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Abstract

Pre-trained language models (PLMs) are
widely used in NLP but struggle with captur-
ing entity knowledge. To address this, knowl-
edge enhancement techniques have been pro-
posed. However, existing methods rely heav-
ily on external knowledge bases embedding
and often introduce noisy entity representa-
tions. In this work, we propose a novel
Knowledge Enhancement Filtering Framework
named KEFF, which contains both knowledge
enhancement and knowledge enhancement fil-
tering modules for PLM. We find that there are
certain redundant bits in the embedding space
of PLMs. Building on this insight, we imple-
ment knowledge-enhanced mapping of redun-
dant bit values in entity span tokens. In order
to solve the knowledge enhancement problem
of existing methods that introduce noisy entity
representation knowledge, we further propose
a novel knowledge enhancement filter based
on our knowledge enhancement method. Fi-
nally, experiments on four knowledge-driven
NLP tasks show that our method effectively
improves the ability of PLMs on downstream
tasks. Compared to state-of-the-art approachs,
our method achieves the highest F1-score and
accuracy, while reducing the computational
cost by 1.7-2.5x.

1 Introduction

Pre-trained language models (PLMs), such as
BERT (Devlin et al., 2018), have become central to
many recent NLP applications. Research indicates
that these models have a certain degree of factual
knowledge (Petroni et al., 2019). However, PLMs
perform poorly when facing some entity-related
downstream tasks such as entity recognition (Li
et al., 2020), entity relationship classification (Li
et al., 2022), and entity typing (Choi et al., 2018;
Ding et al., 2021). In recent years, the field of
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Methods
Retrain-

free
Internal
Encode

Task-
adaptable

Enhanced
Filtering

ERNIE ✗ ✓ ✓ ✗

KEPLER ✗ ✓ ✓ ✗

E-BERT ✓ ✗ ✗ ✗

PELT ✓ ✓ ✗ ✗

MapTuning ✓ ✗ ✓ ✗

KEFF(ours) ✓ ✓ ✓ ✓

Table 1: Comparison of KEFF with existing knowledge
enhancement methods.

knowledge-enhanced pre-trained language model-
ing has seen rapid advancements, with numerous
methods incorporating external knowledge bases
like knowledge graphs (KGs (Peng et al., 2023))
to effectively enhance the entity-related knowledge
capabilities of PLMs (Yang et al., 2021; Hu et al.,
2023).

Existing knowledge-enhanced approaches typi-
cally train the PLM from scratch or fine-tune the
PLM (Hu et al., 2023). For the paradigm of train-
ing the PLM from scratch, existing approaches
typically introduce an external knowledge base,
add knowledge-related objective tasks or modify
knowledge-related loss functions during the train-
ing phase of the PLM, and subsequently train the
entire PLM parameters (Zhang et al., 2019; Wang
et al., 2021; Yamada et al., 2020). Fine-tuning
PLMs usually update some of the PLM’s param-
eters by training with the introduction of external
knowledge (Kang et al., 2022). Both the above
paradigms are effective in enhancing the capabili-
ties of PLMs, but expend extensive computational
cost and time for training.

Fortunately, some research explores knowledge
enhancement without retraining or fine-tuning the
PLM. (Lin et al., 2019a). In this scenario, existing
methods freeze the PLM parameters, introduce ad-
ditional networks for entity alignment training (Po-
erner et al., 2019; Ye et al., 2022; Zhang et al., 2023;
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Wang et al., 2020), and hence perform knowledge
enhancement PLM. This paradigm significantly re-
duces the computational cost as well as the training
time of knowledge-enhanced PLMs and has be-
come a major research issue in recent years. How-
ever, despite the improved capabilities of PLM in
this paradigm, existing methods still suffer from
the following problems:

(1) Heavy reliance on the embedding informa-
tion of entities in external knowledge bases. Exist-
ing methods first align the entity embedding space
in the knowledge base with the PLM embedding
space before introducing entity knowledge repre-
sentation. If new entities are added to the knowl-
edge base, they must be recoded, which reduces
the efficiency of existing methods.

(2) Considering only knowledge enhancement
without filtering. Existing approaches introduce
knowledge representations of entities aligned with
knowledge bases based on the original PLM inputs,
but ignore a critical issue: the introduced knowl-
edge representations of entities may become noise
and disturb the original reasoning ability of the pre-
trained language model. Therefore, it is necessary
to filter the introduced knowledge, i.e., selectively
implement knowledge enhancement.

To address the above problems, we propose a
novel knowledge enhancement and filtering frame-
work that simultaneously consists of two mod-
ules: knowledge enhancement and knowledge en-
hancement filter. For knowledge enhancement, we
present an interesting and effective insight: there
are redundant bits with small absolute values in
the embedding space of PLM. Modifying the val-
ues of these redundant bits has little or no negative
impact on the performance of the PLM in down-
stream tasks. Building upon this crucial insight, we
propose a knowledge enhancement method based
on the redundant bits in the PLM embedding space.
For knowledge-enhanced filtering, we combine a
knowledge enhancement network with mask train-
ing, utilizing a single-layer classifier network as
a filter. We summarize existing knowledge en-
hancement methods in Table 1 and provide a multi-
faceted comparison between our proposed KEFF
and these methods.

Our main contributions are as follows:

• We present an effective and interesting insight:
there are redundant bits with small absolute
values in the embedding space of PLM. Ex-
ploring knowledge enhancement for these re-

dundant bits appears to be a valuable research
direction.

• We propose KEFF, the first framework to si-
multaneously consider both knowledge en-
hancement and knowledge enhancement fil-
tering. KEFF includes a knowledge enhance-
ment filter that allows for selective knowledge
enhancement when pre-trained language mod-
els are applied to downstream tasks. More-
over, KEFF is a plug-and-play framework so
it does not require retraining or fine-tuning
of the PLM, thereby reducing computational
overhead.

• We conduct experiments on four konwledge-
driven downstream tasks. Compared with the
state-of-the-art (SOTA) methods, Our method
performs better in almost all downstream tasks
and can achieve 1.7-2.5x computational cost
reduction.

2 Related Work

Research on knowledge enhancement methods for
PLM is mainly centered around models such as
BERT (Devlin et al., 2018), and we categorize ex-
isting methods into three paradigms.

2.1 Train PLM from scratch

These methods generally modify the original train-
ing objectives of the PLMs and add additional loss
function terms for knowledge enhancement (Hu
et al., 2023). ERNIE (Zhang et al., 2019) uti-
lizes large-scale corpora and knowledge graphs to
train knowledge-enhanced PLMs. KEPLER (Wang
et al., 2021) encodes entity descriptions as en-
tity embeddings, and introduces a loss term for
knowledge encoding (KE) in addition to the bal-
ance of training masked language models (MLMs).
LUKE (Yamada et al., 2020) introduces an entity-
aware self-attention mechanism based on an ex-
ternal knowledge base. Although such methods
perform better on entity-related tasks, they require
updating all PLM parameters, resulting in signifi-
cant computational resource consumption and ex-
tended training time.

2.2 Fine-tuning the PLM

This paradigm of knowledge enhancement ap-
proach has less training overhead than training the
entire PLM from scratch, but is mostly applied to
specific downstream tasks (QA-GNN (Yasunaga
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Figure 1: Overview of KEFF. KEFF is a plug-and-play framework and works without modifying PLM. For the
token embedding of entities in the input text that are aligned with the knowledge base, Knowledge Enhancement
is applied for mapping and transformation. Both the original input and the enhanced input are fed into the Filter
separately, then final result is output. D represents the token embedding length of the PLM.

et al., 2021), CokeBERT (Su et al., 2021), etc.)
Adam Roberts et al.(Roberts et al., 2020) employed
the T5 model, fine-tuned specifically for answer-
ing open-domain questions. In contrast, Coke-
BERT(Su et al., 2021) incorporated special mark-
ers during the fine-tuning process to improve their
performance on various downstream tasks.

2.3 Enhancing Frozen PLM with Networks

This paradigmatic approach to knowledge enhance-
ment freezes the original PLMs and trains only
the neural networks used for knowledge embed-
ding. KagNet (Lin et al., 2019b) builds a struc-
tural common-sense knowledge graph outside of
the BERT (Devlin et al., 2018) model to perform
interpretable reasoning. K-Adapter (Wang et al.,
2020) builds adapters for different tasks and uses
different datasets to train the adapters separately for
PLM reasoning on downstream tasks. E-BERT (Po-
erner et al., 2019) aligns entity encoding from ex-
ternal knowledge bases with PLM embedding, and
introduces additional entity referents in addition to
the original text during model reasoning. PELT (Ye
et al., 2022) and MapTuning (Zhang et al., 2023)
also adopt this additional introduction of entity ref-
erents. However, PELT (Ye et al., 2022) cannot be
adapted for downstream tasks, while E-BERT (Po-
erner et al., 2019) and MapTuning (Zhang et al.,
2023) need to rely on external knowledge base
encoding. In contrast, our proposed method uti-
lizes the PLM’s own embeddings for knowledge
enhancement. Moreover, existing approaches to
knowledge enhancement can sometimes lead the
original PLM to produce incorrect reasoning.

3 Methodology

In this section, we present KEFF, which contains
two main modules: knowledge enhancement and
knowledge enhancement filter. We illustrate the
workflow of KEFF in Figure 1.

3.1 Preliminaries
Given an input sentence S = {t1, t2, ..., tN} ∈
RN×W , where N is the number of tokens in the
input sentence, W is the embedding dimension size
of token in PLM. We define an external knowledge
base as B, The downstream task is defined asD and
the PLM is defined as P . For a given S, assume
that S contains j entities in B, we define entity
mention span ej = tji , ..., t

j
i+l ⊂ S, where l is ej’s

variable length.

3.2 Insight: Exploring Redundant Bits in
PLM’s Embedding Space

Existing approaches favor doing alignment from
the knowledge coding space to the PLM coding
space to achieve knowledge injection, and we
note that there is a lack of research on the cod-
ing space of the PLM itself. Inspired by the exis-
tence of redundant neurons (activation value is very
small) (Han et al., 2015; He et al., 2019) in neu-
ral networks, we consider the question: Is there a
certain number of redundant bits in the PLM’s
embedding space that can be used for knowledge
enhancement ?

We use BERT (Devlin et al., 2018) as the pre-
trained language model P , for given input sen-
tence S , we first find all the entity mentioned span
(e1, e2, ..., ej), subsequently, given the ratio p, for
all the tokens in ej , we explore the locations in
these tokens that have the smallest absolute value of
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Figure 2: Insight illustration. (a) and (b) are imple-
mented using FewRel 1.0, where N-K indicates the N-
way K-shot setting. (c) and (d) are implemented using
Wiki80 and Wiki-ET, respectively.

scale p and set the value of these locations to 0, then
we apply the models to different downstream tasks
D. Figure 2 compares the performance of the orig-
inal and processed BERT models on three entity-
related downstream tasks: FewRel 1.0, Wiki80,
and WikiET. Details of these tasks are provided in
Section 4.

As shown in Figure 2, “Min” refers to setting
the smallest bit of the token proportion for entity
mentions to 0. When p increases from 0.1 to 1, the
BERT model’s F1-score gradually declines across
four downstream tasks. However, within a certain
smaller range, increasing p causes minimal perfor-
mance drop and even some improvement. This re-
veals a key insight: redundant bits with small ab-
solute values exist in the PLM’s embedding space,
and altering these values has little impact on the
model’s performance.

To further validate this, we tested two other set-
tings: 1) Max, setting the largest bit of the token
proportion to 0, and 2) Random, setting a random
bit to 0. In both cases, the BERT model’s perfor-
mance significantly declined, even with small p
values. For more insight experimental results, see
the appendix for details.

3.3 Knowledge Enhancement

Based on our proposed insight, we give the knowl-
edge enhancement method in KEFF. For a given
pre-trained language model P with token embed-
ding dimension size W and corresponding number
of redundant bits R, where R < W , we perform
knowledge enhancement on the values of the redun-

dant bits using a simple affine transformation H,
with the size of theH network being R×R+R.
Similar to MapTuning, we introduce a variant of
Masked Language Modelling (MLM) (Devlin et al.,
2018), i.e., mentioning Masked Language Mod-
elling (MMLM), where we freeze the PLM and
train only H while masking only entity mentions
in the text during training.

During training, for MMLM, we retain the origi-
nal loss function, defined asLmmlm. For unmasked
entity mention e = {t1, t2, ..., tj}, we defineR(ti)
as the value of redundant bits in the i−th token,
and compute

r =
1

j

j∑

i=1

R(ti) (1)

The r represents the average of the redundant bit
values of all the tokens in the entity mentioned span
e, which we subsequently map using the network
H. After mapping, we use the mapped valueH(r)
to replace the redundant bit value of each token in e.
In order to enable knowledge enhancement of the
replaced embedding valueH(r), while minimizing
the redundant bits of the original tokens, we use
KL scatter to constrain the distribution of H(r),
while MSE is used to constrain the scale of H(r).
We define the two loss functions LKL and LMSE

separately:

LKL =
∑

i

rlog(
r

H(r))

LMSE =
1

n

n∑

i=1

(ri −H(ri))2
(2)

To sum up, we present the final form of the loss
function as follows:

LKE = LMMLM + LKL + LMSE (3)

After H is trained, it can be applied to various
downstream tasks D within P . In addition to this,
H can be fine-tuned using some of the downstream
task D’s training data when applied to the down-
stream task, and can therefore be adapted for dif-
ferent downstream tasks, which is the same as our
description in Table 1.

To determine the optimal redundant bits R, we
propose a approach named Neuron Clipping. We
start by defining the redundant bit space as half
the size of the PLM embedding space and train the
knowledge enhancement network H within KEFF.
After training, we iteratively prune the input to H
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by zeroing the largest absolute values and removing
the most affected outputs. The best-performing
redundant bits during this process are selected as
the optimal ones. We present the corresponding
results in the appendix.

3.4 Knowledge Enhancement Filter

Based on our knowledge enhancement approach,
we define the general form of the knowledge en-
hancement filter F : F(∗) = {0, 1}, and we define
that whenF outputs 0, P reasons using the original
S . When F outputs 1, P reasons using the input Ŝ
enhanced with the knowledge enhancement byH.
However, there is a huge challenge with such an
approach: we do not know the magnitude of the dif-
ference between P using the original input S and
the knowledge-enhanced input Ŝ until P is applied
to a downstream task D, and thus cannot tell in ad-
vance whether to perform knowledge enhancement
or not.

To address this challenge, we propose a training
method for knowledge-enhanced filters that incor-
porates references to MMLM. WhenH is trained,
based on the data Bsub ⊂ B in the partial exter-
nal knowledge base B, using only the loss func-
tion Lmmlm of the MMLM. We define Lmmlm(S)
as the loss under the use of the original input S,
and Lmmlm(Ŝ) as the loss under the use of the
knowledge-enhanced input Ŝ , and for each data in
Bsub for each piece of data define the label L to be

L =

{
1, if LMMLM (Ŝ) ≤ LMMLM (S)
0, others

(4)
For the input of F , we provide the following

definition:

ϱ =
1

j

j∑

i=1

Encode(ti) ◦ H(r) (5)

where ◦ denotes replacing the values of redun-
dant bits in the embedding space of ti with the
mapped valuesH(r) obtained from the knowledge-
enhanced network. Subsequently, we define the
binary classification loss function LKEF for F :

LKEF = − 1

N

N∑

i=1

[L log(F(ϱ))

+ (1− L) log(1−F(ϱ))]
(6)

We define F as a single-layer fully connected
network with an input dimension of R and an out-
put dimension of 1. Upon completion of training,
F is utilized in conjunction with H for the down-
stream task. We establish a threshold θ, where the
final output is determined to be 1 if F(ϱ) meets or
exceeds this threshold, and 0 otherwise. The pro-
cedures for KEFF’s knowledge enhancement and
filtering algorithms are delineated in Algorithm 1.

4 Experimental Setup

In our BERTbase experiments, we set 149 redun-
dant bits (out of 768 dimensions) and a filter thresh-
old θ of 0.50. We provide more detailed experi-
ment results in the appendix, such as optimal redun-
dant position exploration and more details about
our knowledge enhancement filter. Our code and
datasets are available at https://github.com/
tize-72/Keff.

4.1 Baselines

In this work, we focus on this paradigm of freezing
PLM and using additional networks for knowledge
enhancement, so we choose four SOTA approaches
in this paradigm as baseline to compare with our
proposed KEFF.

(1) E-BERT (Poerner et al., 2019): Uses a net-
work to align entity vectors with BERT’s word
vectors, adding the aligned entity embeddings to
the original input. (2) K-Adapter (Wang et al.,
2020): Employs different adapter networks for var-
ious tasks to enhance knowledge. (3) PELT (Ye
et al., 2022): Aggregates entity outputs from differ-
ent contexts to construct entity embeddings, which
are then added to the original input. (4) MapTun-
ing (Zhang et al., 2023): Aligns entity vectors with
BERT’s space using an additional network, and in-
corporates MMLM during training, with the map-
ping network fine-tuned for downstream tasks.

4.2 Datasets and Metrics

Datasets. To validate the effectiveness of our pro-
posed method, we selected four different entity-
related datasets for our experiments. FewRel
1.0 (Han et al., 2018) is a large-scale supervised
dataset for the task of few-shot relationship clas-
sification, covering 100 relationships with 700 in-
stances of each. FewRel 2.0 (Gao et al., 2019)
additionally introduces cross-domain and None-of-
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the-above two challenges1. Wiki80 (Han et al.,
2019) for entity-relationship categorization on full-
volume data. For Entity typing, we experimented
with Wiki-ET (Xin et al., 2022), which contains
68 entity types from Freebase. The scale of the
datasets used and a summary of the tasks are pro-
vided in Table 2.

Dataset Task Size

FewRel 1.0
Few-Shot Relation

Classification
70,000

FewRel 2.0
Few-Shot Relation

Classification
70,000

Wiki80 Relation Classification 56,000
Wiki-ET Entity Typing 68,242

Table 2: Summary of Dataset Scale and Tasks

Metrics. We use the same evaluation metrics as the
existing work (Zhang et al., 2023), employing F1-
score for relation classification tasks and accuracy
for entity typing tasks. It is additionally noted that
since both FewRel1.0 and FewRel2.0 are few-shot
relation classification datasets, we employed the
N-way K-shot method for testing.

4.3 PLM and Knowledge Base

We use the BERTbase (bert-base-uncased) (Devlin
et al., 2018) model as our base PLM, using param-
eter files from publicly available data on Hugging
Face. We use Wiki20M (Gao et al., 2021) as an
external knowledge base. Since both MapTuning
and E-BERT require external knowledge base en-
coding, we use TransE (Bordes et al., 2013) as a
uniform standard.

5 Results

5.1 Main results

We report the experimental results in Table 3 and
Table 4. For MapTuning(Zhang et al., 2023), we
directly apply its mapping network to downstream
tasks. To ensure a fair comparison, KEFF’s knowl-
edge enhancement network is also applied without
additional fine-tuning.

Strong generalization capability for down-
stream tasks. We report the entity relationship
classification results of KEFF and other baseline
methods in the few-shot learning setting. Table 3

1Note that FewRel 1.0 and FewRel 2.0 do not make public
the test sets they actually use, so all of our experiments are
conducted with the validation set and some of the test set data
that is currently publicly available.

illustrates that KEFF achieves the best results in
nearly all few-shot relationship classification tasks.
Notably, while all baseline methods struggle with
the FewRel 2.0 dataset, KEFF achieves a signifi-
cant improvement, with an increase of up to 0.75 in
this task. Table 4 illustrates the results for entity re-
lationship classification under the full-data setting
and entity typing. Although KEFF doesn’t achieve
the best results in the full-data setting, its perfor-
mance is nearly on par with SOTA methods. For
entity typing, most existing methods underperform,
with K-Adapter showing a slight improvement over
BERTbase. However, KEFF demonstrates a signif-
icant performance boost, achieving up to a 0.40
improvement.
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Figure 3: Efficiency illustration. (a) and (b) are imple-
mented using FewRel 1.0, where N-K indicates the N-
way K-shot configuration. (c) and (d) are implemented
using Wiki80 and Wiki-ET.

5.2 Efficiency Analysis

Lower costs with improved performance. To
demonstrate the efficiency of our method, we com-
pare it with MapTuning (Zhang et al., 2023), the
best-performing baseline. We use the 5way1shot
and 10way1shot settings of FewRel 1.0, along
with the Wiki80 and Wiki-ET datasets for vali-
dation. Both methods employ an additional net-
work for knowledge-enhanced mapping, but our
affine transformation has significantly fewer pa-
rameters (149×149+149) compared to MapTun-
ing’s 768×128+768 network. We give the results
in Figure 3, where “Optimal” denotes the point
where the F1-score achieves the optimum. We can
extract some important conclusions from Figure
3: (1) KEFF can achieve better results with the
same computational cost. (2) KEFF achieves opti-
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Method FewRel 1.0 FewRel 2.0

5-1 5-5 10-1 10-5 5-1 5-5 10-1 10-5

BERTbase 85.28 90.02 75.89 81.45 77.52 85.31 68.91 76.01
E-BERT 85.30 90.31 74.29 81.13 71.92 84.47 64.1 75.32

K-Adapter 81.5 89.81 70.59 79.43 69.52 83.97 63.6 74.52
PELT 83.4 90.11 73.09 80.33 71.42 84.27 62.9 74.52

MapTuning 85.5 90.91 75.89 81.73 73.52 85.07 65.7 75.92

KEFF 85.63 91.15 76.51 81.66 77.91 86.03 69.08 76.76
-w/o KE 85.28 90.02 75.89 81.45 77.52 85.31 68.91 76.01

-w/o KEF 85.54 91.10 76.32 81.45 77.79 85.91 69.01 76.57

Table 3: Comprehensive comparison results of our approach with the baseline approachs on FewRel 1.0 and FewRel
2.0. BERTbase serves as the base model and has been fine-tuned for different downstream tasks, E-BERT, K-Adapter,
PELT, MapTuning, and our approach KEFF are based on BERTbase for knowledge enhancement. N-K indicates the
N-way K-shot configuration. We boldface the best result for each method. KE and KEF represent the Knowledge
Enhancement and Knowledge Enhancement Filter of KEFF respectively.

Method Wiki80 Wiki-ET

BERTbase 86.12 77.43
E-BERT 85.39 77.06

K-Adapter 85.49 77.46
PELT 84.99 75.86

MapTuning 86.69 76.66

KEFF 86.67 77.83
-w/o KE 86.12 77.43

-w/o KEF 86.54 77.76

Table 4: Comprehensive comparison results of KEFF
with the baseline approachs on Wiki80 and Wiki-ET.

Method Wiki80 Wiki-ET

BERTbase 86.12 77.43
MapTuning 86.69 76.66
KEFF(ours) 86.67 77.83

MapTuning (FT) 87.99 78.73
KEFF (FT)) 88.01 79.92

Table 5: Comprehensive comparison results of KEFF
with MapTuning on Wiki80 and Wiki-ET after down-
stream tasks fine-tuning(FT).

mal results with about 1.7-2.5x less computational
cost compared to MapTuning.

5.3 Adaptability Analysis

Superior performance adaptation in down-
stream tasks. Existing approaches to knowledge
enhancement using add-on networks under frozen
PLM are rarely adapted to specific downstream
tasks. E-BERT trains entity alignment before the
model is used, and PELT directly constructs entity
lookup tables. None of them can be adapted for

downstream tasks. MapTuning utilizes mapping
networks for knowledge enhancement training, and
thus can be fine-tuned for downstream tasks. Our
proposed knowledge enhancement method also has
the ability to be fine-tuned to adapt to various down-
stream tasks. We use Wiki80 and Wiki-ET as test
datasets and reporte the results of KEFF and Map-
Tuning after fine-tuning to adapt to downstream
tasks. Table 5 illustrates that KEFF effectively
adapts to fine-tuning for downstream tasks and out-
performs MapTuning, achieving a performance in-
crease of up to 2.49.

5.4 Compatibility Analysis

Compatible with existing plug-and-play meth-
ods, achieving better results. Table 7 illustrates
that KEFF can be perfectly combined with exist-
ing plug-and-play methods MapTuning to achieve
better performance on downstream tasks. On the
Wiki80 and WikiET, we achieved an improvement
of up to 0.92. It should be noted that KEFF does
not conflict with existing methods. We give cer-
tain reasons for this analysis: (1) KEFF is also a
plug-and-play method, and can use the same knowl-
edge basesuch as WiKi20M (Gao et al., 2021) as
other similar methods. (2) Unlike existing meth-
ods, KEFF enhances knowledge directly within
the embedding space of the PLM without adding
extra entity tokens to the input text. This unique
approach allows KEFF to be compatible with other
existing plug-and-play methods.

5.5 Ablation Analysis

KE is the most important module in KEFF. We
report the results of ablation experiments in Tables
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Input Groud truth method Predicted label Logits Filter output Final result

Gorillaz released a single with James

performer
Bertbase

composer, performer, screenwriter 7.387, 7.351, 2.764

1 perfomerMurphy and André 3000 commissioned has part, record label 2.303, 1.811

by Converse , titled " DoYaThings "
KEFF

performer, composer, screenwriter 7.566, 7.176, 2.729
on 23 February 2012. has part; record label 2.403, 1.891

He married Caroline Macmillan , a

child
Bertbase

child, mother, spouse 7.959, 7.938, 4.124

0 childdaughter of Harold Macmillan and sibling, father 2.979, 2.605

Lady Dorothy Cavendish, a daughter
KEFF

mother, child, spouse 7.967, 7.924, 4.127
of the 9th Duke of Devonshire. sibling, father 2.976, 2.593

Table 6: A case study of the KEFF on the Wiki80 dataset. Underlines indicate entities in the input. Groud truth
denotes the true labeling of entity relationships in the text, and Filter output denotes the output of the Knowledge
Enhancement Filter in KEFF, where an output of 1 means that the input is enhanced by the Knowledge Enhancement,
and an output of 0 means that this KE’s output is filtered and still employs the original input.

Method Wiki80 Wiki-ET

BERTbase 86.12 77.43
MapTuning 86.69 76.66
KEFF(ours) 86.67 77.83

-w/ MapTuning 87.04 78.26

Table 7: Effectiveness of KEFF in combination with
existing methods on Wiki80 and Wiki-ET.

Method Wiki80(F1)

KEFF (ours) 88.01
Llama3.1-8B 42.43
Llama2-7B 10.49

Qwen2.5-32B 63.77
Qwen2-7B 33.63
Phi3-14B 31.93

Mistral-7B 25.30
Qwen2.5-72B 66.48

Table 8: Performance comparison of KEFF with differ-
ent LLMs on the Wiki80 dataset.

3 and 4. After removing Knowledge Enhancement
(KE), KEFF’s performance decreased significantly
across all downstream tasks, particularly in the 5-
way 5-shot scenario of FewRel 1.0 dataset, where
the performance drop reached 1.13. This indicates
that the KE plays a substantial role in promoting
KEFF’s overall performance.

The introduction of the Filter makes knowl-
edge enhancement selective. The results show
that after removing the Knowledge Enhancement
Filter(KEF), KEFF’s performance also declined,
but the extent of the decrease was relatively small.
IThis indicates that the Filter brought selectivity to
KE’s knowledge enhancement, thereby improving
KEFF’s final performance.

5.6 LLMs Comparison Analysis

KEFF outperforms larger parameter-scale large
language models(LLMs). To explore the per-
formance differences between KEFF and larger
parameter-scale LLMs, we tested seven LLMs on
the Wiki80 dataset, with results shown in Table 8.
Among all the models, Qwen2.5-72B achieved the
highest F1-score of 66.48, still far behind KEFF’s
88.01. This suggests that LLMs cannot achieve op-
timal performance on related entity classification
tasks without fine-tuning. However, the computa-
tional cost of fine-tuning these models is substan-
tial, presenting a significant trade-off.

5.7 Case Study

The test example of KEFF applied to the down-
stream task Wiki80 is shown in Table 6. The fil-
ter output in Table 6 represents the output of the
Knowledge Enhancement Filter (KEF), where an
output of 1 indicates that the results from the KE
plugin are adopted, and if the output is 0, the output
from Bertbase is utilized. In the first example, the
first predicted label "performer" of our KEFF can
be achieved through the Knowledge Enhancement
Filter, so we adopt the KE’s result as the final out-
put. In the second example, we first observe that
the difference between the predicted logits is very
small, indicating that the KEFF plug-and-play strat-
egy does not significantly deviate the predictions
of the base model.

Although in very few cases KE may yield incor-
rect results, such as "mother", the filter discards the
KEFF strategy and opting for the original Bertbase’s
output to ensure the accuracy of the final result.
This demonstrates that the plug-and-play KEFF im-
proves the knowledge enhancement results of the
base model.
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6 Conclusion

In this paper, we present a key insight: the PLM’s
embedding space contains redundant bits with
small absolute values. Based on this, we pro-
pose the first plug-and-play framework that inte-
grates knowledge enhancement and knowledge en-
hancement filter, named KEFF. Extended experi-
ments on multiple downstream tasks indicate that:
1) KEFF outperforms the current state-of-the-art
methods in terms of performance, 2) simultane-
ously achieves a 1.7 to 2.5x reduction in compu-
tational cost, 3) adapts to various entity-related
downstream tasks, and 4) can be well integrated
with other existing plug-and-play knowledge en-
hancement methods.

Limitations

This work focuses on improving the performance
of PLMs on entity-related downstream tasks. Due
to the current prevalence of decoder-only architec-
tures in LLMs, this work cannot be directly trans-
ferred to these large model architectures at present.
However, the insights we propose may provide
some assistance for knowledge augmentation at the
encoding level in LLMs.
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A Knowledge Enhancement and Filtering

Algorithm 1 Knowledge enhancement and filtering
Input : Knowledge enhancement network H , a

token sequence S of length n, an entity
mention token list E of length l, a filter
F , threshold θ

Function KEFF-enhance(S, E, H):
V ← [], D ← [];
for i← 1 to n do

if Si in E then
d← indices of minimum values in Si;
v ← minimum r-bit absolute value of
Si;

V.append(v), D.append(d);

r ← H
(

Average
(∑

j=1 V [j]
))

, d ←
length of D;

for i← 1 to n do
for z ← 1 to d do

if Si in E then
replace(Si[Dz], r);

Function KEFF-filter(S, E, D, F , θ):
r ← calculate by equation(5), d ← length of
D;

for i← 1 to n do
for z ← 1 to d do

if Si in E then
if F (r) ≥ θ then

replace(Si[Dz], r);

B Insight Experimental Results

We provide here more results of validation experi-
ments for insight. We implement our experiments
under two settings (5way1shot and 10way5shot)
for FewRel 1.0. For the four settings of FewRel 2.0
(5way1shot, 5way5shot, 10way1shot, 10way5shot)
we also give the results of validation experiments.
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Figure 4: Insight illustration. (a) and (b) are implemented using FewRel 1.0, where N-K indicates the N-way K-shot
setting. (c), (d), (e) and (f) are implemented using FewRel 2.0.

As shown in Figure 4, we set the minimum po-
sition of the absolute value of the proportion of
tokens included in entity mentioned span that are
p to 0. The F1-score of the PLM on the down-
stream task does not decrease significantly when p
increases over a small range, and even improves at
certain values of the p position. Similarly, to em-
phasize the effectiveness of our proposed insight,
we set both Max and Random settings for compari-
son. It can be seen that with both settings, PLM’s
performance on the downstream task is still sig-
nificantly negatively affected even when p is very
small.

C Optimal Redundant Position
Exploration

We provide a detailed description of the proposed
Neuron Clipping method and present a comparative
analysis of its efficiency.

C.1 Neuron Clipping

We give the experimental results of the exploration
of the optimal redundant bits. In order to obtain the
optimal redundant bits in the coding space of PLM
more rapidly, we propose an innovative method
based on neuronal clipping. We take the BERT
model as an example, whose coding space is 768
bits in size. We first define the size of the redundant
bit space of BERT as 384 bits (half of the original),
and subsequently, we train the knowledge enhance-
ment network in KEFF based on this redundant bit
size with one-tenth of the external knowledge base
dataset as the training set.
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Figure 5: Exploring optimal redundant bits for iteration
and neruon clipping.

After obtaining the knowledge enhancement net-
work, we iterate the redundant bits in a certain step
size. During the iteration of the redundant bits, we
set the part of the original input of the knowledge
enhancement network with a large absolute value
to 0 and compare it with the result of the origi-
nal input in the knowledge enhancement network.
We remove the highly affected part of the knowl-
edge enhancement network and use the remaining
part as the output of the knowledge enhancement
network in KEFF.

For comparison, we also use one-tenth of the ex-
ternal knowledge base dataset as a training set, and
iterate over the redundant bits for a certain num-
ber of steps to train several different knowledge
enhancement networks.

We use Wiki80 as a test set. Validating with
these two different approaches, it can be observed
from Figure 5 that both the neuron clipping based
approach and the iterative approach achieved the
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F1-score maximum at roughly the same location.

C.2 Efficiency
Figure 6 shows a comparison of the overhead of
the two methods, and it can be seen that our pro-
posed neuron clipping-based optimal redundancy
bit exploration method achieves an overhead reduc-
tion of 8.0x for the data size, as well as a training
overhead reduction of 3.6x.

It should be noted that the computitional cost
spent on the optimal redundant bits exploration
experiment is much smaller than the overall com-
putitional cost of KEFF.
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 Cost
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Figure 6: Comparison of training data overhead and
computational cost for iteration with neruon clipping.

D Details about Filter
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Figure 7: The precision and the training loss of the filter.

In this section, we present the precision of the
filter along with the corresponding training loss.
Additionally, we provide the specific training pa-
rameters and other relevant details of the training
process for the filter.

Parameter Value
Learning Rate 0.01
Batch Size 256
Epochs 300
Dataset Wiki20M

Table 9: Training parameters of Filter

In Table 1, we provide the specific parameters
used for training the Filter. It is important to note
that we employed the Wiki20M dataset. However,
we did not use the entire dataset due to its large
size. Instead, we sampled 1% of the Wiki20M
dataset for training the Filter, as the Filter’s model
structure is relatively simple.

3871


