Lossless Acceleration of Large Language Models with Hierarchical
Drafting based on Temporal Locality in Speculative Decoding

Sukmin Cho! Sangjin Choi'
Huije Lee’ Hoyun Song?

School of Computing!+?

Taeho Hwang?
Jong C. Park?

Jeongyeon Seo®>  Soyeong Jeong®
Youngjin Kwon'*
Graduate School of AT

Korea Advanced Institute of Science and Technology

{smcho, sjchoi,yjkwon}@casys.kaist. ac.krt

Abstract

Accelerating inference in Large Language
Models (LLMs) is critical for real-time interac-
tions, as LLLMs have been widely incorporated
into real-world services. Speculative decod-
ing, a fully algorithmic solution, has gained
attention for improving inference speed by
drafting and verifying tokens, thereby gener-
ating multiple tokens in a single forward pass.
However, current drafting strategies usually re-
quire significant fine-tuning or have inconsis-
tent performance across tasks. To address these
challenges, we propose Hierarchy Drafting
(HD)', a novel lossless drafting approach that
organizes various token sources into multiple
databases in a hierarchical framework based
on temporal locality. In the drafting step, HD
sequentially accesses multiple databases to ob-
tain draft tokens from the highest to the lowest
locality, ensuring consistent acceleration across
diverse tasks and minimizing drafting latency.
Our experiments on Spec-Bench using LLMs
with 7B and 13B parameters demonstrate that
HD outperforms existing lossless drafting meth-
ods, achieving robust inference speedups across
model sizes, tasks, and temperatures.

1 Introduction

With the growing demand for accelerating Large
Language Model (LLM) inference to enable effi-
cient real-time human-LLM interactions, Specula-
tive Decoding (Stern et al., 2018; Leviathan et al.,
2023; Chen et al., 2023a) has gained attention for
providing a fully algorithmic solution with min-
imal drawbacks. While autoregressive decoding
generates token by token, the decoding step in
this method is divided into two substeps: drafting,
where likely tokens are sampled externally from a
less complex model, and verifying, where the sam-
pled tokens are accepted or rejected by comparing
with the LLM’s actual output. By allowing the

* Corresponding author
! https://github.com/zomss/Hierarchy_Drafting

{doubleyyh,yena.seo,starsuzi,huijelee,hysong, jongpark}@kaist.ac. kr2:3

®
S

@ N
S S

Acceptance Ratio (%)
g
®
"

40

00 05 1.0 15 20 25 3.0
Drafting Latency (ms)

@ REST % HD (Ours)

QA Summarization

Task Type
@ LADE

@ PLD

Figure 1: Result of database drafting methods on Spec-
Bench (Xia et al., 2024) with Vicuna-7B (Zheng et al., 2023).
The values in the plot denote the speedup against autoregres-
sive decoding. (Left) QA and summarization task perfor-
mance. (Right) Acceptance ratio and drafting latency.

LLM to generate multiple accepted tokens in the
verification phase, speculative decoding improves
both the throughput and the latency of the LLM
inference. Crucially, the efficiency of this approach
depends on how draft tokens are generated, as per-
formance gains hinge on the acceptance rate of
these tokens (Chen et al., 2023a). Therefore, sub-
sequent approaches to speculative decoding have
focused on developing drafting strategies that sam-
ple tokens closely aligned with the target model.

Recent efforts in speculative decoding have fo-
cused on developing effective drafting methods,
using LM-based approaches, such as using smaller
models than LLM (Zhou et al., 2024; Miao et al.,
2024) or incorporating specialized branches within
the LLM architecture (Cai et al., 2024b; Li et al.,
2024a). However, their applicability in real-world
scenarios is limited by the significant overhead as-
sociated with fine-tuning for optimization. First,
smaller models for drafting must be fine-tuned,
such as by distillation, to generate tokens similar
to LLMs to achieve optimal performance regard-
less of the given tasks (Zhou et al., 2024; Yi et al.,
2024). In addition, current LLM families (Touvron
et al., 2023; Zheng et al., 2023) do not offer models
of an appropriate size for drafting, often necessi-
tating training from scratch. In branch-based draft-
ing, which modifies its original LLM architecture,
the computational cost for training such branches
within LLM is significant due to gradient calcula-

3895

Findings of the Association for Computational Linguistics:
NAACL 2025, pages 3895-3911
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics


https://github.com/zomss/Hierarchy_Drafting

tions across the entire model, even though most pa-
rameters remain frozen (Cai et al., 2024b; Li et al.,
2024a,b). For example, EAGLE (Li et al., 2024b),
one of the leading methods, needs 1-2 days of train-
ing on 2-4 billion tokens using 4 A100 GPUs to
train the 70B model.

To address these limitations, this paper explores
a lightweight, lossless drafting strategy: Database
Drafting, eliminating the need for parameter up-
dates (Saxena, 2023; Fu et al., 2024; He et al.,
2024). Database drafting constructs databases from
various token sources and fetches draft tokens from
the database using previous tokens. However, as
previous work relies on a single database from a sin-
gle source, the coverage of draft tokens is restricted,
leading to inconsistent acceleration across different
tasks, as depicted in the left side of Figure 1. For
example, PLD (Saxena, 2023), which uses previous
tokens as its source, shows strengths in the summa-
rization, highly repeating the tokens in the earlier
texts, yet it achieves only marginal speedups in QA,
where fewer promising tokens are included in the
prior text. A straightforward solution to improve
coverage is incorporating diverse sources into a
single database. However, increasing the database
scale leads to higher drafting latency, resulting in
additional overhead. As shown in the right side
of Figure 1, REST (He et al., 2024), which uses
the largest database, accurately predicts future to-
kens but suffers from significant latency, negating
its high acceptance ratio benefits. Therefore, this
paper proposes a solution to these limitations: Uti-
lize diverse token sources simultaneously for robust
performance and minimal overhead.

With this objective in mind, we propose a simple
yet effective solution: Hierarchy Drafting (HD),
which integrates diverse token sources into a hierar-
chical framework. Our proposed method is inspired
by the memory hierarchy system, which prioritizes
data with high temporal locality in the memory ac-
cess for performance optimization (Aggarwal et al.,
1987). Therefore, HD groups draft tokens from
diverse sources based on their temporal locality—
the tendency for some tokens to reappear within or
across generation processes. For example, when
an LLM solves a math problem like, ‘The vertices
of a triangle are at points (0, 0), (-1, 1), and (3, 3).
What is the area of the triangle?’, the coordinates
frequently repeat within only a generation process
for a given query but not across other generation
processes. In a related sense, phrases commonly

generated by LLMs, such as ‘as an Al assistant’,
or frequent grammatical patterns exhibit relatively
moderate locality, often appearing across different
generation processes.

Based on their temporal locality, the multi-
ple databases of HD organize them into context-
dependent database, which stores tokens with
high temporal locality for a given context; model-
dependent database, which captures frequently re-
peated phrases by LLLMs across generations; and
statistics-dependent database, which contains sta-
tistically common phrases with slightly lower lo-
cality across processes than those in the model-
dependent database. During inference, HD ac-
cesses the databases in order of temporal local-
ity, prioritizing tokens with high locality by start-
ing with context-dependent, then model-dependent,
and finally statistics-dependent databases until a
sufficient number of draft tokens are obtained to
convey to the LLM for verification.

This strategy has two benefits: firstly, increasing
drafting accuracy by leveraging temporal locality
and secondly, reducing the overhead from drafting
latency, as the scale of the databases is inversely
correlated with the degree of locality—tokens with
high locality are rarer. Thus, starting with the
smaller context-dependent database for drafting
tokens is more accurate and faster than using the
larger statistics-dependent database alone. Also,
our hierarchical framework can encompass other
database drafting methods owing to its plug-and-
play nature, making it easy to integrate diverse
drafting sources based on their temporal locality.

We evaluate HD and other database drafting
methods using widely adopted LLMs, Llama-
2 (Touvron et al., 2023) and Vicuna (Zheng et al.,
2023), on Spec-Bench (Xia et al., 2024), a bench-
mark designed to assess effectiveness across di-
verse tasks. Our proposed method, HD, outper-
forms other methods in our experiment and consis-
tently achieves significant inference speedup across
various settings, including model size, tempera-
ture, and tasks. We also analyze how the hierarchi-
cal framework adaptively selects the appropriate
database for each task while minimizing draft la-
tency, aligning with our design goals.

Our contributions in this paper are threefold:

* We identify the limitations of existing speculative
decoding methods, which require additional fine-
tuning or deliver inconsistent acceleration gains.

* We introduce a novel database drafting method,

3896



Hierarchy Drafting (HD), incorporating diverse
token sources into the hierarchical framework for
robust performance with minimizing overhead.

* We demonstrate that HD consistently achieves
significant acceleration gains across various sce-
narios compared to other lossless methods.

2 Related Work

We now introduce speculative decoding and loss-
less drafting strategies based on the database.

Speculative Decoding Speculative decoding is
a novel approach that accelerates LLM inference
by minimizing the number of forward passes re-
quired, thereby reducing total latency (Stern et al.,
2018; Leviathan et al., 2023; Chen et al., 2023a).
The core concept is that tokens, such as frequent
phrases, can be predicted with high confidence us-
ing simpler models, enabling the generation of mul-
tiple tokens at once. Stern et al. (2018) introduced
the Draft-then-Verify paradigm, dividing each de-
coding step into two sub-steps: drafting multiple to-
kens from draft models and verifying them against
LLM outputs in parallel. This concept has been
expanded to accurately speculate the future tokens
along with supporting sampling strategy (Xia et al.,
2023; Leviathan et al., 2023; Chen et al., 2023a).

Types of Drafting Method The straightforward
approach for the drafting strategy of speculative
decoding involves using an additional language
model (LM) specialized for drafting (Leviathan
et al., 2023; Chen et al., 2023a; Miao et al., 2024;
Zhou et al., 2024). To ensure effective drafting,
such LMs must follow the target model’s genera-
tion pattern and be smaller to minimize additional
latency costs. LMs with parameter sizes under a
billion are typically preferred for drafting, but cur-
rently, widely used LLM families do not usually
have appropriate models. For example, the smallest
officially available Llama-2 model (Touvron et al.,
2023), with 7 billion parameters, is too large and
inefficient for drafting purposes. Therefore, such
methodologies often require training overhead to
get the suitable LM for the targeted LLM, such as
the distilled models from the target models (Miao
et al., 2024) or lightweight models trained for mo-
bile devices (Zhang et al., 2024).

Instead of using a separate language model for
drafting, some approaches enhance the drafting
capabilities of the target model itself (Cai et al.,
2024b; Li et al., 2024a,b; Ankner et al., 2024). In

this line of work, the additional layer or branch
in the target model is integrated into the target
model to predict several subsequent tokens more
than the very next token based on the last hidden
states of given inputs. Following Stern et al. (2018),
which exploits multiple heads for parallel decod-
ing, Medusa (Cai et al., 2024b) first integrates ad-
ditional decoding heads into the target model. Sub-
sequently, the branch-based drafting methodolo-
gies (Li et al., 2024a,b; Ankner et al., 2024) show
remarkable effectiveness in sampling appropriate
future tokens with achieving state-of-the-art results.
However, integrating these layers or branches still
requires significant training overhead. To sum up,
branch-based drafting methods achieve remarkable
speedup gains yet require additional computational
costs, which are not trivial and are a new type of
overhead for implementing speculative decoding.

Database Drafting Database drafting eliminates
training costs by retrieving draft tokens for previ-
ous inputs from a database rather than relying on
smaller LMs or additional architectural branches.
The database stores token pairs, with prefix tokens
as keys and subsequent tokens as values. The
sources of these databases vary across different
methods, with each method relying on its own
unique database source. Some approaches utilize
input prompt tokens as draft sources, which is par-
ticularly effective for tasks like summarization or
retrieval-augmented generation, where input tokens
are frequently repeated during generation (Saxena,
2023; Yang et al., 2023). Another method retrieves
draft tokens from large text corpora by leveraging
language patterns (He et al., 2024). Although re-
trieval from large corpora introduces some latency
overhead, the acceleration gained from accurate
drafting typically outweighs this, resulting in faster
inference overall. Additionally, LLMs can serve
as sources for database drafting by generating to-
kens stored in the database, either through parallel
decoding (Santilli et al., 2023; Fu et al., 2024) or
token recycling (Luo et al., 2024), where tokens
are relevant to the current generation process. Fi-
nally, the previously generated texts by LLMs can
be served as draft token sources because LLMs
frequently reuse specific phrases or words (Spector
and Ré, 2023). Each source offers distinct strengths
in predicting future tokens in certain scenarios, yet
these strengths can become weaknesses in others.
Therefore, it is worth noting that reliance on a sin-
gle source may lead to limitations.

3897



Table 1: Details of current database drafting methods with
Vicuna-7B on Spec-Bench. Database scale measures the num-
ber of draft token sequences in each database. Drafting latency
measures the average latency for the drafting step.

Method Database Scale Drafting Latency  #Token/Sec

PLD (Saxena, 2023) 519 +£423 031 £0.06ms  74.51 £23.09
LADE (Fu et al., 2024) 354 £ 258 <0.01 ms 66.34 £ 14.09
REST (He et al., 2024) 200M 286 £643ms  66.04 £ 14.72

Table 1 shows the experimental results of cur-
rent database drafting methods, which construct
their databases from a single source. Specifically,
PLD (Saxena, 2023) exhibits the highest speedup
compared to other approaches but also shows a sig-
nificant standard deviation in speedup gains. This
variability is attributed to the limited and uneven
sizes of the databases, leading to inconsistent accel-
eration across the generation process. In contrast,
LADE (Fu et al., 2024) achieves an impressively
low drafting latency—Iless than 0.01 ms. However,
this remarkable value does not translate to signif-
icant acceleration due to its small database size,
akin to PLD. However, increasing database size
alone, as demonstrated by REST (He et al., 2024),
does not provide a viable solution for improving the
effectiveness of database drafting. While a larger
database scale can improve the accuracy of the
drafting step, it also leads to higher latency since
retrieving tokens from a larger database introduces
additional processing overhead.

Therefore, to address the limitations of current
lossless drafting methods relying on a single source,
we propose integrating diverse sources into a hierar-
chical framework, aiming to harness each source’s
strengths more effectively with minimal overhead.

3 Method

We begin by formally defining speculative decod-
ing and database drafting and present our proposed
method, Hierarchy Drafting (HD), which addresses
the limitations of database drafting methods.

3.1 Preliminary

Speculative Decoding At each step of specula-
tive decoding, multiple tokens &1.,, (i.e., draft to-
ken sequence) are drafted from an approximate
model M, to predict future tokens of LLM M,,
(i.e., target model) for previous text tokens x<;:

jzl:m ~m Mq(mgt)- (1)

All draft token sequence i., are verified
against the actual output of M,,. For example,
in the greedy decoding, the tokens x;_ ., are

obtained for a given &1.,, and <, by solving the
following equations in parallel:

ry = argmax P, (z]T<y),
Ty, = argmax P, ()21, <), )
Thyy = argmax Pag, (T|&1:m, T<t).

Each token 7} ; is verified against the correspond-
ing draft token ¢, starting from ¢ = O until the
verification fails or ¢ = m is reached. To enhance
the likelihood of acceptance, multiple draft token
sequences X = {&'}N | (i.e., draft set) are ver-
ified in parallel. The specialized attention mask
implements the parallel verification of the draft set,
not causal attention mask (Fu et al., 2024; Miao
et al., 2024). In the sampling strategy, specula-
tive sampling (Chen et al., 2023a) is commonly
used to accept more tokens while maintaining iden-
tical output distributions of the target model. In
summary, the generation step is divided into two
sub-steps with a single forward pass of the target
model. The multiple accepted tokens are generated
simultaneously, compressing the overall decoding
process.

Database Drafting As shown on the left side of
Figure 2, the methods included in database drafting
exploit the database D, having the prefix tokens
as the key and the subsequent tokens as the value.
Per each step of the generation process, the draft
token sequence &j., is retrieved from database D
for given previous tokens xy_;.4:

&1.m € X = Ret(zy_1.0; D), A3)

where [ and m are the length of previous tokens and
draft token sequence. Subsequently, the verifying
step is the same as other methods.

3.2 Hierarchy Drafting

We introduce Hierarchy Drafting (HD), which or-
ganizes tokens from diverse sources into three
databases based on temporal locality and accesses
them in order from the smallest to the largest scale.
The overview and decoding process are depicted
on the right side of Figure 2.

Observation: Temporal Locality The main idea
behind database drafting is that some tokens are
easy to retrieve from the database because they
exhibit temporal locality—meaning they tend to

3898



A. Database Drafting

Zn+l Tni2 Tni3 Tnid

B. Hierarchy Drafting

Tpil Tpi2 o3 Tptd Tois |

v v Llv Lix [\ Y Y Y

k] £ 4 + 4

Verify (

Draft

etrieval ! Database
! Draft '
. .,

— | Database J

! B-1. Hierarchical Access

Tn-Ln  DraftFailor X < N
—

B-2. Verification

Draft Set X

p
Q Statistics-dependent
=Q Database

I

3 Model-dependent
=Q Database

( — ) Draft Success

=1
(& Database

Figure 2: Overview of database drafting and our proposed method, Hierarchy Drafting (HD). A. Previous database drafting
methods retrieve draft tokens from a single database constructed from a single source, leading to inconsistent acceleration
gains across different scenarios. B. HD, however, leverages multiple databases encompassing diverse sources to improve token
coverage, ensuring consistent performance. B-I. During the drafting process, databases are accessed sequentially from the
smallest to the largest, based on the temporal locality of the token sequences. B-2. Multiple draft token sequences are verified in
parallel, and the sequence with the highest number of accepted tokens is finally selected as the generated output.

4-Gram Statistics for 100 Generations

20000

15000

gram Index

2 10000 [posoo

5000 0200

Unique 4

20001
80 90100 7 7

20 30 40 0 60 70
Generation Index

. I \

0 10 20 30 40 50 60 70 80 90 100
] \
o

0 10 20 30 40 50 60 70 80 90 100

0 10

Figure 3: (Upper) 4-gram statistics for 100 generations of
Llama-2-7b. The x-axis shows the order of 4-grams across 100
generations, with major ticks marking generation steps. The
y-axis represents unique 4-gram indices. Red dots indicate
4-grams from previous processes, while blue dots represent
those from the current process. (Lower) Frequency analysis of
two 4-grams, represented by red and blue dots, respectively.

be repeated within or across the generation pro-
cesses. However, note that not all draft token se-
quences share the same level of temporal local-
ity during generation. We analyze the pattern of
unique 4-grams during 100 text generations on
Spec-Bench (Xia et al., 2024), as shown in Fig-
ure 3. The results reveal that certain 4-grams are
frequently repeated and exhibit varying locality lev-
els. Specifically, the blue dots and the right small
plot in Figure 3 illustrate local redundancy, where
the same 4-gram appears multiple times within a
single generation step. This reflects high tempo-
ral locality within a single generation rather than
across multiple generations. In contrast, the red
dots in Figure 3 highlight a pattern where the model
repeatedly generates the same 4-grams at differ-
ent stages of the generation process, illustrating
its tendency to reuse familiar sequences over time.
Additionally, the lower plot of Figure 3 presents
the frequency study of sampled red and blue dots,
demonstrating that some tokens exhibit high tem-
poral locality within a specific context, while oth-
ers maintain consistent locality across generation
processes. Therefore, given the varying temporal
locality of tokens throughout the generation pro-

cess, drafting steps should prioritize tokens with
higher temporal locality over others.

Database Design Based on the temporal local-
ity of draft token candidates, we design three
types of databases to categorize them. 1) Context-
dependent DB (D.) contains tokens highly rele-
vant to the specific context of the generation pro-
cess, such as the blue dots in the Figure 3. This
includes tokens from the input prompt, tokens gen-
erated through parallel decoding, tokens discarded
during the generation process, and others that are
highly relevant to a given context. D, is lookup
table with the prefix tokens, 1., as the key and
the subsequent tokens, x;.;4+.,, as the value. Also,
D, is consistently updated during each forward
step and initialized when the following generation
process is started. The database follows the Least
Recently Used (LRU) policy for draft sequence
updates. 2) Model-dependent DB (D,,,) stores
tokens frequently generated by LLM regardless
of context, as represented by the red dots in Fig-
ure 3. Top-k frequently generated token sequences,
T1.7+m, are sampled from the model-generated
texts, with xy.; as the key and x;11.;,, as the
value. For D, and D,,,, the maximum size of val-
ues for a single key is the same as the maximum
draft set size N. 3) Statistics-dependent DB (D;)
draws its tokens from large text corpora to capture
universal phrases commonly used in the language.
Although these tokens are frequent, they occur less
congistently across processes than those in D,,,. To
efficiently retrieve the sequence from a large cor-
pus, we utilize a suffix array (Manber and Myers,
1993) following the implementation of He et al.
(2024). Implementation details are in §4.

Our database design yields three distinct advan-
tages. First, it integrates diverse sources into multi-

3899



Algorithm 1 Decoding Process with Hierarchy Drafting

Require: Target LLM M, databases (D¢, D, Ds), input
text sequence T <, target sequence length 7, the size of
prefix tokens [, the size of draft token sequence m, the
size of draft set V;

Tt

: while n < T and [EOS] ¢ 1., do

/I Drafting Step: Hierarchical access to three

databases until the size of the draft set X is N.

X — Ret(mn_lm;Dc)
if | X| < N then
X — X U Ret(mn_l:n;’Dm)
end if
if | X| < N then
X« XU Ret(@n—i:n; Ds)
end if
/I Verification Step: Verify the draft token sequence in

X and generate additional tokens for updating D..

12: Lninti, & ~i Mp(X<n, X)

13: D. < Update(D., &)

14: n<n+1i

15: end while

wee

oY X N A

— —

ple databases, enabling us to leverage each source’s
strengths for robust acceleration across various
tasks. Then, each database’s size decreases as the
tokens’ temporal locality increases since tokens
with higher locality are rarer, providing an opportu-
nity to optimize drafting latency. Finally, the design
is plug-and-play, easily integrating additional to-
ken sources by assigning them to the appropriate
database based on their temporal locality.

Hierarchical Access Using the three databases
designed with the temporal locality in mind, we re-
trieve draft token sequence 1., for the given previ-
ous input x;_;.;. Database access order is based on
the degree of temporal locality within the current
generation process; thereby, the access starts with
D.. Access then proceeds to D,,,, which has high
locality across generations, and finally D, with
moderate locality across generations, until draft set
X accumulates a sufficient number of candidates
as pre-defined hyperparameter /N. These accesses
leverage the locality of the draft token sequence to
enhance drafting accuracy and minimize latency
overhead, preserving the benefits of drafting.

Decoding Process We introduce the inference
process of speculative decoding with our proposed
method, HD. First, for a given previous input x;_; ;,
we acquire the set of draft token X from the three
databases with hierarchical access. Then, the tar-
get LLM M, verifies the draft token sequences
while simultaneously generating the additional to-
kens &. These tokens are used to update the
context-dependent DB either through parallel de-

coding (Santilli et al., 2023; Fu et al., 2024) or by
recycling wasted tokens (Luo et al., 2024). These
processes are repeated iteratively until either the
[EOS] token is generated or the sequence reaches
the pre-defined maximum length 7'. Details of the
decoding are depicted in Algorithm 1.

4 Experimental Setup

We introduce the details of the experiment setups
conducted to evaluate the effectiveness of HD.

Dataset We exploit Spec-Bench (Xia et al.,
2024), a comprehensive benchmark to evaluate
speculative decoding across various tasks. Specifi-
cally. the collected datasets are MT-bench (Zheng
et al., 2023) for Multi-turn Conversation, WMT14
DE-EN (Bojar et al.,, 2014) for Translation,
CNN/Daily Mail (Nallapati et al., 2016) for Sum-
marization, Natural Question (Kwiatkowski et al.,
2019) for Question Answering, GSM8K (Cobbe
et al., 2021) for Math Reasoning, DPR (Karpukhin
et al., 2020) for RAG. Each task has 80 instances,
making a total of 480 generations.

Model We utilize two LLM families: Vicuna-
v1.3-{7,13,33}B (Zheng et al., 2023) and Llama-2-
chat-{7,13}B (Touvron et al., 2023) to demonstrate
the effectiveness of the proposed method.

Baseline Method We compare our proposed
method, HD, with autoregressive decoding and
various database drafting methods to validate its
effectiveness. Specifically, 1) Autoregressive de-
coding (AR) serves as an indicator for measuring
acceleration gains. We also include 2) PLD? (Sax-
ena, 2023), utilizing previous input prompts as a
database, 3) LADE (Fu et al., 2024), employing
parallel decoding via a Jacobian iteration method,
and 4) REST (He et al., 2024), which retrieves
draft tokens from a large text corpus.

Evaluation Metric We utilize a variety of met-
rics to evaluate drafting overhead, drafting accu-
racy, and acceleration gain. To measure drafting
overhead, we use 1) Drafting Latency, which
refers to the time taken to fetch draft tokens. Fol-
lowing Zhou et al. (2024), the drafting accuracy
is assessed using 2) Acceptance Ratio (o) and 3)
Mean Accepted Tokens (7). The acceptance ratio
(o) represents the ratio of accepted tokens to total
tokens, while the mean accepted tokens (7) denotes

2PLD is included only in the greedy setting due to its
official repository’s lack of temperature sampling support.

3900



Table 2: Results of Hierarchy Drafting and various database drafting methods on Spec-Bench. The best results are bold.

Vicuna-7B-v1.3 Vicuna-13B-v1.3

Vicuna-33B-v1.3 Llama-2-7B-chat Llama-2-13B-chat

Method DL (ms) a(%) 7 Speedip DL(ms) a(%) 7

Speedup D.L(ms) a(%) T

Speedup D.L(ms) a(%) 7 Speedup DL(ms) (%) r  Speedup

AR
S PLD
5 LADE
. REST

1.00x
1.32x

1.00 1.00x

1.36x 0.49

<0.01

44.49
4359

0.31
<0.01

45.22
43.92

0.31
<0.01

HD (Ours)

1.00 1.00x

1.31x

1.00 1.00x 1.00

1.18x

- 1.00x
35.63
49.96

0.30
<0.01

40.55 0.31 35.02

45.34

AR
LADE
REST

HD (Ours)

40.27

the expected number of accepted tokens per step.
Finally, acceleration gain is measured using the 4)
Speedup Ratio, which compares #tokens/sec of
each method from autoregressive decoding.

Implementation Detail The proposed method,
HD, is configured with the hyperparameters [, m,
N, and T set to 2, 4, 7, and 1024, respectively.
Specifically, [ denotes the length of the previous to-
kens used as the database key, and m represents the
length of the draft sequence used as the database
value. Finally, N specifies the size of the draft
set passed to the LLM for verification. To adopt a
sampling strategy, we exploit speculative sampling
(Chen et al., 2023a) by setting draft probability
as 1.0. For the context-dependent database (D),
the previous input tokens and the tokens generated
via parallel decoding are included. For parallel de-
coding, we follow the implementation proposed by
LADE (Fu et al., 2024), which allows simultaneous
processing of the parallel decoding and verification
branches. Therefore, following the implementation
of LADE, the verifying step is based on n-gram.
For the model-dependent database (D,,,), we col-
lect LLM-generated texts from the English portion
of the OASST training set (Kopf et al., 2023), using
a 7B model from the targeted LLM family. A to-
tal of 39,283 texts were generated, from which we
sampled the 100k most frequent token sequences.
Lastly, for the statistics-dependent database (D),
we adopt the setting of REST (He et al., 2024),
utilizing data sourced from UltraChat (Ding et al.,
2023), with the database size being approximately
12GB. More details are in Appendix B.

Experimental Setup All experiments are con-
ducted on a machine equipped with a single A100-
40GB-PCle GPU for 7B and 13B models and A100-
80GB-PClIe GPU for 33B model, using float16 pre-
cision for the models. To ensure a fair comparison,
we follow the implementations of other database
drafting methods and the evaluation scripts pro-
vided by Xia et al. (2024)*. Our experimental re-

3https ://github.com/hemingkx/Spec-Bench

sults are based on a single run, though we observed
only marginal differences between runs.

5 Results

We now present the experimental results on Spec-
Bench, along with an in-depth analysis of HD.

5.1 Main Result

Table 2 presents our main results, averaged across
all cases of Spec-Bench using three models, at
both low temperature (7" = 0.0) and high tem-
perature (I' = 1.0). First, our proposed method,
HD, achieves the outperforming acceleration gain
across all scenarios. In detail, when temperature is
0.0, HD achieves over 1.5x faster inference speed
compared to autoregressive decoding, whereas the
other methods fail to exceed a 1.4x speedup. Also,
while the acceleration gain at 7' = 1.0 is slightly
lower than 7" = 0.0, HD still achieves the fastest in-
ference speed compared to all other methods across
all models. These results demonstrate that our hier-
archical framework effectively enhances inference
speed by incorporating diverse token sources into
three databases organized by temporal locality.
Beyond acceleration gains, we analyze the ad-
ditional latency caused by the drafting process,
which adds overhead that is absent in autoregres-
sive decoding, and also evaluate how accurately
the drafting step retrieves tokens that align with
the LLM’s output. Regarding drafting latency,
LADE requires an extremely short time—under
0.01 ms per draft—whereas REST takes signifi-
cantly longer, with latency close to 3.00 ms. How-
ever, drafting accuracy shows the opposite trend:
LADE exhibits lower values for both the accep-
tance ratio (o) and mean accepted tokens (7), while
REST achieves higher values for both. Notably, our
proposed method, HD, drafts slightly faster than
REST, even though accessing the same extensive
database, and accurately predicts 70% of generated
tokens, achieving the highest accuracy among all
other methods. These results indicate that HD suc-
cessfully balances increased accuracy with reduced

3901


https://github.com/hemingkx/Spec-Bench

Vicuna-7b

Translation

1.7
1.6

1.5
Summar
S14 ization
=

]
21.3
7

1.2 QA

1.1 == SpS

MEDUSA-1

Math Reasoning
1.0

PLD LADE REST HD

%{ulti-tum
1.6\ Conversation ization

RAG

Vicuna-13b

Translation

Llama-7b

Translation

Summar , Multi-turn ~ Summar

. Multi-turn
"% Conversation ization

@1 6'§ Conversation

QA RAG QA RAG

Math Reasoning Math Reasoning

—— LADE —— PLD —— REST —— HD

Figure 4: (Left) Speedup comparison with non-database drafting methods with Vicuna-7B on Spec-Bench. (Right) Speedup
comparison of database drafting methods across six tasks of Spec-Bench.

Multi-turn Conversation

Translation Summarization

'

L 100

Math Reasoning

SE 1071

Draft Latency (ms)
o
>

V

0 20 40

D
Accessed Database

60

Percentage of Verification Success

0.0 0.00
100 0 20 40 60 80 100 0 20 40 60 80 100
Percentage of Verification Success Percentage of Verification Success

= D 3 Ds

80

Dm

Figure 5: (Left) Verify success and draft latency for the databases D., D, and D, in HD. Verify success represents the
proportion of accepted accesses relative to the total accesses. (Right) Verify success density plots for each database across six
tasks in Spec-Bench. Both results are conducted on Spec-Bench by using Llama-2-7b.

drafting latency through hierarchical database ac-
cess, resulting in significant acceleration gain.

Comparison with Non-Database Methods We
compare diverse database drafting methods with
two non-database drafting methods, SpS (Chen
et al., 2023b) and MEDUSA (Cai et al., 2024b),
to confirm whether the performance is competi-
tive without additional training. As shown in Fig-
ure 4, while other database drafting methods sig-
nificantly underperform compared to non-database
drafting methods, our proposed method, HD, out-
performs SpS and substantially narrows the per-
formance gaps with MEDUSA. This demonstrates
that our proposed method shows the potential to
achieve more significant acceleration gain without
retraining the models by exploiting data resources
common in real-world serving scenarios.

Robustness across Tasks We evaluate the robust-
ness of database drafting methods across various
generation tasks, as illustrated on the right side
of Figure 4. Relying on a single source results in
variability in acceleration gains, causing most meth-
ods, except HD, to show inconsistent performance
with concave regions in specific tasks. Specifically,
PLD achieves significant acceleration in tasks like
Summarization and RAG but offers minimal im-
provements in Translation and QA. Additionally,
other methods exhibit varying acceleration gains
depending on the model used—REST, for example,
performs well with Llama-7b in summarization
but shows weaker results with Vicuna-7b, nearly
matching autoregressive decoding speeds. In con-

trast, our proposed method consistently achieves
the highest acceleration across all tasks and mod-
els, occupying the largest area in each plot. This
demonstrates that incorporating diverse sources en-
hances robustness, making database drafting meth-
ods more suitable for real-world scenarios.

5.2 Analysis

In this subsection, we provide an in-depth analysis
of HD for investigating its effectiveness.

Analysis of Three Databases The left side of
Figure 5 depicts each database’s verify success
ratio and draft latency. The verify success ratio
measures the proportion of accepted cases relative
to total database accesses during the verifying step.
D. achieves the highest verify success ratio over
30% with the lowest draft latency, demonstrating
its effectiveness in fetching context-relevant future
tokens. However, D,, shows a lower verify suc-
cess rate, 15.5%, with slightly higher latency, in-
dicating that while it performs decently, it is less
aligned with specific contexts. D exhibits the low-
est verify success rate under 10% and the highest
draft latency over 10ms due to its larger scale and
lower locality. These highlight that draft tokens
with higher locality are more frequently accepted,
indicating alignment with our design objectives.

Access Pattern across Tasks We analyze how
our proposed method, HD, achieves consistent ac-
celeration gain across tasks with verify success ra-
tio of databases for each task. As shown in the right
side of Figure 5, D, excels in tasks such as Multi-

3902



100 20
1.64x 1.15x

o)
o
L

1.39x

F15
1.1ax 0-79x 0.79x

-]
S o
! |

o
(=]
=
Draft Latency (ms)

Acceptance Ratio (%)

o
L

cms csm mcs msc scm smc
Access Order

Figure 6: Impact of access order in HD with Llama-2-7b on
Spec-Bench. Blue and red bars depict the acceptance ratio and
draft latency, respectively. The value over the bars denotes the
speedup against autoregressive decoding.

turn Conversation or Summarization, where the
context-specific tokens are highly repeated, leading
to high verification success. However, for tasks
like translation and QA, which offer fewer explicit
cues from previous inputs or contexts, D, achieves
lower verification success. In these cases, D,,, and
D, compensate for the weaknesses of D, by show-
ing higher verification success compared to other
tasks where D, outperforms. These results high-
light how our HD efficiently accesses the appropri-
ate database for each task, effectively leveraging
the distinct strengths of diverse sources.

Database Access Order We analyze the impact
of access order within the hierarchical framework,
as shown in Figure 6. As expected, our original ac-
cess order (cms), which prioritizes databases from
highest to lowest temporal locality, achieves the
highest acceptance ratio and lowest draft latency.
While other orders maintain an acceptance ratio
above 50%, sufficient for some acceleration gain,
their actual speedup is significantly lower due to
additional drafting latency, reaching up to 12ms for
orders like scm or smc. These results demonstrate
that hierarchical access fully leverages the poten-
tial of multiple databases with minimal drafting
latency compared to other orders, underscoring the
importance of temporal locality in drafting order.
We provide additional analysis in Appendix C.

6 Discussion

Although our proposed method achieves signifi-
cant performance gains over other database draft-
ing methods, recent approaches based on model re-
training (Cai et al., 2024b; Li et al., 2024a; Ankner
et al., 2024) have demonstrated substantially higher
acceleration. However, it is essential to note that
the training costs associated with these methods
are non-trivial, particularly in dynamic or resource-
intensive settings. For instance, retraining-based
approaches necessitate additional training steps,

which pose practical challenges in real-world ap-
plications like multi-model serving (Sheng et al.,
2024; Ramirez et al., 2024) or resource-limited
environments (Cai et al., 2024a). Specifically, de-
ploying multiple LLMs for diverse domain-specific
tasks using numerous LoRA adapters (Sheng et al.,
2024) or employing model routing strategies for
efficient serving (Ramirez et al., 2024) can signifi-
cantly increase computational overhead when such
methods must be applied to all LLMs. As a result,
the retraining requirement can complicate deploy-
ment, particularly in real-world serving scenarios.

Given these constraints, we position database
drafting methods as a practical alternative to model
retraining by leveraging readily available data re-
sources in serving scenarios rather than asserting
the best performance. Database drafting meth-
ods can effectively address serving challenges in
real-world applications by achieving fully lossless
speculative decoding without requiring parameter
updates. Among database drafting methods, our
proposed method, HD, further enhances the practi-
cality of database drafting by incorporating diverse
data resources into a hierarchical framework for
accurately and efficiently drafting future tokens of
LLMs. Thus, HD narrows the performance gap
with state-of-the-art speculative decoding methods,
demonstrating the potential of database drafting
to accelerate inference significantly without fine-
tuning models.

7 Conclusion

In this work, we explore the database drafting ap-
proaches in speculative decoding, which do not
require additional training or fine-tuning. Existing
methods rely on a single database from a single
source, resulting in inconsistent and suboptimal
acceleration gains. To address this, we propose Hi-
erarchical Drafting (HD), which optimally utilizes
diverse sources by constructing multiple databases
based on temporal locality. Our method hierarchi-
cally accesses these databases, prioritizing those
with the highest locality for optimal acceleration.
Experimental results show that HD consistently and
effectively accelerates LLM inference across vari-
ous scenarios, outperforming other database draft-
ing methods. These findings demonstrate that our
hierarchical framework maximizes the strengths
of each database with minimal overhead, expand-
ing the directions exploiting multiple databases for
lossless acceleration in speculative decoding.

3903



Limitation

One limitation of this paper is the limited use of
LLMs with more than 13B parameters. While our
evaluation focused on models like Llama-2 and Vi-
cuna with up to 13B parameters, the performance
of HD on larger models remains unexplored. How-
ever, we expect that the larger models will be much
more appropriate for our approach, considering the
high acceptance ratio of our proposed method, HD,
across diverse scenarios and decreased sensitiv-
ity to draft latency as generation latency increases.
Also, we plan to extend our experiments to larger
models in future work.

While this paper leverages multiple databases to
maximize their strengths with minimal overhead,
the sources of these databases are not entirely new.
Rather than focusing on the novelty of each source,
we emphasize that our approach is plug-and-play,
making it easy to integrate future methods by sim-
ply adding tokens from new sources into the appro-
priate database. For instance, although we omit-
ted token recycling (Luo et al., 2024) in our ex-
periments, recycled tokens could be added to the
context-dependent database, given their temporal
locality.

Ethics Statements

This work proposes a lossless drafting strategy in
speculative decoding for optimal and general accel-
eration gains. However, our method may generate
violent or biased responses, which is beyond the
scope of this paper. We strongly believe that fu-
ture research on large language models will address
these issues and help mitigate such concerns.

Acknowledgement

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the
Korea government(MSIT) (RS-2024-00359979).
Also, this work was supported by Institute of Infor-
mation & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea
government (MSIT) (RS-2023- 00215700 and RS-
2024-00395134).

References

Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and
Marc Snir. 1987. A model for hierarchical memory.
In Proceedings of the 19th Annual ACM Symposium

on Theory of Computing, 1987, New York, New York,
USA, pages 305-314. ACM.

Zachary Ankner, Rishab Parthasarathy, Aniruddha
Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. 2024.  Hydra:
Sequentially-dependent draft heads for medusa de-
coding. arXiv preprint arXiv:2402.05109.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Ales Tam-
chyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of
the Ninth Workshop on Statistical Machine Transla-
tion, WMT@ACL 2014, June 26-27, 2014, Baltimore,
Maryland, USA, pages 12-58. The Association for
Computer Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Fenglong Cai, Dong Yuan, Zhe Yang, and Lizhen Cui.
2024a. Edge-llm: A collaborative framework for
large language model serving in edge computing.
In IEEE International Conference on Web Services,
ICWS 2024, Shenzhen, China, July 7-13, 2024, pages
799-809. IEEE.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D. Lee, Deming Chen, and Tri Dao. 2024b.
Medusa: Simple LLM inference acceleration frame-
work with multiple decoding heads. In Forty-first In-
ternational Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023a. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, abs/2302.01318.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023b. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias

3904


https://doi.org/10.1145/28395.28428
https://doi.org/10.48550/ARXIV.2402.05109
https://doi.org/10.48550/ARXIV.2402.05109
https://doi.org/10.48550/ARXIV.2402.05109
https://doi.org/10.3115/V1/W14-3302
https://doi.org/10.3115/V1/W14-3302
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1109/ICWS62655.2024.00099
https://doi.org/10.1109/ICWS62655.2024.00099
https://openreview.net/forum?id=PEpbUobfJv
https://openreview.net/forum?id=PEpbUobfJv
https://doi.org/10.48550/ARXIV.2302.01318
https://doi.org/10.48550/ARXIV.2302.01318
https://doi.org/10.48550/ARXIV.2302.01318
https://doi.org/10.48550/ARXIV.2302.01318

Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin,
Shengding Hu, Zhiyuan Liu, Maosong Sun, and
Bowen Zhou. 2023. Enhancing chat language models
by scaling high-quality instructional conversations.
In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2023, Singapore, December 6-10, 2023, pages 3029—
3051. Association for Computational Linguistics.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan
Alistarh. 2023. OPTQ: Accurate quantization for
generative pre-trained transformers. In The Eleventh
International Conference on Learning Representa-
tions.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the sequential dependency of LLM in-
ference using lookahead decoding. In Forty-first In-
ternational Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net.

Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman
Hooper, Michael W. Mahoney, and Kurt Keutzer.
2024. Ai and memory wall. IEEE Micro, 44(3):33—
39.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and
Di He. 2024. REST: Retrieval-based speculative de-
coding. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 1582-1595,
Mexico City, Mexico. Association for Computational
Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Dangi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769—6781. Associa-
tion for Computational Linguistics.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen
Dong, Xiuyu Li, Sheng Shen, Michael W. Ma-
honey, and Kurt Keutzer. 2023.  Squeezellm:
Dense-and-sparse quantization.  arXiv preprint
arXiv:23056.07629.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,
Chenghao Mou, Yacine Jernite, Margaret Mitchell,
Carlos Mufioz Ferrandis, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro von Werra, and Harm
de Vries. 2023. The stack: 3 TB of permissively li-
censed source code. Trans. Mach. Learn. Res., 2023.

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,

Abdullah Barhoum, Duc Minh Nguyen, Oliver
Stanley, Richard Nagyfi, Shahul ES, Sameer Suri,
David Alexandrovich Glushkov, Arnav Varma Dan-
tuluri, Andrew Maguire, Christoph Schuhmann, Huu
Nguyen, and Alexander Julian Mattick. 2023. Ope-
nassistant conversations - democratizing large lan-
guage model alignment. In Thirty-seventh Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, T:452—
466.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, pages 611—
626. ACM.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 19274-19286.
PMLR.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024a. EAGLE-2: faster inference of lan-
guage models with dynamic draft trees. arXiv
preprint arXiv:2406.16858.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024b. EAGLE: speculative sampling re-
quires rethinking feature uncertainty. In Forty-
first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming
Zhang, Xuanyu Zhang, Qing Yang, Dongliang Xu,
and Wanxiang Che. 2024. Turning trash into treasure:
Accelerating inference of large language models with
token recycling. arXiv preprint arXiv:2408.08696.

Udi Manber and Eugene W. Myers. 1993. Suffix arrays:
A new method for on-line string searches. SIAM J.
Comput., 22(5):935-948.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chu-
nan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna
Abhyankar, and Zhihao Jia. 2024. Specinfer: Accel-
erating large language model serving with tree-based

3905


http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.183
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.183
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=eDjvSFOkXw
https://openreview.net/forum?id=eDjvSFOkXw
https://doi.org/10.1109/MM.2024.3373763
https://aclanthology.org/2024.naacl-long.88
https://aclanthology.org/2024.naacl-long.88
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.48550/ARXIV.2306.07629
https://doi.org/10.48550/ARXIV.2306.07629
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=VSJotgbPHF
https://openreview.net/forum?id=VSJotgbPHF
https://openreview.net/forum?id=VSJotgbPHF
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
http://arxiv.org/abs/2406.16858
http://arxiv.org/abs/2406.16858
https://openreview.net/forum?id=1NdN7eXyb4
https://openreview.net/forum?id=1NdN7eXyb4
https://arxiv.org/pdf/2408.08696
https://arxiv.org/pdf/2408.08696
https://arxiv.org/pdf/2408.08696
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
https://doi.org/10.1145/3620666.3651335
https://doi.org/10.1145/3620666.3651335

speculative inference and verification. In Proceed-
ings of the 29th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, Volume 3, ASPLOS 2024, La
Jolla, CA, USA, 27 April 2024- 1 May 2024, pages
932-949. ACM.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
Santos, Caglar Giilgehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural
Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016, pages 280-290. ACL.

David A. Patterson. 2004. Latency lags bandwith. Com-
mun. ACM, 47(10):71-75.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently scaling transformer inference. In Proceedings
of the Sixth Conference on Machine Learning and
Systems, MLSys 2023, Miami, FL, USA, June 4-8,
2023. mlsys.org.

Guillem Ramirez, Alexandra Birch, and Ivan Titov.
2024. Optimising calls to large language models
with uncertainty-based two-tier selection. In First
Conference on Language Modeling.

Andrea Santilli, Silvio Severino, Emilian Postolache,
Valentino Maiorca, Michele Mancusi, Riccardo
Marin, and Emanuele Rodola. 2023. Accelerating
transformer inference for translation via parallel de-
coding. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 12336-12355. Association for
Computational Linguistics.

Apoorv Saxena. 2023. Prompt lookup decoding.

Noam Shazeer. 2019. Fast transformer decoding:
One write-head is all you need. arXiv preprint
arXiv:1911.02150.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman
Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, Joseph
Gonzalez, and Ion Stoica. 2024. Slora: Scalable
serving of thousands of lora adapters. In MLSys.

Benjamin Spector and Christopher Ré. 2023. Accelerat-
ing LLM inference with staged speculative decoding.
arXiv preprint arXiv:2308.04623.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurlPS
2018, December 3-8, 2018, Montréal, Canada, pages
10107-10116.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu
Wei, and Zhifang Sui. 2023. Speculative decod-
ing: Exploiting speculative execution for accelerating
seq2seq generation. In Findings of the Association
for Computational Linguistics: EMNLP 2023, Singa-
pore, December 6-10, 2023, pages 3909-3925. Asso-
ciation for Computational Linguistics.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-
fang Sui. 2024. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of
speculative decoding. In Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024,
pages 7655-7671. Association for Computational
Linguistics.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023. Inference with reference: Lossless ac-
celeration of large language models. arXiv preprint
arXiv:2304.04487, abs/2304.04487.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. In Ad-
vances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurlPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

Euiin Yi, Taehyeon Kim, Hongseok Jeung, Du-
Seong Chang, and Se-Young Yun. 2024. Towards
fast multilingual LLM inference: Speculative de-
coding and specialized drafters. arXiv preprint
arXiv:2406.16758.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385.

3906


https://doi.org/10.1145/3620666.3651335
https://doi.org/10.18653/V1/K16-1028
https://doi.org/10.18653/V1/K16-1028
https://doi.org/10.1145/1022594.1022596
https://proceedings.mlsys.org/paper_files/paper/2023/hash/c4be71ab8d24cdfb45e3d06dbfca2780-Abstract-mlsys2023.html
https://proceedings.mlsys.org/paper_files/paper/2023/hash/c4be71ab8d24cdfb45e3d06dbfca2780-Abstract-mlsys2023.html
https://openreview.net/forum?id=T9cOYH0wGF
https://openreview.net/forum?id=T9cOYH0wGF
https://doi.org/10.18653/V1/2023.ACL-LONG.689
https://doi.org/10.18653/V1/2023.ACL-LONG.689
https://doi.org/10.18653/V1/2023.ACL-LONG.689
https://github.com/apoorvumang/prompt-lookup-decoding/
http://arxiv.org/abs/1911.02150
http://arxiv.org/abs/1911.02150
https://proceedings.mlsys.org/paper_files/paper/2024/hash/906419cd502575b617cc489a1a696a67-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/906419cd502575b617cc489a1a696a67-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2308.04623
https://doi.org/10.48550/ARXIV.2308.04623
https://proceedings.neurips.cc/paper/2018/hash/c4127b9194fe8562c64dc0f5bf2c93bc-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/c4127b9194fe8562c64dc0f5bf2c93bc-Abstract.html
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.456
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.456
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.456
https://doi.org/10.48550/ARXIV.2304.04487
https://doi.org/10.48550/ARXIV.2304.04487
http://papers.nips.cc/paper_files/paper/2022/hash/adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2406.16758
https://doi.org/10.48550/ARXIV.2406.16758
https://doi.org/10.48550/ARXIV.2406.16758
https://doi.org/10.48550/ARXIV.2401.02385
https://doi.org/10.48550/ARXIV.2401.02385

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett,
Zhangyang Wang, and Beidi Chen. 2023. H2O:
heavy-hitter oracle for efficient generative inference
of large language models. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
IIm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv
Kumar, Jean-Francgois Kagy, and Rishabh Agarwal.
2024. Distillspec: Improving speculative decoding
via knowledge distillation. In The Twelfth Interna-
tional Conference on Learning Representations.

Appendix

In the Appendix, we introduce more related work
and details on how the experiments were imple-
mented, along with supplementary results and anal-
ysis not included in the main text.

A  More Related Work

LLM Inference Acceleration Large Language
Models (LLMs) (Brown et al., 2020; Touvron
et al., 2023) have significantly advanced Natural
Language Processing (NLP) and are widely used
in real-world applications via APIs, highlighting
the importance of real-time human-LLM interac-
tions. However, the slow inference speed of LLMs
presents the primary bottleneck in deploying these
models as practical services. This issue is pre-
dominantly memory-bound, with latency arising
from the autoregressive decoding process (Patter-
son, 2004; Pope et al., 2023; Gholami et al., 2024).
During the inference process, each token gener-
ation requires transferring model parameters and
key-value caches from global memory to the ac-
celerator’s cache, consuming substantial overhead.
Given the limited progress in memory bandwidth,
several algorithmic approaches have been devel-
oped to mitigate these challenges, including model
parameter quantization (Yao et al., 2022; Fran-
tar et al., 2023; Kim et al., 2023), memory allo-
cation optimization (Shazeer, 2019; Zhang et al.,

2023; Kwon et al., 2023), and Speculative Decod-
ing (Stern et al., 2018; Leviathan et al., 2023; Chen
et al., 2023a). While other approaches often re-
quire hardware modifications or lead to side effects
like performance degradation, speculative decod-
ing has gained particular attention for offering a
fully algorithmic solution with minimal drawbacks.

B More Implementation Details

Implementation Details of HD First, we intro-
duce more details of our multiple databases. For
D. and D,,, the prefix token length used as the
key is 1, while the given previous token length is
[. This mismatch is because increasing the prefix
length often leads to draft misses (i.e., keys not
found in the database) due to the limited scale of
token sources constructing D, and D,,,. Also, for
D, the retrieval process is repeated by reducing the
previous token length until draft token sequences
are found or the token length reaches 0, follow-
ing implementation of REST (He et al., 2024). As
mentioned in the main text, D, and D,,, are lookup
tables implemented by the Python Dictionary class.
In contrast, D, is implemented by DraftRetriever?,
a Python Library based on suffix arrays, proposed
by REST for handling a large text corpus with min-
imal overhead. The average number of values (i.e.,
draft token sequences) stored in the database is 1K,
100K, and 200M for D, D,,, and D;, respectively.
We now explain the detailed implementation of
the decoding process with HD. Our method is pri-
marily based on the implementation of LADE? (Fu
et al., 2024), as LADE employs a similar database
to D, and updates tokens generated through par-
allel decoding. We extend this by incorporating a
hierarchical framework; thereby, the verification
step in HD follows LADE’s n-gram verification
process. However, we emphasize that HD can be
extended to other database drafting methods by in-
tegrating a hierarchical drafting framework with
multiple databases into their implementation.

Prompting Format We use the chat format
for text input, provided by the Python library
FastChat®, which consists of system, user, and
model components. Additionally, we adopted the
system message for Vicuna from FastChat and for

4https ://github.com/FasterDecoding/REST/tree/main/
DraftRetriever

5https ://github.com/hao-ai-1lab/LookaheadDecoding

6h‘ctps ://github.com/1lm-sys/FastChat

3907


http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=rsY6J3ZaTF
https://openreview.net/forum?id=rsY6J3ZaTF
https://github.com/FasterDecoding/REST/tree/main/DraftRetriever
https://github.com/FasterDecoding/REST/tree/main/DraftRetriever
https://github.com/hao-ai-lab/LookaheadDecoding
https://github.com/lm-sys/FastChat

—
14 e
" X |
12 _#f L%
—~ Pl 25
O 10 ~ o2’ =
Q AR 427 -
) « ez” -3,
2 4l o PP A
o 35 ange?l T
£ 61 8 bt
k=) oI
oyl SV
2 3
0 - T T T T T
0 200 400 600 800 1000
# Tokens
® AR ® PLD ® LADE ® REST ® HD

Figure 7: Correlation between generated token length and
elapsed latency using Llama-2-7b-chat on Spec-Bench. Dots
in the plot represent acceleration results for individual gener-
ations, while the lines show the linear regression results for
each method.

Llama-2 from the official repository’.

Details of Dataset We exploit Spec-Bench (Xia
et al., 2024), collecting data from representative
datasets for each task. Specifically. the collected
datasets are MT-bench (Zheng et al., 2023) for
Multi-turn Conversation, WMT14 DE-EN (Bojar
et al., 2014) for Translation, CNN/Daily Mail (Nal-
lapati et al., 2016) for Summarization, Natural
Question (Kwiatkowski et al., 2019) for Question
Answering, GSM8K (Cobbe et al., 2021) for Math
Reasoning, DPR (Karpukhin et al., 2020) for Re-
trieval Augmented Generation.

C Additional Results

C.1 Impact of Generated Token Length

Since speculative decoding shortens generation
steps and reduces the correlation between gener-
ated token length and elapsed latency, we explore
this relationship to showcase the effectiveness of
HD. As depicted in Figure 7, all database drafting
methods successfully lower the slope compared to
autoregressive decoding. Among them, HD demon-
strates the shallowest slope, highlighting its effec-
tiveness even for long text generation. Furthermore,
despite variations in drafting latency and accuracy
among other methods, as shown in Table 2, they ex-
hibit similar slopes, underscoring the importance of
balancing latency and drafting accuracy to achieve
optimal acceleration for database drafting methods.

C.2 Impact of Temperature

As temperature sampling is commonly used to in-
crease the diversity of text generation, we analyze
its impact on the database drafting methods, as

7h’ctps ://github.com/meta-1lama/llama/blob/main/example_
chat_completion.py

| @---@._

” R S G S

75 \““.\\
o ®
L
£ 704
8
So5| @---@=== == = ::‘."‘.“'.'“f-—-.
# '---0--—.~~-_.____.

60

551 @-—-@---0@-- @ --@---@---@---@---0--¢g

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature

-® AR -@ LADE -® REST -@® HD

Figure 8: Tokens per second across varying temperature set-
tings for different decoding methods, including Autoregressive
Decoding (AR), Hierarchy Drafting (HD), LADE, and REST.

shown on the left of Figure 8. Other drafting meth-
ods maintain higher speeds than autoregressive de-
coding across all temperatures. LADE slightly de-
creases as temperature increases, whereas REST
remains consistent. However, updating D, with
sampled outputs, similar to LADE, results in token
mismatches at higher temperatures, causing HD
to show a slight reduction in speed. Nevertheless,
our proposed method, HD, outperforms all others
across the entire temperature range, maintaining
a high decoding speed of over 70 tokens per sec-
ond. These results demonstrate that HD remains
a suitable solution even with a sampling strategy,
enhancing its potential in real-world scenarios.

C.3 Database Access Statistics

B Draft & Verify Success
B Draft Success
Draft Fail

Dc

Dm Ds
Accessed Database per Each Step

Figure 9: Analysis of database access using Llama-2-7b-chat
on Spec-Bench. The total bar height represents the overall
database access ratio, with each color indicating draft failure,
draft success, and draft & verify success.

We conducted a breakdown study of database
access patterns, as shown in Figure 9, focusing
on draft & verify success and its relationship to
the temporal locality of draft tokens. The context-
dependent database (D.) achieves the highest ver-
ify success rate (32.3%), highlighting its strong
alignment with recent input tokens due to its ability
to capture local context, though its limited scale
results in higher draft failure rates. The model-
dependent database (D,;,) has a lower verify suc-

3908


https://github.com/meta-llama/llama/blob/main/example_chat_completion.py
https://github.com/meta-llama/llama/blob/main/example_chat_completion.py

cess rate (15.5%), yet its broader scope allows for
more frequent draft success, albeit less aligned
with the immediate context. Finally, the statistics-
dependent database (D;) exhibits the lowest verify
success (6.5%) but benefits from its vast coverage,
which makes it less sensitive to temporal locality.
These patterns suggest that D, is critical for captur-
ing temporally localized tokens, while D,,, and D,
complement it by providing a more general, though
not as closely aligned to the LLM generation.

C.4 Ablation Study

Table 3: Ablation study of exploited databases on Spec-Bench
with Llama-2-7b.

DB a(%) D.L(ms) Speedup
(D¢, Dy, Ds)  79.72 2.18 1.64x

(Do 5878 0.02  1.40x
(D) 45.83 0.03 1.16x
(Ds) 61.82 12.52 0.81x

" (De,Dm) 7560 003  171x
(D¢, Ds) 78.42 9.50 1.18x
(Ds, D) 60.85 2.88 1.18x

We conducted an ablation study on the databases
used in HD, as shown on the left side of Table 3.
Using only a single database results in an accep-
tance ratio below 60%, with a significant increase
in draft failures, notably when D; is excluded. In-
corporating two databases improves the acceptance
ratio and reduces draft failures, but it still under-
performs compared to all three databases. These
findings highlight the importance of combining
multiple databases to improve token acceptance,
leading to more robust and efficient performance.

Additionally, we observe the need to balance
both the acceptance ratio and drafting latency for
better speedup. For instance, using the largest
database D, alone increases the acceptance ratio
but significantly raises drafting latency, resulting in
the worst speedup—even slower than autoregres-
sive decoding. Although the acceptance ratio with
(D, D,,) is 5% lower than with (D., D,,, D,), it
achieves higher speedup due to trivial drafting la-
tency under Ims. However, the negative impact of
drafting latency may be mitigated when applying
HD to larger models. Since the longer generation
latency of larger LLMs makes drafting latency neg-
ligible, a high acceptance ratio becomes crucial
for acceleration. From these insights, our future
research will focus on reducing drafting latency to
be more effective regardless of model scale while
maintaining an optimal acceptance ratio.

C.5 Impact of Token Quality

Table 4: Experimental results on alternative options for
model-dependent and statistics-dependent DB with Vicuna-
7B.

D, — Ds T D.L (ms) Speedup
Vicuna Response - UltraChat (12GB) 2.38 2.17 1.51x
Vicuna Response - ShareGPT (465MB)  2.26 0.28 1.57x
Vicuna Response - TheStack (924MB) 2.28 0.28 1.58x
Llama Response - UltraChat (12GB) 2.34 2.35 1.47x

To further investigate the impact of token qual-
ity, we conducted experiments using alternative
token sources, as presented in Table 4. For Vicuna-
7b, we utilized Llama-7b responses as model-
dependent databases and the code generation cor-
pus, The Stack (924MB) (Kocetkov et al., 2023), as
a statistics-dependent database. Also, we exploited
a small version of the general generation corpus,
ShareGPT (465MB)8. While token sources’ qual-
ity influences acceleration, our proposed method
demonstrates significant acceleration gains even
when the token sources are not well-aligned with
the target LLM or task. In addition, as discussed in
the main text, drafting latency is a critical consider-
ation, with smaller statistics-dependent databases
demonstrating better acceleration despite a lower
accepted length.

C.6 Token Coverage

D Diy
4 9%
6% 5%
: 19%
[ 16 18%
i 0
\\ ‘v‘ \\
6%
Ds

Figure 10: Venn diagram of accepted tokens using a single
database.

Beyond the ablation study, we performed an in-
depth analysis to verify the unique token distribu-
tions of each database by examining the accepted
tokens when using only a single database, as shown
on the right side of Figure 10. A significant portion
of unique draft tokens was found, indicating that no
single database can handle all tokens for drafting.
Specifically, the context-dependent database (D.)
contains 16% unique accepted tokens not found

8https: //huggingface.co/datasets/Aeala/

ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_
2023.05.04v0_Wasteland_Edition. json

3909


https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_2023.05.04v0_Wasteland_Edition.json
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_2023.05.04v0_Wasteland_Edition.json
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_2023.05.04v0_Wasteland_Edition.json

in other databases, though its limited scale often
leads to draft failures. These findings confirm that
our designed databases complement each other by
compensating for individual weaknesses in token
distribution.

C.7 Case Study

Table 5 presents a case study of text generation in
question answering (QA) and retrieval-augmented
generation (RAG) tasks using Llama-2-7b. The
texts highlighted in green, red, and yellow are re-
trieved from D., D,,, and D;, respectively. Red-
highlighted texts are usually found in the mid-
dle of the input and are contextually relevant, of-
ten including numerical data or named entities.
Green-highlighted texts typically appear at the be-
ginning or end, repeated across generation pro-
cesses; for example, the phrase ‘Thank you for
your question!’ is consistently retrieved from D,,.
Yellow-highlighted texts are rarer and often capture
grammatical patterns, such as articles or preposi-
tions. Also, notable differences exist between tasks:
green texts appear more frequently in the QA task,
while red texts dominate in the RAG task.

3910



Table 5: Case study of HD with Llama-7b, where accepted tokens from the database D., D.,, and D; are in red, green, and
yellow.

Question Answering

Input The first european town in the present-day united states was new orleans?

Output Thank you for your question! I'm happy to help. However, I must respectfully point out that the statement
"The first European town in the present-day United States was New Orleans" is not accurate.
New Orleans was founded by the French in 1718, but it was not the first European settlement in the present-day
United States. In fact, there were several European settlements established before New Orleans, including St.
Augustine, Florida (established in 1565 by Spanish settlers), and Jamestown, Virginia (established in 1607 by
English settlers).
I hope this clarification helps. Please let me know if you have any other questions!

Retrieval-Augmented Generation

Input storm’s pressure bottomed out at 013 this was the lowest in the Atlantic since Dean in 2007. While
maintaining its intensity, Irma made successive landfalls on September 6, at 11:15 UTC on Sint Maarten,
and at 16:30 UTC on Virgin Gorda, in the British Virgin Islands, all while it was at peak intensity. As the
hurricane moved away from the Virgin Islands late on September 6, observations from reconnaissance flights
as well as Doppler radar in San Juan, Puerto Rico, indicated an elliptical eye and double eyewalls. Late on
September 6, the cyclone passed about north of Puerto Rico. Moving
03:00 UTC on September 9, at Category 5 intensity, with winds of 165 mph (270 km/h) and a central pressure
identical to its previous landfall. This made Irma only the second Category 5 hurricane to strike Cuba in
recorded history, after the 1924 Cuba hurricane 2013 both had identical wind speeds at landfall. As the eye
of Irma moved along the northern coast of Cuba, gradual weakening ensued due to land interaction, with
the eye becoming cloud-filled and the intensity falling to a high-end Category 2 later on September 9 2013
operationally, it had been assessed as never falling below
by about 1-in-30 Atlantic tropical cyclones. On September 2, a ship passed to the west of the center of Irma,
recording maximum winds of , while hurricane force winds were estimated to have extended up to from the
center, both of which indicated that the inner core of Irma remained compact. After being a major hurricane
for about 30 hours, the system weakened slightly to a strong Category 2 hurricane at 12:00 UTC on September
2, likely as a result of drier air and eyewall replacement cycles, with the eye sometimes becoming obscured
and the deep convection lining the eyewall
in Cuba. Although land interaction weakened Irma to a Category 2 storm, the system re-intensified to
Category 4 status as it crossed the warm waters of the Straits of Florida, before making landfall on Cudjoe
Key with winds at 130 mph, (215 km/h) on September 10. Irma weakened to Category 3 status, prior to
another landfall in Florida on Marco Island later that day. The system degraded into a remnant low over
Alabama and ultimately dissipated on September 13 over Missouri. The storm caused catastrophic damage in
Barbuda, Saint Barth00e9lemy, Saint Martin, Anguilla, and the Virgin Islands as a Category
had moved inland, it began to accelerate to the north-northwest, while rapid weakening began to occur due
to the increasing wind shear, land interaction, and dry air, with the storm falling below Category 3 intensity
hours after landfall. Passing east of Tampa as a weakening Category 1 hurricane around 06:00 UTC on
September 11, Irma continued to weaken as most of the deep convection became more spread out towards
the northern semi-circle of the circulation 2013 though it retained a large wind field, with most of Florida
experiencing gale-force winds. The system finally weakened to a tropical storm around 12:00
What was the lowest barometric pressure for hurricane irma?

Output Thank you for your question! I'm happy to help you with that.

According to the information provided in the passage, the lowest barometric pressure for Hurricane
Irma was -912 mbar (27.45 inHg), which was recorded at the time of its landfall in the Atlantic. This was the
lowest barometric pressure recorded for Irma since Dean in 2007.

However, I must point out that the question is somewhat nonsensical as barometric pressure is not
a direct measure of a hurricane’s intensity. Hurricane intensity is determined by factors such as wind speed,
central pressure, and size, among others. Barometric pressure is just one of many factors that can affect a
hurricane’s intensity, and it is not a reliable indicator of a hurricane’s severity.

If you have any further questions or if there’s anything else I can help you with, please feel free to
ask!

3911



