer (Liu et al.,
2021). We employ several multilingual pre-trained
baseline models, which only use textual informa-
tion as the input, including mBART (Liu et al.,
2020), mT5 (Xue et al., 2021) and M-BERT (Pa-
padimitriou et al., 2021).

Multimodal Methods We use representative
methods for multimodal metaphor detection as
multimodal baselines, including (1) Fusion (Xu
et al., 2022), which fuses the text, image feature
and metaphor features for multimodal metaphor
detection; (2) M3F (Wang et al., 2024), which em-
ploys a multi-task framework with inter-modality
attention to capture the features between image
and text; and (3) C4MMD (Xu et al., 2024), the
SOTA method for multimodal metaphor detection,
which distills knowledge from the MLLM with a
chain-of-thought method. We use representative
MLLMs as baselines in low-resource multimodal
metaphor detection and explanation, including (1)
GPT-4o (OpenAI et al., 2024), a representative
MLLM that achieves the SOTA performance on
multiple multimodal tasks, for which we apply
zero-shot and few-shot prompting strategies; and
(2) LLaVA (Liu et al., 2023), a publicly available
MLLM with versions of different sizes, for which
we apply low-rank adaptation (LoRA) (Hu et al.,
2022) fine-tuning. The prompt design of MLLM-
based baselines is illustrated in Appendix F.

5.3 Implementation Details

We use LLaVA-1.5 (7B and 13B) (Liu et al., 2023)
as the MLLM in our method and LLaVA baselines.
More details are provided in Appendix C.
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Modality Method MET-Meme MultiCMET

P R F1 Acc P R F1 Acc

Image
VGG16 (Simonyan and Zisserman, 2015) 62.72 72.36 67.20 75.30 62.94 72.18 67.24 68.60
ViT-base (Dosovitskiy et al., 2021) 65.14 64.67 64.90 75.55 65.53 77.57 71.04 71.76
Swin Transformer (Liu et al., 2021) 67.87 72.51 70.11 78.39 65.72 77.91 71.30 71.99

Text
M-T5-base (Xue et al., 2021) 68.39 64.10 66.18 77.09 49.04 56.16 52.36 54.37
M-BERT-base (Papadimitriou et al., 2021) 76.70 72.22 74.39 82.62 51.86 65.94 58.05 57.45
M-BART-large (Liu et al., 2020) 77.94 74.50 76.18 83.72 53.69 72.34 61.64 59.79

Image + Text

Fusion (Xu et al., 2022) 75.97 76.07 76.02 - 62.37 62.30 62.34 58.64
M3F (Wang et al., 2024) 78.11 83.36 - 79.80 60.91 67.87 64.20 58.42
C4MMD (Xu et al., 2024) 83.33 81.58 82.44 87.70 66.28 77.61 71.22 72.00

ImaRA-7B 85.04 83.38 84.20 89.06 67.74 78.25 72.61 73.64
ImaRA-13B 86.59 83.97 84.82 89.49 70.98 79.17 74.75 76.13

Table 3: Comparison between our method and baselines on multimodal metaphor detection in full training data.
The best results are in bold font and the second-best results are underlined.

Method
Training Data (%)

Percent = 60% Percent = 40% Percent = 20%

F1 Acc Src Tgt F1 Acc Src Tgt F1 Acc Src Tgt

M3F 67.40 78.30 - - 66.01 76.35 - - 66.01 75.11 - -
C4MMD 79.14 85.54 - - 76.36 83.41 - - 70.89 79.27 - -
LLaVA-7B 79.82 86.55 48.01 55.13 74.74 82.92 42.02 48.53 70.46 81.87 30.13 42.24
LLaVA-13B 80.59 86.90 51.99 59.54 79.66 86.01 44.94 54.70 74.09 83.07 34.05 47.44

ImaRA-7B 81.89 87.25 52.28 60.61 80.56 86.60 46.44 55.32 76.43 83.17 35.75 48.29
ImaRA-13B 83.13 88.20 54.13 62.68 81.05 86.75 47.22 59.54 78.16 84.86 39.03 54.42

Table 4: Results of our method and baselines for low-resource multimodal metaphor detection and explanation on
MET-Meme. Src/Tgt represents the accuracy score of source/target concept predictions for metaphorical instances.

Method
Training Data (%)

Percent=60% Percent=40% Percent=20%

F1 Acc F1 Acc F1 Acc

M3F 63.96 56.60 60.22 55.20 55.26 54.25
C4MMD 69.37 71.41 68.49 71.31 65.33 68.80
LLaVA-7B 72.89 72.21 72.52 71.01 69.81 70.37
LLaVA-13B 73.33 73.53 72.11 73.49 69.28 72.89

ImaRA-7B 73.90 75.15 73.45 74.60 71.04 73.98
ImaRA-13B 74.28 75.25 73.94 74.62 72.25 74.32

Table 5: Comparison between our method and base-
lines for low-resource multimodal metaphor detection
on MultiCMET dataset.

5.4 Main Results

Comparison in Full Training Data Following
previous research (Xu et al., 2024), we use accu-
racy, precision, recall and F1 score as evaluation
metrics for multimodal metaphor detection. The
experimental results in Table 3 show that multi-
modal methods perform better compared with uni-
modal methods, indicating that cross-modal inter-
action is important to capture the implicit mean-

Method
Detection Explanation

MET-Meme MultiCMET MET-Meme

F1 Acc F1 Acc Src Tgt

GPT-4o (0-shot) 54.75 47.81 63.86 49.55 16.52 22.79
GPT-4o (5-shot) 58.47 71.40 67.04 60.32 18.23 26.21

ImaRA-7B 70.80 79.93 67.73 68.00 25.93 40.53
ImaRA-13B 74.69 81.67 70.57 70.93 28.21 46.58

Table 6: Comparison between our method using 10%
training data and GPT-4o for multimodal metaphor de-
tection and explanation in the low-resource scenario.
Src/Tgt represents the accuracy score of source/target
concept predictions for metaphorical instances.

ings conveyed by multimodal metaphors. Although
C4MMD achieves previous SOTA performance
by distilling commonsense knowledge from the
MLLM to enhance the detection performance of the
pretrained model, it fails to improve the MLLM’s
capability in multimodal metaphor detection. In
contrast, our methods surpass existing multimodal
metaphor detection methods on both datasets via
retrieving the augmented exemplar with the imag-
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Variant
Detection (F1) Explanation (Avg. Acc)

MET-Meme MultiCMET MET-Meme

60% 40% 20% 60% 40% 20% 60% 40% 20%

ImaRA-7B 81.89 80.56 76.43 73.90 73.45 71.04 56.45 50.88 42.02
- ImagFrame 81.37 76.84 74.98 73.48 73.30 70.37 52.07 45.48 40.81
- Retrieval 79.82 74.74 70.46 72.89 72.52 69.81 51.57 45.28 36.18
- LoRA 43.41 43.41 43.41 44.50 44.50 44.50 5.62 5.62 5.62

ImaRA-13B 83.13 81.05 78.16 74.28 73.94 72.25 58.40 53.38 46.72
- ImagFrame 82.42 80.24 75.61 73.37 72.95 71.40 56.70 51.07 41.77
- Retrieval 80.59 79.66 74.09 73.33 72.11 69.28 55.77 49.82 40.74
- LoRA 44.15 44.15 44.15 48.90 48.90 48.90 13.17 13.17 13.17

Table 7: Experimental results of ablation study on multimodal metaphor detection and explanation in low-resource
scenarios. Avg. Acc represents the average accuracy score for source and target concept predictions.
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Figure 3: Performance improvements achieved by
our proposed methods compared to C4MMD for low-
resource multimodal metaphor detection.

inative frame as the associative structure, verify-
ing the effectiveness of our method on multimodal
metaphor detection in full training data.

Comparison in Low-Resource Scenarios We
compare our method with existing SOTA meth-
ods for multimodal metaphor detection (M3F
and C4MMD), a fine-tuned MLLM (LLaVA)
and a prompting-based MLLM (GPT-4o) on low-
resource metaphor detection and explanation. We
compare our method with SOTA methods for mul-
timodal metaphor detection and the fine-tuned
LLaVA by reducing the percentage of training data
from 60% to 20%. The experimental results in Ta-
ble 5 and Table 4 show that our methods exhibit
more gradual performance declines compared to
baselines and consistently outperform them when
training data are decreasing. Figure 3 further illus-
trates that our method achieves increasing perfor-
mance gains over C4MMD on both MET-Meme
and MultiCMET datasets as training data is re-
duced. These results verify the robustness and ef-
fectiveness of our imaginative frame augmented
method on multimodal metaphor detection and ex-
planation in low-resource scenarios. Experimental
results in Table 6 show that our methods, fine-tuned

with only 10% training data, significantly outper-
form GPT-4o methods using different prompting
strategies on both metaphor detection and expla-
nation, verifying the effectiveness of our proposed
method in the extremely low-resource scenario.

5.5 Ablation Study

The experimental results of ablation study in Ta-
ble 7 show that replacing the retrieved instance
from our imaginative frame augmented retrieval
module with a randomly sampled one reduces the
performance of our methods (- ImagFrame). Di-
rectly removing the retrieved instance further leads
to significant drops in the performance of our meth-
ods (- Retrieval). These results verify the effective-
ness of our method for increasing the robustness of
the model on low-resource multimodal metaphor
detection and explanation. Removing the LoRA
fine-tuning significantly reduces our method’s per-
formance, showing that the MLLM in a zero-shot
setting struggles with multimodal metaphor tasks.

6 Conclusion

Inspired by CMT, we propose a novel method
ImaRA for low-resource multimodal metaphor de-
tection and explanation, which leverages imagi-
native frame mined from the input as the asso-
ciative structure to stimulate imaginative think-
ing for metaphor understanding. The retrieved
exemplar based on it from a cross-modal imagi-
nation dataset we construct assists the MLLM to
understand metaphor for the detection and explana-
tion tasks. Experiments on two publicly available
datasets verify the effectiveness of our method for
robust multimodal metaphor detection and expla-
nation in low-resource settings and against existing
multimodal detection methods in full training data.
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Limitations

Our work has some limitations. Firstly, due to the
costs of experimentation with MLLMs, we are un-
able to evaluate our method on MLLMs in larger
sizes. Thus, for this task, the performance gains
achieved by our method on MLLMs with larger
sizes deserve further exploration. In addition, since
our method is designed to identify metaphors in
multimodal mode, it performs less effectively in
text-centric cases involving wordplay, which is
worth further exploration in the future.
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Language Simile Comparator Metaphor Comparator

English
BE like BE

as ADJ as ADJ

Chinese

宛如(是) 是

好比(是) 是

仿佛(是) 是

(好)像(是) 是

(好/恰)似(是) 是

犹同/犹如(是) 是

如…一样/一般 是…一样/一般

Language Simile Comparator Metaphor Comparator

English
BE like BE

as ADJ as ADJ

Chinese

宛如(是) / 好比(是) /仿佛(是) /

(好)像(是) / (好/恰)似(是) /

犹同(是) / 犹如(是)

是

如…一样/一般 是…一样/一般

Figure 4: Rules for converting simile comparators into
metaphor comparators.

English Prompt Template

The domain of “[source concept]” is “[source domain]”. The 

domain of “[target concept]” is “[target domain]”. Please give 

me the similar attributes shared between “[source concept]” and 

“[target concept]”. Please response with the following format: 

similar attribute 1; similar attribute 2; ... ; similar attribute n.

Chinese Prompt Template

“[source concept]”的领域是“[source domain]”。“[target 

concept]” 的领域是“[target domain]”。请给出“[source 

concept]”与“[target concept]” 之间的相似属性。请按照以下

格式回答：相似属性 1;相似属性 2; ... ;相似属性 n。

English Prompt Template

Attributes: [similar attributes].

Does these attributes belong to the “[source/target concept]”? 

Please give me an answer selected from YES or NO.

Chinese Prompt Template

属性： [similar attributes]。

上述属性是“[source/target concept]”的属性吗？请回答我

“是”或“否”。

Figure 5: Prompt design for ChatGPT to label simi-
lar attributes. Here, [source concept], [source domain],
[target concept] and [target domain] denote the input
slots for the source concept, source domain, target con-
cept and target domain in an instance from cross-modal
imagination dataset.

metaphor. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 6141–
6154.

Dongyu Zhang, Minghao Zhang, Heting Zhang, Liang
Yang, and Hongfei Lin. 2021. MultiMET: A multi-
modal dataset for metaphor understanding. In Pro-
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for Computational Linguistics, pages 3214–3225.

Linhao Zhang, Li Jin, Guangluan Xu, Xiaoyu Li, Cai
Xu, Kaiwen Wei, Nayu Liu, and Haonan Liu. 2024.
CAMEL: Capturing metaphorical alignment with
context disentangling for multimodal emotion recog-
nition. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 9341–9349.

A More Details on Proposed Method

We provide more details on our proposed method.

Cross-Modal Imagination Data Construction
We convert each simile into a metaphor using a
rule-based method by replacing simile comparators
with metaphor comparators. Figure 4 shows the
detailed rules. We use ChatGPT to label similar
attributes between source and target concepts for

English Prompt Template

The domain of “[source concept]” is “[source domain]”. The 

domain of “[target concept]” is “[target domain]”. Please give 

me the similar attributes shared between “[source concept]” and 

“[target concept]”. Please response with the following format: 

similar attribute 1; similar attribute 2; ... ; similar attribute n.

Chinese Prompt Template

“[source concept]”的领域是“[source domain]”。“[target 

concept]” 的领域是“[target domain]”。请给出“[source 

concept]”与“[target concept]” 之间的相似属性。请按照以下

格式回答：相似属性 1;相似属性 2; ... ;相似属性 n。

English Prompt Template

Attributes: [similar attributes].

Does these attributes belong to the “[source/target concept]”? 

Please give me an answer selected from YES or NO.

Chinese Prompt Template

属性： [similar attributes]。

上述属性是“[source/target concept]”的属性吗？请回答我

“是”或“否”。

Figure 6: Prompt design for the self-verification of sim-
ilar attributes generated by ChatGPT. Here, [similar
attributes] and [source/target concept] denote the input
slots for the similar attributes generated by ChatGPT
and the source or target concept in an instance from the
cross-modal imagination dataset, respectively.

the instances in cross-modal imagination dataset,
whose prompt design is shown in Figure 5. To
ensure the quality, we do self-verification on the
attributes generated by ChatGPT, whose prompt
design is shown in Figure 6.

Cross-Modal Imaginative Frame Mining In
Conceptual Domain Mining (Section 4.2), the com-
plete conceptual domain set Sd extracted from the
master metaphor list in Lakoff et al. (1991) is sum-
marized in Figure 7. In Similar Attribute Genera-
tion (Section 4.2), the similar attribute generator
is obtained by fine-tuning LLaVA-7B (Liu et al.,
2023) with concept pairs, domain pairs and similar
attributes from cross-modal imagination dataset as
the training data, as well as the prompts in Figure 5,
using LoRA fine-tuning method (Hu et al., 2022).

B More details on Datasets and Baselines

Datasets The five publicly available textual sim-
ile datasets we use in cross-modal imagination data
construction are as follows: (1) Xiang (Liu et al.,
2018), which comprises 5088 Chinese simile sen-
tences labeled with their simile components, in-
cluding tenor, vehicle and comparator; (2) SPGC
(He et al., 2022), an English simile dataset contain-
ing 775 sentences, where all sentences uniformly
use the structure “(tenor) is as (property) as (vehi-
cle)” to present English similes; (3) CMC (Li et al.,
2022), encompassing 8027 Chinese nominal simile
sentences, where each is labeled with its tenor, ve-
hicle, and comparator; (4) MAPS (He et al., 2023),
consisting of 0.5 million English simile sentences
extracted from 70 GB of corpus using syntactic pat-
terns (e.g. Noun1 BE like Noun2) and subsequently
annotated with simile components (topic and vehi-
cle) via predefined rules; (5) CMRE (Chen et al.,
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ABILITY ANGER ARGUMENT BATTERY BELIEF BODY BURDEN 

CAREER CHANGE CHILD CLOTH COMMODITY COMPETITION 

CONTAINER DEATH EMOTION  FAILURE FIRE FIGHT FLUID FOOD 

HARM HOPE IDEA IMPORTANCE INJURY INFORMATION JOURNEY 

LIFE LIGHT LIQUID LOVE MACHINE MONEY MOTION OBLIGATION 

PATH PEOPLE PRECEDENCE PROBLEM RACE RESOURCE 

RESPONSIBILITY SCALE SOCIETY THEORY TIME WAR WATER 

WEAPON WORD

Figure 7: Conceptual domain set extracted from the
master metaphor list in Lakoff et al. (1991).

2023), a Chinese dataset that includes both similes
and nominal metaphors, totalling 8494 sentences,
where each sentence is annotated with its target
(tenor), source (vehicle), and comparator.

Baseline Methods VIEMF (He et al., 2024) is
another baseline for multimodal metaphor detec-
tion, which introduces a multi-interactive cross-
modal residual network. Since the code of VIEMF
is not publicly available and it only evaluates on
MET-Meme dataset in its original paper, we are
unable to evaluate its performance on the Multi-
CMET dataset. Thus we only compare it with our
method on MET-Meme dataset in Table 8.

C More Implementation Details

In Cross-Modal Imagination Data Construction
(Section 4.1), the number of images n we collect
for each tenor/vehicle is 10. The similarity thresh-
olds θsim in Eq. (1) for Chinese and English similes
are 0.65 and 0.61, respectively. The threshold num-
bers of paired images nsim for Chinese and English
similes are 7 and 8, respectively. We use GPT-3.5
(gpt-3.5-turbo)2 as the implementation of ChatGPT
for attribute generation through the OpenAI API.

In Cross-Modal Imaginative Frame Mining (Sec-
tion 4.2), we utilize LLaVA-1.5 13B as the im-
age caption model and the threshold for incon-

2https://platform.openai.com/docs/models/gpt-3-5

sistency domains θincon is 0.25. We use NLTK
Python package3 as the implementation of Word-
Net in our method, which supports both English
and Chinese. We employ the en_core_web_sm and
zh_core_web_sm models in spaCy Python pack-
age4 to label nouns and pronouns in English and
Chinese texts, respectively.

In our experiments, we use llava-1.5-7b-hf 5

and llava-1.5-13b-hf 6 as the implementations of
LLaVA-1.5 7B and LLaVA-1.5 13B, respectively.
We fine-tune LLaVA with the learning rate of 2e−4,
the batch size of 8 and the epoch of 5. The rank of
the update matrices and the scaling factor of LoRA
are 128 and 256, respectively. GPT-4o is imple-
mented through the OpenAI API, utilizing GPT-4o-
05137 model. We use clip-vit-large-patch14-336
and chinese-clip-vit-large-patch14-336px models
on the huggingface platform as the implementa-
tions of CLIP(·) function in Eq. (1) for English
and Chinese texts, respectively. The balance pa-
rameter λ is 1. We use a multilingual pretrained
model xlm-roberta-base8 as the implementation of
XLM-RoBERTa in our method. The model achiev-
ing the best performance of F1 in the validation
set is used for the test set. All experimental re-
sults reported are the averaged scores of five runs
with different random seeds. We use rule-based
methods to extract detection results along with the
corresponding source and target concepts from the
generated response. All the experiments are con-
ducted on NVIDIA GeForce RTX 3090 GPUs and
NVIDIA A100 SXM4 80GB GPUs.9

D More Details on Experimental Results

We conducted statistical tests (Wilcoxon signed-
rank tests) on the experimental results of our meth-
ods and baselines. The results of our method are all
statistically significantly different from the best re-
sults of the baselines with p ≤ 0.05 in full training
data and low-resource scenarios. Table 8 further
shows the detailed results of our method and base-
lines on MET-Meme dataset.

3https://www.nltk.org/howto/wordnet.html
4https://spacy.io
5https://huggingface.co/llava-hf/llava-1.5-7b-hf
6https://huggingface.co/llava-hf/llava-1.5-13b-hf
7https://platform.openai.com/docs/models
8https://huggingface.co/FacebookAI/xlm-roberta-base
9Our code is available at https://github.com/

TIAN-viola/ImaRA.
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Modality Method Bilingual English Chinese

P R F1 Acc P R F1 Acc P R F1 Acc

Image
VGG16 62.72 72.36 67.20 75.30 74.66 72.69 73.66 85.25 58.23 72.21 64.47 68.71
ViT-base 65.14 64.67 64.90 75.55 76.30 70.93 73.52 85.50 60.29 61.68 60.98 68.96
Swin Transformer 67.87 72.51 70.11 78.39 71.88 81.06 76.19 85.62 65.79 68.42 67.08 73.59

Text
M-BERT 76.70 72.22 74.39 82.62 70.76 53.30 60.80 80.50 78.78 81.26 80.00 84.02
M-T5-base 68.39 64.10 66.18 77.09 57.04 33.92 42.54 74.00 71.32 78.53 74.75 79.14
M-BART-large 77.94 74.50 76.18 83.72 69.38 63.88 66.51 81.75 81.82 79.58 80.68 85.02

Image + Text

Fusion 75.97 76.07 76.02 - 82.69 83.33 82.39 - 72.80 73.30 72.90 -
VIEMF 83.07 83.33 83.20 - 85.13 83.38 83.92 - 83.58 83.43 83.50 -
M3F 78.11 83.36 - 79.80 85.86 84.38 - 83.98 72.94 82.68 - 77.01
C4MMD 79.45 83.33 81.29 86.59 78.87 79.44 79.05 88.04 79.74 85.19 82.34 85.62

ImaRA-7B 85.04 83.38 84.20 89.06 87.60 79.74 83.45 91.04 83.94 85.12 84.53 87.75
ImaRA-13B 86.59 83.97 84.82 89.49 89.05 80.62 84.62 91.69 84.29 85.58 84.91 88.04

Table 8: Comparison between our method and baselines for multimodal metaphor detection on MET-Meme dataset
in full training data. The results of C4MMD are reproduced using the code released by Xu et al. (2024). The best
results are in bold font and the second-best results are underlined.

他觉得他的对手是一只
(He thinks that his opponent is a fox)

源概念是狐狸，目标概念是他的对手
(The source concept is the fox and the target concept is his opponent)

下班走在路上的我

(After-work me on 

the way back)

Multimodal Input Retrieved Exemplar from Cross-Modal Imagination Dataset Paired Literal Exemplar

这是一只红色

的狐狸。狐狸的脸部

充满了细细的毛发。

(This is a red fox. The 

fox's face is covered 

with fine fur.)

Our Response

是。源概念是狗，

目标概念是我。

(YES. The source 

concept is the dog 

and the target 

concept is me.)

✓

Similar Attributes: Slyness,…

Source Domain: 
Canine

Target Domain: 
Person

Imaginative Frame

Similar Attributes: relaxation,…

Image Domain: 
Canine

Text Domain: 
Person

Imaginative Frame

BEST FISHES ON 

YOUR BIRTHDAY

The                    in that room always was hard Rock of Gibraltar.

The source concept is the Rock and the target concept is the bed. The image 

features a bedroom 

with a bed placed on a 

wooden floor.

NO. x

Similar Attributes: Solid,…

Source Domain: 
Natural Object

Target Domain:
Furniture

Imaginative Frame

Similar Attributes: Movement, …

Image Domain:
Water

Text Domain: 
Aquatic Vertebrate

Imaginative Frame
(Wordplay)

Figure 8: Two cases where our ImaRA-7B makes both correct and incorrect predictions on MET-Meme.

E Case Study

Figure 8 gives cases where our ImaRA makes both
correct and incorrect predictions. We also provide
the imaginative frame pairs that can calculate the
highest frame similarity score used to retrieve an
augmented exemplar from cross-modal imagina-
tion dataset in the imaginative frame augmented
retrieval module. In the first case, our ImaRA re-
trieves a metaphorical exemplar that stimulates an
imaginative frame with “Canine” as the source do-
main and “Person” as the target domain. This exem-
plar aids the MLLM in recognizing the metaphori-
cal usage within the multimodal input, as it evokes
a similar imaginative frame. We also find that our
ImaRA performs less effectively in some cases in-
volving wordplay. For example, the second case in

Figure 8 expresses a humorous birthday greeting
that plays on the phrase “best wishes” by replacing
“wishes” with “fishes”. Since our method focuses
on capturing metaphorical meanings in multimodal
contexts, it struggles to recognize such wordplay.

F Prompt Design of Baselines

Figure 9 provides prompt design details of GPT-4o
and LLaVA baselines, respectively.

G Licenses of Scientific Artifacts

WordNet’s license is WordNet 3.0 license, while
MET-Meme, CLIP, XLM-RoBERTa and spaCy are
all licensed under the MIT license. LLaVA is re-
leased under the Apache-2.0 license, and ChatGPT
operates under its respective API license.
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(a) Prompt design for GPT-4o baseline.

English Prompt Template for Zero-Shot Prompting

Your task is to determine whether a multimodal expression is metaphorical or literal. 

The question you need to answer is as follows.

Multimodal expression:  [multimodal expression]

Question: Does this multimodal expression use metaphor to express its meaning? 

Give me an answer selected from YES or NO. If the answer is YES, please explain 

the source and target concepts of this metaphorical expression. Return output in json

format: {Answer: YES/NO, Source: source concept/None, Target: target 

concept/None}

English Prompt Template for Few-Shot Prompting

Your task is to determine whether a multimodal expression is metaphorical or literal. 

Here are examples. 

Multimodal expression:  [multimodal metaphorical expression]

Question: Does this multimodal expression use metaphor to express its meaning? 

Give me an answer selected from YES or NO. If the answer is YES, please explain 

the source and target concepts of this metaphorical expression. 

Answer: YES. The source concept is the [source concept] and the target concept is 

the [target concept].

Multimodal expression:  [multimodal literal expression]

Question: Does this multimodal expression use metaphor to express its meaning? 

Give me an answer selected from YES or NO. If the answer is YES, please explain 

the source and target concepts of this metaphorical expression. 

Answer: NO.

…

The question you need to answer is as follows.

Multimodal expression:  [multimodal expression]

Question: Does this multimodal expression use metaphor to express its meaning? 

Give me an answer selected from YES or NO. If the answer is YES, please explain 

the source and target concepts of this metaphorical expression. 

Chinese Prompt Template for Zero-Shot Prompting

你的任务是识别一个多模态表达是否使用了隐喻。请回答
以下问题。
多模态表达：[multimodal expression]

问题：此多模态表达是否使用了隐喻来表达其含义？请回
答我“是”或“否”。如果这个多模态表达的确使用了隐
喻，请进一步解释这个隐喻表达的源概念和目标概念。请
返回json格式的输出：{回答: 是/否, 源概念: 源概念内容
/None, 目标概念: 目标概念内容/None}

Chinese Prompt Template for Few-Shot Prompting

你的任务是识别一个多模态表达是否使用了隐喻。以下是
示例。

多模态表达：[multimodal metaphorical expression]

问题：此多模态表达是否使用了隐喻来表达其含义？请回
答我“是”或“否”。如果这个多模态表达的确使用了隐
喻，请进一步解释这个隐喻表达的源概念和目标概念。
回答：是。源概念是[source concept] ，目标概念是[target 

concept]。

多模态表达：[multimodal literal expression]

问题：此多模态表达是否使用了隐喻来表达其含义？请回
答我“是”或“否”。如果这个多模态表达的确使用了隐
喻，请进一步解释这个隐喻表达的源概念和目标概念。
回答：否。

……

请回答以下问题。
多模态表达：[multimodal expression]

问题：此多模态表达是否使用了隐喻来表达其含义？请回
答我“是”或“否”。如果这个多模态表达的确使用了隐
喻，请进一步解释这个隐喻表达的源概念和目标概念。

Prompt Template

Your task is to determine whether a multimodal expression is metaphorical or literal. The question you need to 

Multimodal expression:  [multimodal expression]

Question: Does this multimodal expression use metaphor to express its meaning? Give me an answer selected 

from YES or NO. If the answer is YES, please explain the source and target concepts of this metaphorical 

Response Template for Metaphorical Instance

YES. The source concept is the [source concept] and the target concept is the [target concept].

Response Template for Literal Instance

(a) English

Prompt Template

你的任务是识别一个多模态表达是否使用了隐喻。请回答以下问题。
[multimodal expression]

问题：此多模态表达是否使用了隐喻来表达其含义？请回答我“是”
或“否”。如果这个多模态表达的确使用了隐喻，请进一步解释这个
隐喻表达的源概念和目标概念。

Response Template for Metaphorical Instance

[source concept] ，目标概念是[target concept]。

Response Template for Literal Instance

(b) Chinese

English Prompt Template

Your task is to determine whether a multimodal expression is metaphorical or literal. 

The question you need to answer is as follows.

Multimodal expression:  [multimodal expression]

Question: Does this multimodal expression use metaphor to express its meaning? 

Give me an answer selected from YES or NO. If the answer is YES, please explain 

the source and target concepts of this metaphorical expression.

English Response Template for Metaphorical Instance

YES. The source concept is the [source concept] and the target concept is the [target 

concept].

English Response Template for Literal Instance

NO.

Chinses Prompt Template

你的任务是识别一个多模态表达是否使用了隐喻。请回答
以下问题。
多模态表达：[multimodal expression]

问题：此多模态表达是否使用了隐喻来表达其含义？请回
答我“是”或“否”。如果这个多模态表达的确使用了隐
喻，请进一步解释这个隐喻表达的源概念和目标概念。

Chinese Response Template for Metaphorical Instance

是。源概念是[source concept] ，目标概念是[target concept]。

Chinese Response Template for Literal Instance

否。

(b) Prompt design for LLaVA baseline.

Figure 9: Prompt design for MLLM-based baselines. We randomly sampled three metaphorical instances and two
literal instances from the training set as the few-shot exemplars for GPT-4o. Here, [multimodal expression] denotes
the input slot for the multimodal expression of an instance in the multimodal input. The notations [multimodal
metaphorical expression], [source concept] and [target concept] denote the input slots for the multimodal expression,
source concept and target concept in a metaphorical exemplar, respectively, and [multimodal literal expression]
denotes the input slot for the multimodal expression in a literal exemplar.
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