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Abstract
Language Confusion is a phenomenon where
Large Language Models (LLMs) generate text
that is neither in the desired language, nor
in a contextually appropriate language. This
phenomenon presents a critical challenge in
text generation by LLMs, often appearing as
erratic and unpredictable behavior. We hypoth-
esize that there are linguistic regularities to
this inherent vulnerability in LLMs and shed
light on patterns of language confusion across
LLMs. We introduce a novel metric, Lan-
guage Confusion Entropy, designed to directly
measure and quantify this confusion, based on
language distributions informed by linguistic
typology and lexical variation. Comprehen-
sive comparisons with the Language Confusion
Benchmark (Marchisio et al., 2024) confirm
the effectiveness of our metric, revealing pat-
terns of language confusion across LLMs. We
further link language confusion to LLM secu-
rity and find patterns in the case of multilin-
gual embedding inversion attacks. Our analysis
demonstrates that linguistic typology offers the-
oretically grounded interpretation, and valuable
insights into leveraging language similarities as
a prior for LLM alignment and security.1

1 Introduction
Multilingual Large Language Models (LLMs) rev-
olutionized Natural Language Processing (NLP),
offering crosslinguality in various applications, in-
cluding translation (Zhu et al., 2024), text gen-
eration (Chen et al., 2022), and information re-
trieval (Guo et al., 2024). Besides the challenges
faced by LLMs such as bias and fairness (Talat
et al., 2022), hallucinations (Augenstein et al.,
2024), multilingual LLMs are more vulnerable
to adversarial and inversion attacks than monolin-
gual LLMs (Song et al., 2024; Chen et al., 2025,
2024).

1The language graphs for language similarities and code
are publicly available https://github.com/siebeniris/
QuantifyingLanguageConfusion/

Multilingual LLMs are trained on data in a di-
verse range of languages to represent the intrica-
cies of multiple languages within a single model.
However, this often results in inconsistencies in
comprehension and response, leading to language
confusion – instances where LLMs generate text
that is neither in the desired language nor in a con-
textually appropriate one. For example, when an
LLM is queried/prompted in Arabic, it may respond
in text that is either partially or entirely in languages
other than Arabic, e.g., English.

Marchisio et al. (2024) propose metrics to mea-
sure the percentage of model responses containing
no undesired languages at both line and word levels
but fail to capture nuances within language distribu-
tions. It is observed that language confusion tends
to occur when the model’s distribution over the
next tokens is flat. We hypothesize that language
confusion in LLMs is not merely a performance lim-
itation but an inherent vulnerability, partly due to
imbalanced pre-training multilingual data sources,
which are amplified with increasing numbers of
languages and can be analyzed through language
similarities derived from linguistic typology and
other resources.

To thoroughly investigate language confusion
as a phenomenon and its role within LLMs, we
introduce the following research questions:
RQ1: What measurable patterns characterize lan-
guage confusion in LLMs, and how can these pat-
terns be quantified effectively?
RQ2: How do language similarities influence lan-
guage confusion, and how can this knowledge be
applied to enhance LLM alignment and security?

To this end, we propose a novel metric called
Language Confusion Entropy, which provides a
quantifiable measure of uncertainty and facilitates
the detection of when an LLM is confused. Build-
ing on observations by Marchisio et al. (2024) that
uniformity of the distribution indicates higher un-
certainty, Language Confusion Entropy re-weights
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language distributions by emphasizing long-tail dis-
tributions, effectively capturing language confusion
in multilingual LLM generation tasks. Furthermore,
we demonstrate that this metric uncovers patterns
of language confusion during both the training
and evaluation phases of multilingual inversion
attacks (Chen et al., 2025).

In addition, we construct language graphs based
on language similarities derived from linguistic
resources to analyze language confusion, revealing
a strong correlation between language confusion
and semantic similarities between languages. Our
analysis shows that low-resource languages exhibit
less confusion while training across diverse scripts
and language families mitigates language confusion
more effectively than training within the same script
or language family in inversion attacks. These find-
ings indicate that leveraging language similarities
grounded in linguistic resources could serve as a
valuable prior for enhancing LLM alignment and
security. Our main contributions are as follows:
1) We propose a novel metric Language Confusion
Entropy to measure language confusion in LLMs
considering the nuances of language distributions.
To the best of our knowledge, we are the first to
quantify language confusion probabilistically.
2) Using language graphs, we demonstrate that
linguistic typology provides a foundational tool for
analyzing language confusion.
3) We propose a modified KL-Divergence algo-
rithm to determine the correlation between lan-
guage similarities (as defined by language graphs)
and language confusion in LLMs.
4) We conduct extensive analysis revealing statis-
tically significant patterns of language confusion,
providing new insights for LLM security research.

2 Related Works
Language Confusion This phenomenon ob-
served in NLP, is often described as “off-target
translation” (Chen et al., 2023a; Sennrich et al.,
2024) or “accidental translation” (Zhang et al.,
2020; Xue, 2020), or as “source language halluci-
nations” in zero-shot transfer scenarios (Vu et al.,
2022; Li and Murray, 2023; Pfeiffer et al., 2023;
Chirkova and Nikoulina, 2024). Language con-
fusion, a term coined by Marchisio et al. (2024)
occurs when the LLMs’ outputs are generated er-
roneously in languages different from the desired
(target) languages and identified as ‘surprising lim-
itation’ diminishing LLM utility for non-English

languages, indicating the unpredictable nature.
The phenomenon of language confusion has not

only been pervasive in LLMs, but also in tasks
pertinent to LLM security, such as multilingual
inversion attacks (Chen et al., 2024, 2025). Fur-
thermore, Chen et al. (2025) observes language
confusion across 20 languages from diverse scripts
and language families in multilingual embedding
inversion. They analyzed the pattern of confusion
using basic typological features between train and
eval languages with regression analysis, in compar-
ison, the proposed Language Confusion Entropy
provides a more interpretable analysis.

Multilingual LLM Safety and Security Yong
et al. (2024) exposes vulnerabilities of AI safety
mechanism by jailbreaking GPT-4’s safeguard
through translating unsafe English inputs into low-
resource languages. Deng et al. (2024) impose unin-
tentional and intentional jailbreak on multilingual
LLMs, using multilingual prompts. It is observed
that low-resource languages are more vulnerable,
making them the weakest links in AI security.

Backdoor attacks on multilingual machine trans-
lation pose significant threats, as injecting poisoned
data into low-resource language pairs can achieve
a high attack success rate (ASR) in high-resource
language pairs (Wang et al., 2024). Poisoning
instruction-tuning data for one or two languages
can affect other languages, surpassing 99% ASR
in the cross-lingual setting in prominent LLMs
resisting current defenses (He et al., 2024).

Multilingual textual embedding inversion attacks
pose additional risks, as any encoder can be at-
tacked to reconstruct original texts. Traditional
defenses for monolingual LLMs are ineffective
for multilingual LLMs (Chen et al., 2024, 2025).
Moreover, Song et al. (2024) generates language
blending for adversarial attacks, necessitating sys-
tematic analysis of language similarity and language
confusion for targeted defenses.

Linguistic Typology and Language Similarities
Previous research on multilingual effects on linguis-
tic level uses three approaches: (i) phylogenetic
variation, (ii) linguistic typological variation, and
(iii) embedded and data-driven language variation.

While genealogical relations are intuitive, the
correlations between language similarity and ge-
nealogical relations are often spurious (Rama and
Kolachina, 2012). Ploeger et al. (2024) challenge
this approach highlighting its negative impact on
downstream NLP tasks.
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Linguistic typology offers a theoretically
grounded approach to measuring similarity between
languages (Kashyap, 2019). Languages can be cat-
egorized based on various features — e.g., whether
they use a Subject-Verb word order (SV) or the
opposite (VS). Such information has been manu-
ally annotated in linguistic databases, including
WALS (Haspelmath, 2008), ASJP (Wichmann
et al., 2012), and Grambank (Skirgård et al., 2023),
and work in NLP has contributed with automatic
prediction of such features (Malaviya et al., 2017;
Bjerva et al., 2019a; Bjerva, 2024). Recent work
has also explored lexically driven measures, show-
ing that multilingual LLMs often rely on lexical
overlap (Pires et al., 2019). Such work spans from
using synonymy-relations as in WordNet (Fellbaum,
2010), to multilingual relations in BabelNet (Nav-
igli and Ponzetto, 2010), and more complex colexi-
fication patterns in CLICS3 (Rzymski et al., 2020).
Crosslingual colexification patterns refer to the
phenomenon whereby different meanings are cap-
tured by the same lexica across languages (François,
2008), implicating shared cognitive or cultural asso-
ciations (Karjus et al., 2021; Di Natale et al., 2021;
Chen and Bjerva, 2023).

Language embeddings encode language charac-
teristics and can be derived from data-driven meth-
ods or linguistic typological databases. Östling and
Tiedemann (2017) trained a character-level LSTM
language model on translated Bible texts from 990
languages, showing their ability to reconstruct lan-
guage genealogies. Additionally, embeddings can
be generated from typological data sources like
WALS, Grambank, and ASJP. Chen et al. (2023b)
created embeddings using lexical data based on
colexification patterns in CLICS3 and BabelNet.

We hypothesize that language confusion is a
phenomenon largely driven by lexical variation,
similar to the patterns observed by Pires et al. (2019).
We investigate this by building our analysis on this
body of work leveraging computational typology.

3 Explainable Language Confusion
To investigate the phenomenon of language confu-
sion, we use the datasets i) Language Confusion
Benchmark (LCB) (Marchisio et al., 2024) and
ii) Multilingual Textual Embedding Inversion
(MTEI) (Chen et al., 2025) (see Appendix for task
details and Table 8 for processed datasets sample).
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Figure 1: The use of proposed metric to quantify lan-
guage confusion and its correlation with language simi-
larity through KL divergence.

3.1 Generation Settings
Consider a LLM trained or prompted with a set of
𝑛 ∈ N source languages 𝐿𝑠 = {𝑙1, · · · , 𝑙𝑛}, and 𝑙𝑡 is
the target language. We probe language confusion
for both LLM instruction and textual embedding
inversion attacks.

Monolingual Generation LCB: The model is
queried in language 𝑙𝑡 , and the response is expected
in 𝑙𝑡 . MTEI: The inversion model, trained on 𝑙𝑡 ,
inverts embeddings in 𝑙𝑡 . Here, 𝑙𝑡 ∈ 𝐿𝑠, i.e., the
evaluated language is part of the training languages.

Crosslingual Generation LCB: The model is
instructed in language 𝑙𝑠 to provide a response in 𝑙𝑡 ,
where 𝑙𝑡 ≠ 𝑙𝑠. MTEI: The inversion model, trained
on 𝐿𝑠, inverts embeddings in 𝑙𝑡 . In this setting,
𝑙𝑡 ∉ 𝐿𝑠, meaning the evaluated language differs
from the training languages.

3.2 Quantifying Language Confusion
The phenomenon of language confusion is particu-
larly prominent in crosslingual generation settings.
For instance in Fig. 1 1 , when an LLM is prompted
in English and expected to generate a response in
German (𝑋1), the output may unexpectedly have a
mix of other languages, such as Spanish and French
(𝑋2). Ideally, the LLM should focus on the ex-
pected languages; thus, the model exhibits greater
confusion if its output distribution assigns high
probabilities to unexpected languages. To quan-
tify this, we propose Language Confusion Entropy
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(𝐻C), defined as follows:

𝐻C(𝑋) = −
∑︁
𝑥∈𝑋1

(1 − 𝑝(𝑥)) log(𝑝(𝑥))

−
∑︁
𝑥∈𝑋2

𝑝(𝑥) log 𝑝(𝑥),
(1)

where 𝑋1 denotes the expected language set and
𝑋2 the unexpected language set, 𝑋1 ∪ 𝑋2 =
𝑋, 𝑋1 ∩ 𝑋2 = ∅, 𝑝(𝑥) denotes the probability
and

∑
𝑥∈𝑋 𝑝(𝑥) = 1. Ideally, an unconfused model

would satisfy
∑

𝑥∈𝑋1 𝑝(𝑥) = 1 and
∑

𝑥∈𝑋2 𝑝(𝑥) = 0.
In practical applications, for the LCB dataset,

𝑋1 includes both the instruction and response lan-
guages, while for the MTEI dataset, 𝑋1 encom-
passes the training and evaluation languages.

3.3 Language Identification
Language confusion can occur at both the word level
and the line level. To measure it, we use existing
language identification (LID) tools. Initially, we
employ Lingua to detect languages as it offers
the highest accuracy among existing LID tools,
particularly at word level.2 However, since Lingua
supports only 75 languages, we supplement it with
fastText (Joulin et al., 2016) (which supports 176
languages) for languages unidentified by Lingua.

Line-level Detection We split the generated out-
put into lines by newline characters and detect the
language of each line.

Word-level Detection To detect languages more
accurately at the word level, we first tokenize the
text at the line level using language-specific tok-
enizers such as jieba (Sun et al., 2013) (Chinese),
Hebrew Tokenizer (Levin and Oriyan, 2018) Kiwip-
iepy (Lee, 2024) (Korean), fugashi (McCann, 2020)
(Japanese), and NLTK Word Tokenizer (Bird and
Loper, 2004) for other languages. We then identify
the language of each tokenized word.

Finally, we compile the detected languages into
distributions at both word and line levels for further
analysis. Examples of the pre-processed data are
presented in Table 8. Language confusion matrices
are then constructed by applying language confu-
sion entropy to these distributions, and the results
are aggregated per language (ref. Fig. 1 1 ).

3.4 Large Language Models
The evaluated LLMs in LCB include Command R
(35B parameters),Command R+ (104B), GPT-3.5

2https://github.com/pemistahl/lingua-py

Algorithm 1 KL Divergence for Language Confu-
sion vs. Language Similarity Matrices
Require: Matrices M1 ∈ R𝑛×𝑚 and M2 ∈ R𝑛×𝑚, where M1

represent language-to-language confusion scores, and M2
represent language-to-language similarity scores.

Ensure: Mean KL divergence across all columns.
1: Initialize a list Total_KL_Divergence← [].
2: for each column index 𝑗 from 1 to 𝑚 do
3: M1_col← M1[:, 𝑗] ⊲ Confusion scores for language

𝑗 in matrix M1
4: M2_col← M2[:, 𝑗] ⊲ Similarity scores for language

𝑗 in matrix M2
5: Step 1: Exclude zeros from M1_col
6: nonzero_indices← M1_col ≠ 0
7: 𝑃← M1_col[nonzero_indices]
8: 𝑄 ← M2_col[nonzero_indices]
9: Step 2: Normalize the distributions

10: 𝑃← 𝑃/∑ 𝑃
11: 𝑄 ← 𝑄/∑𝑄
12: Avoid division by zero or log issues
13: 𝜖 ← 10−10

14: 𝑃← 𝑃 + 𝜖
15: 𝑄 ← 𝑄 + 𝜖
16: Step 3: Calculate KL divergence
17: KL_Div← ∑

𝑃 · log
(
𝑃
𝑄

)
⊲ KL divergence for 𝑗

18: Append KL_Div to Total_KL_Divergence
19: end for
20: return Average(Total_KL_Divergence)

Turbo (Brown, 2020), and GPT-4 Turbo (Achiam
et al., 2023), Mistral Large, Mistral 8x7B (Jiang
et al., 2024), LLaMA 2 70B Instruct (Touvron
et al., 2023), and LLaMA 3 70B Instruct, while
in MTEI the inversion models are trained with
mT5 (580M) (Xue, 2020) and multilingual-e5-base
(me5) (580M). (See Table 5 for details of LLMs).

3.5 Language Graphs
We construct language graphs from a diverse range
of typological features, such as colexification pat-
terns (Rzymski et al., 2020; Fellbaum, 2010; Nav-
igli and Ponzetto, 2010), lexicon (Wichmann et al.,
2012), phonological and morphological-syntactical
features (Haspelmath, 2008; Skirgård et al., 2023),
as well as from a collection of existing language
embeddings trained from NLP tasks incorporating
linguistic typology (Östling and Tiedemann, 2017;
Östling and Kurfalı, 2023; Chen et al., 2023b). We
then generate language similarity matrices from the
language graphs by calculating pairwise similarity
using either Jaccard Index or Cosine Similarity (ref.
Fig. 1 2 ). (See details in Appendix B).

3.6 The Role of Language Similarity in
Language Confusion

We compare the language graphs with language con-
fusion matrices to assess how well language confu-
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sion aligns with language similarities and to identify
specific aspects where they match. To quantify the
divergence between language confusion (denoted
as 𝑃) and language similarity (denoted as 𝑄), we
employ Kullback-Leibler Divergence (Kullback and
Leibler, 1951), expressed as𝐾𝐿 (𝑃 | |𝑄). 𝑃(𝑥) repre-
sents the distribution of language confusion entropy
of language 𝑥 relative to other languages, while
𝑄(𝑥) represents the distribution of language simi-
larity of 𝑥 relative to other languages. 𝐾𝐿 (𝑃 | |𝑄)
is computed as follows:

𝐾𝐿 (𝑃 | |𝑄) =
∑︁
𝑥

𝑃(𝑥)𝑙𝑜𝑔
(
𝑃(𝑥)
𝑄(𝑥)

)
, (2)

where a lower 𝐾𝐿 (𝑃 | |𝑄) indicates a stronger cor-
respondence between language confusion patterns
and underlying language similarities. (See Algo-
rithm 1 for detailed steps and Fig 1 3 ).

4 Analysis and Results
4.1 Language Confusion in LLM Prompting

Language Confusion Entropy vs. Pass Rates
The binary metrics, Pass Rates at line-level LPR
and word-level WPR are used to evaluate whether
the LLM output contains no error, following Marchi-
sio et al. (2024) (see details in Appendix A). We
apply language confusion entropy to LCB, calcu-
lating it at both the line-level 𝐻C[L] and word-
level 𝐻C[W] across generation settings.

Compared to Marchisio et al. (2024), our ap-
proach detects language confusion across all lan-
guages, including at the word level, by using
language-specific tokenizers and a more accurate
language identification (LID) tool. We reproduce
LPR and WPR (ref. Table 10, 11) and com-
pute 𝐻C[L] and 𝐻C[W] (ref. Table 9) in both
crosslingual and monolingual settings, for 14 lan-
guages and 8 LLMs, following (Marchisio et al.,
2024).

To evaluate the efficacy of language confusion
entropy compared to pass rate metrics, we calculate
the Spearman correlation3 coefficients between
these metrics across levels and generation settings.
Overall, 𝐻C[L] shows a strong negative correlation
with LPR across all generation settings. Moreover,
𝐻C[W] - which is based on more detailed language
distributions - exhibits a weaker correlation with

3https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.spearmanr.html

𝐻C[L] 𝐻C[W] LPR

All
𝐻C[W] 0.51***
LPR −0.83*** −0.3***
WPR −0.29** −0.5*** 0.31**

Monolingual
𝐻C[W] 0.42***
LPR −0.72*** −0.23*
WPR 0.01 −0.31 0.08

Crosslingual
𝐻C[W] 0.54***
LPR −0.87*** −0.38***
WPR −0.27** −0.47*** 0.37***

Table 1: Spearman correlation between Language Con-
fusion Entropy and Pass Rates at both Word level and
Line level with LCB. The strongest correlation is in
bold.

WPR, as WPR only considers English words in
non-Latin script languages. Despite the weaker
correlation, it remains statistically significant for
all languages, especially crosslingually.

At both the line and word levels, 𝐻C shows a
stronger correlation with pass rates in crosslingual
settings than in monolingual ones. This aligns with
the definition of language confusion entropy, which
gives more weight to long-tail distributions, a more
prominent phenomenon in crosslingual tasks.

Language Confusion Entropy Across LLMs As
shown in Table 9 and Fig. 3, language confusion is
more likely to occur in crosslingual compared to
monolingual, with each LLM presenting significant
variance. Word-level language confusion presents
more variance per LLM and higher severity than
line-level. Overall, it is consistent that Command
and GPT LLMs have relatively lower language con-
fusion than Mistral and LLaMA LLMs, projecting
similar findings from Marchisio et al. (2024).

There is a clear consistency in language confu-
sion across different LLMs, particularly at the line
level and in crosslingual settings, as shown in Fig. 3.
LLaMA 3 70B-I consistently exhibits the highest
confusion across nearly all languages, while GPT-4
Turbo demonstrates the lowest confusion, especially
for high-resource languages like French, Spanish,
German, and Chinese. Command R+ also shows
relatively low confusion across most languages,
except Indonesian.

Notably, languages that are written in non-Latin
scripts (on the right side of the X-axis), such as
Vietnamese, Chinese, Korean, Arabic, Japanese,
Hindi, and Indonesian, consistently show higher
confusion entropies across most LLMs, especially
in the LLaMA models. In contrast, Latin-script
languages like French, Spanish, German, and Italian
tend to have lower confusion rates across all LLMs,
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Figure 2: Language confusion for LCB by each language across LLMs for crosslingual setting at Line level. The
languages are ordered ascendingly by their language confusion entropy averaged across LLMs.

Figure 3: Language confusion entropy for LCB across
generation settings by LLMs at line and word Level.

particularly in GPT-4 Turbo and Command R+.

Language Confusion Entropy Across Data
Sources The data for monolingual and crosslin-
gual tasks in LCB consists of 2,600 and 4,500
prompts, respectively, sourced from 7 datasets (de-
tails in Table 4). As shown in Fig. 4, language
confusion is more pronounced in crosslingual set-
tings and at the word level. Monolingually, lan-
guage confusion tends to align with the median
word length (W) of prompts in each dataset. For
example, Aya, Dolly, Okapi, and Native prompts
have median lengths of 9, 10, 13, and 19 words,
respectively, and their language confusion follows
this order. Crosslingually, the Complex Prompts
dataset has the highest median word length (159,
compared to 18 for ShareGPT and 15 for Okapi),
and it also exhibits the highest language confusion.

Observing language confusion across datasets
at the line level for crosslingual settings (Fig. 5),4
a clear pattern emerges. Complex Prompts has
the highest confusion across all languages, while
ShareGPT shows the lowest confusion for most
languages, except for French and Spanish. Consis-
tent with previous findings, languages written in
non-Latin scripts show higher confusion in datasets
like Okapi and ShareGPT. However, in Complex
Prompts, non-Latin-script languages such as Chi-

4We use “Language Confusion Entropy” and “Confusion
Entropy” interchangeably in this paper.

nese, Korean, Arabic, and Japanese demonstrate
lower confusion than Latin-script languages.

4.2 Language Confusion in Multilingual
Textual Embedding Inversion Security

Language Confusion Entropy for Eval Lan-
guages When embeddings are in languages that are
more likely to be confused, they are more prone to
being inverted into text in "incorrect" languages, re-
ducing the inversion performance, especially with
word-matching metrics like BLEU (Post, 2018).
Also, the languages generated by the inversion
model are often skewed by the pre-training data of
the LLM, such as mT5 in MTEI.

𝐻C[L] 𝐻C[W] BLEU

All
𝐻C[W] 0.89***
BLEU −0.62*** −0.44***
mT5 0.71*** 0.62*** −0.32*

Monolingual
𝐻C[W] 0.75***
BLEU 0.25 0.17
mT5 0.1 0.26 −0.59***

Crosslingual
𝐻C[W] 0.9***
BLEU −0.48*** −0.36**
mT5 0.76*** 0.66*** −0.32*

Table 2: Spearman Correlations among𝐻C at Line Level
and Word Level and BLEU score for MTEI, and the
percentage of pre-training data in mT5 for eval languages.
Strongest correlations are in bold.

To test this intuition, we calculate the Spear-
man correlation among language confusion entropy,
BLEU scores, and the percentage of respective lan-
guages in the pre-training data of mT5 (see Table 7
for details). As shown in Table 2, for eval lan-
guages, 𝐻C[L] is strongly correlated with inversion
performance across generation settings, confirming
that language confusion negatively impacts recon-
struction performance.

Moreover, 𝐻C[L] and 𝐻C[W] are both strongly
correlated with the proportion of languages in pre-
training data of mT5, particularly in crosslingual
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Figure 4: Language confusion for LCB across data sources at line level for crosslingual setting.

Figure 5: Language Confusion for LCB across genera-
tion settings by data sources at line and word Level.

setting. This indicates that languages with higher
representation in the pre-training data are more
prone to confusion, both at the word and line levels.
This observation is further validated by empirical
evidence: when an inversion model trained on Ara-
bic is used to invert embeddings in Meadow Mari
(unseen in mT5), the model often generates English,
highlighting the influence of pre-training data on
embedding inversion attacks. Fig 6 (top) provides a
visualization of language confusion at the line level
for each language, alongside their corresponding
reconstruction performance in BLEU at each step of
the evaluation in the crosslingual inversion attacks.
It shows directly that lower-resourced languages
present lower confusion, especially for non-Latin
script languages, whereas they are also more vulner-
able in terms of higher reconstruction performance,
for example, Gujarati, Punjabi, and Urdu.

Language Confusion Entropy for Train Lan-
guages In MTEI, the inversion models are trained
in three different settings - monolingual, in-family
and in-script, and cross-family and cross-script. As
shown in Fig. 6 (bottom) and Table 13, monolingual
training renders lower language confusion for each
train language while pairing training languages,
in-script/in-family training renders higher language
confusion compared to cross-script/cross-family
training. These findings substantiate the intuition
that similar languages are more prone to confusion.

Our study reveals that inversion performance
significantly improves when trained in in-script/in-

family settings (ref. Table 13 in the Appendix).
Crosslingual inversion performances are compara-
ble to in-script/in-family training when trained in
Kazakh (Latin-script) combined with Gujarati and
Punjabi, respectively, and language confusion is
notably lower. This suggests that while similar lan-
guages tend to increase confusion, certain crosslin-
gual combinations can achieve strong performance
without the added confusion seen in in-family/in-
script training. Overall, these findings highlight
the trade-off between inversion performance and
language confusion, indicating further optimization
is needed to strike the ideal balance between them.

4.3 Language Confusion and Linguistic
Typology

Table 3 shows the best results from KL divergence
between language confusion and language similar-
ities based on different language graphs for both
LCB and MTEI, using Algorithm 1, the whole
results are presented in Table 15 in Appendix.

Our findings reveal strong correlations between
language confusion and language similarities based
on various typological sources. For instance, the
similarity measures based on semantic typology cor-
relate the most strongly, followed closely by more
general lexical similarity measures. Language sim-
ilarities based on typological feature databases like
Grambank and WALS show stronger correlations
than those based on parallel Bible texts (Östling
and Tiedemann, 2017). Interestingly, and echo-
ing previous findings on typological variation, we
find genetic variation is a poor proxy for this anal-
ysis (Bjerva et al., 2019b; Ploeger et al., 2024),
indicating the need for theoretically grounded ap-
proaches to linguistic interpretation.

5 Discussion
Language Confusion Entropy 𝐻C vs. Pass Rate
(PR) As shown in Section 4.1, 𝐻C and PR are
correlated but measure distinct aspects of language
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Figure 6: Language Confusion and Text Reconstruction Performance (BLEU) in Multilingual Textual Embedding
Inversion Attacks at Line Level for Crosslingual Settings for Eval (Top) and Train (Bottom) Languages.

Language Graph
LCB Textual Embedding Inversion

AVG ALL Monolingual Crosslingual AVG ALL Monolingual Crosslingual
Line Word Line Word Line Word Line Word Line Word Line Word

Grambank 0.2650 0.1830 0.2827 0.2726 0.4042 0.1791 0.2682 0.7538 0.8005 0.7891 0.7504 0.5434 0.8230 0.8162
WALS 0.1947 0.0420 0.2908 0.0816 0.4286 0.0388 0.2865 0.7377 0.8722 0.7854 0.6618 0.4102 0.8803 0.8164
WALS \ Phon. 0.1892 0.0409 0.2889 0.0799 0.4253 0.0379 0.2620 0.7360 0.8768 0.7880 0.6495 0.4036 0.8837 0.8147

Lang2Vec
Inventory 0.1650 0.0812 0.2003 0.1374 0.3114 0.0637 0.1961 0.8154 0.9678 0.8410 0.8225 0.4124 0.9720 0.8768
Syntactic 0.2925 0.1949 0.3771 0.2244 0.4679 0.1505 0.3405 0.8651 1.0179 0.8668 0.8872 0.5447 1.0001 0.8742
Phonological 0.2260 0.1009 0.3126 0.1552 0.4235 0.0830 0.2808 1.3161 1.7178 1.6133 0.6859 0.6004 1.6599 1.6191
Genetic 12.8307 13.4548 12.2278 12.9350 12.3563 13.5850 12.4249 14.9443 14.6988 14.9756 18.5227 13.5734 13.8721 14.0232

ASJP SVD 0.5859 0.0253 1.0597 0.0522 1.0395 0.0225 1.3164 2.8254 2.9730 3.3461 0.0820 1.6568 3.8882 5.0063
ASJP UMAP 0.9318 0.0994 1.6767 0.1290 1.6055 0.0946 1.9856 3.3217 3.5364 4.0245 0.0811 2.3479 4.3690 5.5711

Colex2Lang
CLICS 0.1665 0.0289 0.2522 0.0589 0.3776 0.0260 0.2490 0.7333 0.9492 0.8335 0.3690 0.2672 0.9503 0.8693
WN 0.1489 0.0242 0.2154 0.0522 0.3404 0.0218 0.2149 0.7794 1.0105 0.8892 0.3263 0.3894 1.0445 0.9454
WN_CONCEPT 0.1490 0.0242 0.2175 0.0522 0.3426 0.0218 0.2168 0.7791 1.0100 0.8836 0.3263 0.3894 1.0427 0.9390

Table 3: KL Divergence between Language Similarity Graphs and the Language Confusion Matrices for Target/ Eval
Languages from LCB and Inversion Tasks. The best results (lowest) are bolded, and the second best are underlined.

generation. Importantly, 𝐻C is not intended to
replace PR but to offer a deeper quantitative char-
acterization of language confusion.
𝐻C quantifies behavioral uncertainty through

the entropy of a model’s probability distribution
across languages. It captures partial confusions
(e.g., 40% confidence in the target language, 60%
spread across others), even when outputs technically
“pass.” PR is a binary performance metric assessing
whether outputs meet target language requirements.

Hence, 𝐻C complements PR by revealing hidden
confusion patterns: a model with high PR could
still exhibit high 𝐻C if probabilities scatter across
non-target languages. This makes 𝐻C particularly

valuable for diagnosing how models arrive at correct
outputs, not just whether they do.

Research Questions In response to RQ1, we
proposed an effective metric Language Confusion
Entropy, through which we identified several pat-
terns contributing to language confusion. These
include prompt complexity, imbalanced distribu-
tions of training sources, and language similarities
- all play a significant role in language confusion.
Furthermore, our findings indicate that these factors
strongly correlate with inversion performance and
the pretraining languages in LLMs.

Inherent vulnerabilities in LLMs stem from in-
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trinsic design, training processes, or model archi-
tectures, which are not directly caused by attacks
or improper use. However, external attacks can
amplify and leverage the vulnerabilities, which are
directly reflected in embedding inversion attacks.
Further, decoding unexpected languages disrupts
the user experience. We have discussed that i) lan-
guage confusion stems from training data inequality,
ii) the phenomena is pervasive from related works,
iii) language confusion is well-captured by the
proposed LCE and shows consistent trends across
different architectures of LLMs and datasets and
experimental settings, and (iv) can be influenced
and explained by linguistic typological variations.
These affords a positive response to RQ2.

Moreover, there is a potential to leverage lan-
guage similarities as a prior for LLM alignment
and security. For instance, Table 3 shows that the
language similarities from colexification patterns
afford a strong correlation with language confusion
(with low KL divergence), which indicates that
LLMs easily confuse languages that contain words
that are crosslingually capturing the same senses.
When an LLM is exposed to multilingual data with
more distinct colexification patterns, it could en-
hance its ability to distinguish them and make them
more resilient against language confusion. This
strategy could promote more resilient LLMs, as
we have shown that models are less likely to con-
fuse typologically dissimilar languages. Hence,
exploring typology-aware design strategies could
provide both offensive and defensive insights in
LLM security.

Potential Misuse The Language confusion met-
ric identifies uncertainty in language identification,
highlighting areas where LLMs may be prone to
errors. Our findings show that language similari-
ties correlate with language confusion patterns in
LLMs. When similar languages lack robust safety
measures compared to well-protected high-resource
languages, they could be exploited for crosslingual
attacks in a more targeted manner, such as back-
doors and jailbreaking (Zou et al., 2023; Li et al.,
2024). Additionally, the ability of LLMs to switch
between languages may pose risks where safety
measures aren’t consistently implemented across
all languages. The Language confusion metric
identifies uncertainty in language identification,
highlighting areas where LLMs may be prone to
errors. Our findings show that language similari-
ties correlate with language confusion patterns in

LLMs. When similar languages lack robust safety
measures compared to well-protected high-resource
languages, they could be exploited for crosslingual
attacks in a more targeted manner, such as jailbreak-
ing (He et al., 2024) and backdoors (Wang et al.,
2024). Additionally, the ability of LLMs to switch
between languages may pose risks where safety
measures aren’t consistently implemented across
all languages. It has been demonstrated that LLMs
are particularly vulnerable to crosslingual attacks in
related work (Wang et al., 2024; He et al., 2024) and
more recently (Poppi et al., 2024), mainly because
the conventional defense mechanisms designed for
monolingual settings are ineffective in multilingual
settings. To enhance LLM security, adversarial ex-
ploits can be detected by monitoring high language
confusion entropy, especially in crosslingual set-
tings. Our work suggests that language confusion
quantification and its connection to language simi-
larities can be leveraged to raise awareness of such
vulnerabilities, and also provide potential revenue
for developing mitigation strategies.

6 Conclusion and Future Work
Addressing the challenge of language confusion,
we introduce Language Confusion Entropy, a novel
metric that quantifies language confusion by re-
weighting language distributions and emphasizing
long-tail patterns. This metric captures language
confusion in multilingual LLM tasks, revealing pat-
terns of uncertainty in both training and evaluation
phases. Our findings show strong correlations be-
tween language confusion and semantic similarities
among languages, with less confusion observed in
low-resource languages and when training incorpo-
rates diverse scripts and language families. These
insights confirm that language confusion fundamen-
tally impacts LLMs and suggest linguistic typology
as a potential tool for enhancing model security.
Detecting language confusion enables smoother
and more precise interactions in multilingual con-
texts while enhancing user trust in LLM-based AI
systems across domains such as legal services and
healthcare. In future work, we aim to apply these
findings to practical applications, such as devel-
oping typology-aware defense to improve LLM
alignment and security. Key applications include
cross-lingual chatbots, translation services, detect-
ing code-switching, and improving multilingual
speech recognition by reducing ambiguity.
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Limitations
A core limitation of this work is that some of our
analysis and downstream implications can only be
carried out on languages that are represented in
typological databases. When part of the work, lim-
ited to typological databases, inspires downstream
solutions in terms of defense mechanisms, undoc-
umented languages may not benefit from these
advances. However, we have also increased cover-
age of languages in constructing language graphs
using data-driven methods. Our core method is
also not limited to any typological database.

Ethics Statement
This work adheres to the ACL ethics guidelines. We
investigate language confusion and link findings to
security vulnerabilities of low-resource languages,
including those using non-Latin scripts and with
diverse typologies. The potential misuse has been
extensively discussed. Our work highlights how
these factors can be used to potentially improve the
security of low-resource language technology. We
encourage the community to incorporate a broader
range of languages in NLP security research, to
ensure that low-resource languages are also covered
by defense mechanisms developed in the future.
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A Datasets for Language Confusion
Language Confusion Benchmark Marchisio
et al. (2024) create and release a language confu-
sion benchmark covering 15 languages, sourcing
prompts from publicly available multilingual in-
struction datasets, and also creating new data with

more complex promts, see detailed data sources in
Table 4.

Additionally, the binary metrics such as Line
Pass Rate (LPR) and Word Pass Rate (WPR) are de-
fined in Marchisio et al. (2024) to measure whether
a response contains any instance of a) a line in
an incorrect language and b) an isolated English
word/phrase for languages using non-Latin scripts.

LPR calculates the percentage of model re-
sponses that pass the line-level language confusion
detector without error. A response is “correct” if
all lines match the user’s desired language.

𝐿𝑃𝑅 =
|𝑅\𝐸𝐿 |
|𝑅 | (3)

where 𝑅 is the set of all responses and 𝐸𝐿 is the set
of responses that contain line-level errors.

WPR measures the percentage of responses
where all words are in the desired language.

𝑊𝑃𝑅 =
| (𝑅\𝐸𝐿) |\𝐸𝑊

|𝑅\𝐸𝐿 | (4)

where 𝑅 is the set of all responses, 𝐸𝐿 is the set of
responses with line-level errors, and 𝐸𝑊 the set of
responses with word-level errors.

We reproduce the LPR and WPR on LCB for
both crosslingual and monolingual settings (as
shown in Table 10 and 11). The detailed results
applying language confusion entropy to LCB are
presented in Table 9, for comparison.

Multilingual Textual Embedding Inversion
Textual embedding inversion has presented a stand-
ing challenge in LLM security, where the private
texts can be reconstructed from evasdroped embed-
dings from Embeddings as a Service (EaaS), by
training an attacker model based on the embeddings
extracted from the black-box embedders (Song and
Raghunathan, 2020; Lyu et al., 2020; Kim et al.,
2022; Morris et al., 2023; Chen et al., 2024, 2025).
However, most work was done in monolingual set-
tings, mostly in English, other than the recent work
expands the language space to four Romance and
Germanic languages in Latin script (Chen et al.,
2024) and in Chen et al. (2025), the inversion atacks
are extended to 20 languages across 8 families and
12 scripts (see Table 7). The trained inversion attack
model consists of a base model and a corrector
model, where a base model is a text-to-text gen-
eration model, while a corrector model is used to
bring closer the generated embeddings and attacked
embeddings in the embedding space. While in the
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Dataset name Nature of Data |𝐿 | |𝐷 | Languages 𝑊
M

on
ol

in
gu

al Aya (Iyer et al., 2024) Human-generated 100 500 eng, tur, arb, cmn, por 9

Dolly (Iyer et al., 2024) MT post-edited 100 500 hin, rus, fra, arb, esp 10

Okapi (Lai et al., 2023) Synthetic+MT 100 1.2k eng, fra, ita, deu, cmn, vie, rus,
esp, find, por, arb, hin, esp, fra,
jap, kor

13

Native prompts (Marchisio et al., 2024) Human-generated 100 500 esp, fra, jap, kor 19

Cr
os

sli
ng

ua
l

Okapi (Lai et al., 2023) Synthetic 100 1.5k L 15

ShareGPT (https://sharegpt.com/) Human-generated 100 1.5k L 18

Complex prompts (Marchisio et al., 2024) Human-generated 99 1.5k L 159

Table 4: Data Sources in the LCB for monolingual and crosslingual generation (Marchisio et al., 2024). |𝐷 | is the
total number of examples per data source and |𝐿 | is the number of examples per language. For the crosslingual
setting, the model is instructed in English to generate in the target language 𝑙 ∈ L where L=fra, deu, esp, por, ita,
jap, kor, cmn, arb, tur, hin, rus, ind, vie. 𝑊 is the median length in words of the prompts in each dataset.

LLM Transformer #Languages Parameters Reference
LCB
Command R Decoder-only - 35B https://cohere.com/blog/command-r
Command R+ Decoder-only - 104B https://cohere.com/blog/command-r-plus-microsoft-azure
GPT-3.5 Turbo Decoder-only - - Brown (2020)
GPT-4 Turbo Decoder-only - - Achiam et al. (2023)
Mistral Large Decoder-only - - https://mistral.ai/news/mistral-large/
Mistral 8x7B Decoder-only - 7B Jiang et al. (2024),
Llama 2 70B Instruct Decoder-only - 70B Touvron et al. (2023)
Llama 3 70B Instruct Decoder-only - 70B https://ai.meta.com/blog/meta-llama-3/

MTEI
mT5-base Encoder-Decoder 102 580M Xue (2020)
multilingual-e5-base Encoder 94 580M https://huggingface.co/intfloat/multilingual-e5-base

Table 5: The Evaluated LLMs.

evaluation phase, three stages are reported: base,
step1 (corrector model) and step50+sbeam8 (cor-
rector model with beam search with sequence
length 8). The inversion model is trained with
mT5 (Xue, 2020) as base model and multilingual-
e5-base 5 as black-box encoder. The samples of the
curated dataset are shown in Table 8.

We apply language confusion entropy to eval and
train languages in the monolingual and crosslingual
settings at both line and word levels, while compar-
ing the BLEU score in the regarding scenario (ref.
Table 12 and 13).

B Language Graphs for Language
Similarities

We curate language graphs from a diverse range of
sources, as shown in Table 14. The language vectors
from Grambank and WALS consist of multi-valued
features, while those derived from colexification

5Huggingface: intfloat/multilingual-e5-base

𝐻C[L] 𝐻C[W] BLEU

All
𝐻C[W] 0.93***
BLEU 0.66*** 0.71***
mT5 0.32*** 0.24 0.09

Monolingual
𝐻C[W] 0.63***
BLEU 0.37*** 0.33**
mT5 0.05 0.42* 0.09

Crosslingual
𝐻C[W] 0.93***
BLEU 0.66*** 0.71***
mT5 0.32 0.23 0.09

Table 6: Spearman Correlations among 𝐻C at Line
Level and Word Level and BLEU score for Multilingual
Textual Embedding Inversion, and the percentage of
pre-training data in mT5, for train languages.

patterns in CLICS3 and WordNet (WN) are bina-
rized. For these, we employ the Jaccard index to
compute pairwise language similarities. For other
more dense valued language vectors, we use cosine
similarity instead.
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Language ISO 639 Lang. Family Lang. Script Script ISO Directionality #Samples(Train) WO mT5 (%)
Arabic arb Semitic Arabic Arab RTL 1M VSO 1.66
Urdu urd Indo-Aryan Arabic Arab RTL 600K SOV 0.61

Kazakh kaz Turkic Cyrillic Cyrl LTR 1M SOV 0.65
Mongolian mon Mongolic Cyrillic Cyrl LTR 1M SOV 0.62

Hindi hin Indo-Aryan Devanagari Deva LTR 600K SOV 1.21
Gujarati guj Indo-Aryan Gujarati Gujr LTR 600K SOV 0.43
Punjabi pan Indo-Aryan Gurmukhi Guru LTR 600K SOV 0.37
Chinese cmn Sino-Tibetan Haqniqdoq Hani LTR 1M SVO 1.67
Hebrew heb Semitic Hebrew Hebrewr RTL 1M SVO 1.06
Japanese jpn Japonic Japanese Jpan LTR 1M SOV 1.92
German deu Germanic Latin Latn LTR 1M Non-Dominant 3.05
Turkish tur Turkic Latin Latn LTR 1M SOV 1.93
Amharic amh Semitic Ethiopian Ethi LTR - SOV 0.29
Sinhala sin Indo-Aryan Sinhala Sinh LTR - SOV 0.41
Korean kor Koreanic Hangul Hang LTR - SOV 1.14
Finnish fin Uralic Latin Latn LTR - SVO -

Hungarian hun Uralic Latin Latn LTR - Non-Dominant 1.48
Yiddish ydd Germanic Hebrew Hebrewr RTL - SVO 0.28
Maltese mlt Semitic Latin Latn LTR - Non-Dominant 0.64

Meadow Mari mhr Uralic Cyrillic Cyrl LTR - SOV -

Table 7: Languages and their Language Characteristics, i.e., Language Family, Language Script, Directionality of the
Script, Number of Training Samples for Inversion Models, Word Order of Subject, Object and Verb in Multilingual
Inversion Attack (Chen et al., 2025) and the Percentage of the language in Pre-training data in mT5 (Xue, 2020).

Model Ltrain Leval Eval Step Predicted Language Distribution
me5 Hindi German Base {eng: 0.27, deu: 0.34, hin: 0.24, fra: 0.01, nld: 0.01, fin: 0.01, mar: 0.02, nep: 0.01}
me5 Hindi German Step1 {eng: 0.17, deu: 0.47, hin: 0.24, mar: 0.02, fra: 0.01, nep: 0.01, nld: 0.01}
me5 Hindi German Step50+sbeam8 {hin: 0.38, mar: 0.04, deu: 0.37, eng: 0.15, fra: 0.01}
me5 Hindi Yiddish Base {mar: 0.12, hin: 0.83, eng: 0.02, deu: 0.01, nep: 0.01}
me5 Hindi Yiddish Step1 {hin: 0.82, eng: 0.02, mar: 0.13, deu: 0.01}
me5 Hindi Yiddish Step50+sbeam8 {hin: 0.81, mar: 0.12, deu: 0.01, eng: 0.04}
me5 Hindi Hebrew Base {hin: 0.92, eng: 0.03, mar: 0.03}
me5 Hindi Hebrew Step1 {hin: 0.94, mar: 0.03, eng: 0.02}
me5 Hindi Hebrew Step50+sbeam8 {hin: 0.94, eng: 0.02, mar: 0.03}
me5 Hindi Arabic Base {eng: 0.63, hin: 0.32, mar: 0.02, nep: 0.01, fra: 0.01}
me5 Hindi Arabic Step1 {eng: 0.61, hin: 0.33, mar: 0.03}
me5 Hindi Arabic Step50+sbeam8 {eng: 0.62, hin: 0.31, mar: 0.04}

Table 8: Examples of Dataset MTEI. The probabilities for unidentified languages are omitted.
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AVG French Spanish Italian German Russian Portuguese Turkish Vietnamese Chinese Korean Arabic Japanese Hindi Indonesian
Monolingual (Line)
Command R 0.0306 0.0272 0.0381 0.0092 0.0430 0.0093 0.0195 0.0042 0.0099 0 0 0.0017 0.0171 0.0111 0.2384
Command R+ 0.0355 0.0127 0.0325 0 0.0373 0.0309 0.0219 0.0100 0.0264 0 0 0.0034 0.0158 0.0387 0.2673
GPT-3.5 Turbo 0.0317 0.0250 0.0296 0.0103 0.0276 0.0168 0.0292 0.0050 0.0070 0 0 0 0.0057 0.0546 0.2337
GPT-4 Turbo 0.0381 0.0508 0.0468 0.0051 0.0316 0.0636 0.0228 0 0.0033 0.0079 0 0 0.0083 0.0639 0.2289
Mistral 8x7B 0.0766 0.0399 0.0510 0.0645 0.0229 0.0414 0.0784 0.0252 0.1037 0.1116 0.0787 0.0583 0.1394 0.0540 0.2036
Mistral Large 0.0799 0.0145 0.0351 0.0202 0.0139 0.0156 0.0643 0.0378 0.2245 0.1011 0.0329 0.1231 0.0756 0.0663 0.2936
Llama 2 70B-I 0.1266 0.0729 0.0548 0.1500 0.1438 0.0704 0.0569 0.1347 0.2501 0.1113 0.0501 0.1713 0.0784 0.1279 0.2999
Llama 3 70B-I 0.1197 0.0483 0.0557 0.0300 0.0556 0.0955 0.0654 0.2009 0.1416 0.1518 0.1720 0.1879 0.1579 0.1720 0.1412
Crosslingual (Line)
Command R 0.1555 0.1942 0.1651 0.1723 0.1928 0.1357 0.1458 0.1441 0.1579 0.1007 0.1169 0.1159 0.1522 0.1395 0.2437
Command R+ 0.1216 0.1234 0.1635 0.0810 0.1040 0.1034 0.1555 0.0817 0.1204 0.0610 0.0617 0.0534 0.0691 0.1424 0.3825
GPT-3.5 Turbo 0.1025 0.1219 0.1085 0.1042 0.1119 0.0749 0.1169 0.0945 0.0772 0.0527 0.0596 0.0764 0.0624 0.1163 0.2584
GPT-4 Turbo 0.0987 0.0721 0.0956 0.1002 0.0778 0.0876 0.0909 0.0733 0.0742 0.0665 0.0600 0.0666 0.0981 0.1612 0.2577
Mistral 8x7B 0.1675 0.1341 0.1332 0.1242 0.1582 0.1304 0.1288 0.1156 0.1458 0.1604 0.1743 0.1506 0.1977 0.3053 0.2861
Mistral Large 0.2274 0.1341 0.2122 0.1808 0.1441 0.1496 0.2509 0.1410 0.1817 0.2944 0.3052 0.2816 0.3416 0.2407 0.3262
Llama 2 70B-I 0.2649 0.1517 0.1339 0.2330 0.2657 0.2186 0.2022 0.2280 0.2532 0.2817 0.3574 0.3719 0.3233 0.3443 0.3433
Llama 3 70B-I 0.4631 0.3906 0.3192 0.4324 0.4226 0.4495 0.3503 0.5696 0.5360 0.3872 0.3777 0.5200 0.4822 0.5531 0.6935

Monolingual (Word)
Command R 0.5563 0.9016 0.9424 0.9513 0.4098 0.6312 1.0095 0.5445 0.4059 0.1974 0.0031 0.1424 0.0462 0.4161 1.1865
Command R+ 0.5522 0.9034 0.9687 0.9363 0.3873 0.6478 1.0185 0.5003 0.3812 0.1232 0.0057 0.1327 0.0785 0.4007 1.2458
GPT-3.5 Turbo 0.5344 0.9031 0.9348 0.9567 0.4325 0.6322 0.9457 0.4281 0.3587 0.0913 0.0088 0.1053 0.0370 0.3937 1.2532
GPT-4 Turbo 0.5426 0.8656 0.9456 0.9284 0.4241 0.6206 0.9818 0.4932 0.3217 0.1287 0.0146 0.1355 0.0307 0.4232 1.2823
Mistral 8x7B 0.7431 0.9763 0.9157 1.0027 0.4477 0.6947 0.9746 0.6763 0.4134 0.8854 0.4960 0.4330 0.8628 0.6106 1.0134
Mistral Large 0.5703 0.8829 0.9099 0.9083 0.4270 0.6191 0.9827 0.6473 0.3199 0.2191 0.2568 0.3137 0.2484 0.4472 0.8016
Llama 2 70B-I 0.8022 1.0541 0.9257 1.0109 0.8092 0.6939 1.0000 1.2333 0.5748 0.5989 0.3960 0.5578 0.5229 0.5676 1.2862
Llama 3 70B-I 0.8657 1.0519 0.9427 1.0139 0.8992 0.6325 1.0028 1.5459 0.4827 0.8949 0.8120 0.6904 0.6017 0.6831 0.8659

Crosslingual (Word)
Command R 0.6796 1.0941 1.0038 1.0896 0.6588 0.6618 0.9487 0.5579 0.4664 0.3347 0.1988 0.3190 0.4943 0.4836 1.2030
Command R+ 0.6049 0.9606 0.9380 0.9444 0.4382 0.6684 1.0785 0.5316 0.4572 0.2081 0.0670 0.1616 0.1870 0.5074 1.3212
GPT-3.5 Turbo 0.5951 1.0295 0.9439 0.9894 0.5858 0.5796 1.0159 0.5327 0.3659 0.1273 0.0933 0.1727 0.1850 0.4478 1.2626
GPT-4 Turbo 0.6348 1.0025 0.9619 0.9890 0.5257 0.6425 1.0182 0.5568 0.4089 0.2542 0.1182 0.2552 0.3012 0.5073 1.3451
Mistral 8x7B 0.8556 1.0509 1.0205 1.0143 0.6203 0.7656 1.0186 0.6174 0.5099 0.7446 0.6496 0.5800 0.9520 1.1017 1.3330
Mistral Large 0.9647 1.2351 1.1284 1.1409 0.6319 0.7850 1.1244 0.6909 0.6404 1.1388 0.7054 0.7411 1.2626 0.8266 1.4551
Llama 2 70B-I 0.9676 1.2830 0.9488 1.1583 0.9822 0.7885 1.0626 0.6962 0.6398 1.1089 0.8069 0.6929 1.1530 0.9268 1.2983
Llama 3 70B-I 0.9757 1.2111 1.1366 1.3193 0.8329 1.0911 1.2465 0.9568 0.7462 0.7249 0.3435 0.8228 0.8275 0.8733 1.5274

Table 9: Language Confusion measured by Language Confusion Entropy for LCB for monolingual and crosslingual
settings at line and word level for each Language for LLMs.

LPR AVG French Spanish Italian German Russian Portuguese Turkish Vietnamese Chinese Korean Arabic Japanese Hindi Indonesian
Monolingual
Command R 98.50 99.33 95.67 99.00 98.00 100.00 98.50 99.00 99.00 98.50 100.00 100.00 100.00 100.00 92.00
Command R+ 99.19 99.67 99.33 100.00 100.00 100.00 97.50 100.00 99.00 97.50 100.00 99.67 99.00 100.00 97.00
GPT-3.5 Turbo 99.05 100.00 99.67 100.00 100.00 100.00 98.00 100.00 99.00 97.00 100.00 100.00 98.00 99.00 96.00
GPT-4 Turbo 99.26 99.33 99.33 99.00 100.00 100.00 98.00 100.00 100.00 99.00 100.00 99.00 100.00 100.00 96.00
Mistral 8x7B 71.08 95.33 89.33 72.00 91.00 65.00 85.00 90.00 57.00 45.50 61.00 48.00 67.00 71.00 58.00
Mistral Large 67.82 100.00 99.00 99.00 98.00 98.00 79.50 71.00 29.00 66.00 64.00 48.00 48.00 19.00 31.00
Llama 2 70B-I 44.65 87.67 95.67 72.00 59.00 89.00 91.00 33.00 17.00 10.50 0.00 0.33 7.00 1.00 62.00
Llama 3 70B-I 42.15 88.67 98.33 88.00 31.00 77.00 95.50 18.00 10.00 8.00 0.00 21.67 10.00 23.00 21.00

Crosslingual
Command R 77.84 86.83 84.17 74.00 72.00 77.00 79.80 75.50 74.00 84.40 77.00 80.83 74.00 74.25 76.00
Command R+ 93.77 95.50 95.50 95.25 93.75 94.75 92.00 94.00 93.00 92.80 93.25 96.50 95.00 92.75 88.75
GPT-3.5 Turbo 92.83 94.00 96.50 93.50 92.75 93.75 93.20 92.00 93.50 90.60 92.75 95.33 90.75 93.75 87.25
GPT-4 Turbo 93.13 95.00 96.17 93.50 94.75 92.50 93.80 93.50 92.50 92.40 92.25 94.00 90.75 93.25 89.50
Mistral 8x7B 69.73 87.17 84.17 81.75 80.00 70.50 81.60 79.50 71.00 52.60 58.00 53.50 60.25 47.25 69.00
Mistral Large 62.26 86.00 83.83 74.25 80.50 72.00 70.60 67.25 48.25 54.20 46.75 42.00 45.25 48.50 52.25
Llama 2 70B-I 40.53 79.33 86.50 67.75 54.00 51.00 82.00 26.25 19.55 10.84 3.58 6.33 14.00 16.25 50.00
Llama 3 70B-I 34.81 70.83 79.67 49.25 33.75 48.00 70.80 17.53 16.53 5.80 0.58 26.33 3.53 40.50 24.25

Table 10: Language Confusion Benchmark Line Pass Rate Reproduction for both Monolingual and Crosslingual
settings.
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WPR AVG Russian Chinese Korean Arabic Japanese Hindi
Monolingual
Command R 96.31 96.00 92.50 97.00 99.33 94.00 99.00
Command R+ 99.44 98.00 100.00 100.00 99.67 99.00 100.00
GPT-3.5 Turbo 99.83 100.00 100.00 100.00 100.00 99.00 100.00
GPT-4 Turbo 99.67 100.00 99.00 99.00 100.00 100.00 100.00
Mistral Large 98.50 99.00 99.00 100.00 100.00 98.00 95.00
Mistral 8x7B 73.75 83.00 64.50 62.00 86.00 68.00 79.00
Llama 2 70B-I 97.92 93.00 94.50 100.00 100.00 100.00 100.00
Llama 3 70B-I 93.19 94.00 93.50 100.00 95.67 80.00 96.00

Crosslingual
Command R 93.89 93.67 91.00 97.33 94.33 88.33 98.67
Command R+ 95.11 89.67 95.67 96.00 98.00 95.33 96.00
GPT-3.5 Turbo 98.72 98.33 99.00 98.33 99.00 98.67 99.00
GPT-4 Turbo 96.61 95.67 97.00 96.67 97.33 95.67 97.33
Mistral Large 93.83 93.00 97.67 92.00 93.67 91.33 95.33
Mistral 8x7B 68.22 80.33 62.00 67.33 76.33 51.67 71.67
Llama 2 70B-I 84.17 81.33 76.00 86.67 91.33 84.33 85.33
Llama 3 70B-I 94.39 89.00 92.33 100.00 95.67 91.67 97.67

Table 11: Language Confusion Benchmark Word Pass
Rate Reproduction for both Monolingual and Crosslin-
gual settings.

Language Step Monolingual Crosslingual BLEU (AVG)
Line Level Word Level Line Level Word Level

Sinhala
Base - - 0.9061 1.6668 6.6147
Step1 - - 1.1412 1.7610 6.1822
Step50+sbeam8 - - 1.3213 1.9353 6.1517

Gujarati
Base 0.0385 0.2332 0.9372 1.7629 8.8752
Step1 0.0308 0.9894 1.4092 1.7977 8.7153
Step50+sbeam8 0.0154 0.2303 1.3821 1.5844 10.0989

Meadow Mari
Base - - 1.1895 2.5281 6.8674
Step1 - - 1.3452 2.4527 6.3181
Step50+sbeam8 - - 1.4333 2.4806 6.0744

Punjabi
Base 0 0.2304 1.2886 1.9215 11.7362
Step1 0 0.1910 1.0879 1.7473 9.7027
Step50+sbeam8 0 0.1994 0.8049 1.3955 11.4941

Amharic
Base - - 1.2949 1.9906 7.2613
Step1 - - 1.1420 1.7983 6.7393
Step50+sbeam8 - - 1.2548 1.8958 6.5141

Urdu
Base 0.0516 0.7021 1.3266 2.3594 8.6339
Step1 0.0462 0.5510 1.4870 2.8171 8.2143
Step50+sbeam8 0.0385 0.5661 1.5844 2.3360 8.9373

Korean
Base - - 1.4917 2.5477 5.5578
Step1 - - 1.6311 2.2823 5.1378
Step50+sbeam8 - - 1.6845 2.4643 4.9561

Yiddish
Base - - 1.5216 2.3321 6.5486
Step1 - - 1.6912 2.2014 6.0670
Step50+sbeam8 - - 1.5956 2.2891 5.9480

Mongolian
Base 0.0462 2.6470 1.6223 2.6724 7.9523
Step1 0.0462 2.6291 1.3172 2.5401 7.7916
Step50+sbeam8 0.0462 2.6586 1.4105 2.6977 8.4952

Hindi
Base 0.6587 1.0295 2.0050 3.0441 8.5273
Step1 0.6305 1.0192 1.9432 2.5054 8.5912
Step50+sbeam8 0.6212 1.0268 1.4697 2.6635 9.6811

Arabic
Base 0.0280 0.5021 2.1931 3.0200 6.1455
Step1 0 0.4597 1.7083 2.3915 5.9620
Step50+sbeam8 0 0.4666 1.6406 2.1459 6.1903

Kazakh
Base 0.1390 1.5820 2.2796 3.1694 10.8145
Step1 0.1070 1.4129 1.8063 3.0509 10.8421
Step50+sbeam8 0.1098 1.4378 1.8065 3.0765 12.4864

Hebrew
Base 0 0.1555 2.8174 3.7918 5.9312
Step1 0 0.1625 2.3715 3.3317 5.6492
Step50+sbeam8 0 0.1391 2.0314 2.5126 5.7413

Chinese
Base 0 0.6124 2.8718 3.2475 6.4620
Step1 0.0280 0.5898 1.9708 2.3969 5.6923
Step50+sbeam8 0.0280 0.6262 1.9363 2.2672 5.3919

Maltese
Base - - 3.0059 4.1352 6.7777
Step1 - - 3.5456 4.5662 6.1049
Step50+sbeam8 - - 3.3048 4.5243 5.8991

Japanese
Base 0.0693 0.8806 3.2545 4.9242 5.7113
Step1 0.0693 0.8135 2.6345 3.2156 5.2014
Step50+sbeam8 0.0693 0.8277 2.3426 3.1882 5.0411

German
Base 0.0000 0.6205 3.2764 4.6278 6.3678
Step1 0.0231 0.6106 3.8041 4.4014 6.3865
Step50+sbeam8 0 0.6203 3.3912 4.4915 6.8334

Turkish
Base 0.0660 1.6099 3.8939 4.8367 7.9789
Step1 0.0707 1.6103 2.7842 3.7629 8.3830
Step50+sbeam8 0.0687 1.6045 2.8521 4.0266 9.6997

Finnish
Base - - 4.3696 5.6543 5.2877
Step1 - - 3.6533 5.0938 4.8876
Step50+sbeam8 - - 3.6939 5.0801 4.7593

Hungarian
Base - - 4.4119 5.1123 5.1684
Step1 - - 3.6595 4.6260 4.7418
Step50+sbeam8 - - 3.3812 4.0739 4.6179

Table 12: Language Confusion Entropy at each step in
the Monolingual and Crosslingual generation settings at
both Line and Word level, with BLEU score for textual
embedding inversion tasks for eval languages.

Train Language Step Monolingual Crosslingual BLEU (AVG)Line Level Word Level Line Level Word Level

M
on

ol
in

gu
al

Punjabi Base 0.0000 0.2615 0.3042 0.7821 6.7660
Step1 0.0000 0.0000 0.0000 0.0000 0.0227
Step50+sbeam8 0.0000 0.0000 0.0000 0.0000 0.0229

Hebrew Base 0.0000 0.1720 0.3404 0.8445 6.0112
Step1 0.0000 0.1391 0.4184 0.8806 5.9759
Step50+sbeam8 0.0000 0.1391 0.5401 0.9759 5.9736

Gujarati Base 0.0462 0.2332 0.7272 1.6964 6.3759
Step1 0.0462 0.2384 0.6853 1.3227 6.4278
Step50+sbeam8 0.0462 0.2384 0.4426 1.0568 6.4171

Chinese Base 0.0000 0.5667 0.7711 1.3158 6.3859
Step1 0.0000 0.5667 0.6766 1.5313 6.1478
Step50+sbeam8 0.0560 0.6395 0.8930 1.2632 5.9179

German Base 0.0000 0.6205 0.8030 1.4859 6.5072
Step1 0.0000 0.6008 0.9991 1.4383 6.4497
Step50+sbeam8 0.0000 0.6090 1.0879 1.4596 6.4801

Kazakh Base 0.1252 0.9288 1.2115 2.1219 7.5891
Step1 0.1061 0.9288 0.7061 1.7686 7.5050
Step50+sbeam8 0.1252 0.9288 0.7562 1.7288 8.0075

Urdu Base 0.0462 0.7023 1.2381 1.9326 6.0338
Step1 0.0462 0.6597 0.9932 1.8497 5.9788
Step50+sbeam8 0.0462 0.6781 1.0471 1.8990 5.8903

Japanese Base 0.0925 0.8399 1.2677 2.5338 5.8317
Step1 0.0925 0.8265 1.3099 2.3773 5.6813
Step50+sbeam8 0.0925 0.8112 1.4349 2.5009 5.4885

Turkish Base 0.0925 1.0902 1.2699 2.1591 7.1899
Step1 0.0462 1.0711 0.9757 1.8074 7.2374
Step50+sbeam8 0.0462 1.0711 0.9824 2.0698 7.5047

Hindi Base 0.6952 1.0268 1.7053 2.0748 6.4369
Step1 0.6276 0.9830 1.5004 1.8830 6.3956
Step50+sbeam8 0.6417 1.0094 1.5470 1.9180 6.3725

Arabic Base 0.0560 0.5021 1.8446 2.1560 6.0938
Step1 0.0000 0.4471 0.8492 1.6087 6.0149
Step50+sbeam8 0.0000 0.4610 1.1300 1.3489 6.1260

Mongolian Base 0.0462 0.7688 2.2537 2.9952 7.0101
Step1 0.0462 0.7330 1.8297 2.9202 7.3608
Step50+sbeam8 0.0462 0.7697 1.6677 2.5683 7.8355

In
-F

am
ily

/In
-S

cr
ip

t

Hindi, Punjabi Base 0.3333 0.6300 2.6597 3.4826 8.1018
Step1 0.3317 0.6300 3.3548 3.7614 8.5398
Step50+sbeam8 0.3209 0.6300 3.4952 4.2414 9.2197

Punjabi, Urdu Base 0.0393 0.4470 2.9478 3.9370 8.0232
Step1 0.0231 0.4361 4.0750 4.8806 7.3287
Step50+sbeam8 0.0231 0.4546 3.7656 4.6257 8.0605

Kazakh, Turkish Base 0.0995 1.0037 3.0674 5.2358 8.3012
Step1 0.1158 0.9838 2.3818 4.7775 8.7420
Step50+sbeam8 0.0924 1.0029 2.6656 4.2396 9.8136

Gujarati, Hindi Base 0.3209 0.6300 3.1485 4.7015 7.3518
Step1 0.3332 0.6389 3.2087 3.5149 7.5794
Step50+sbeam8 0.3369 0.6257 2.8926 3.1977 8.1357

German, Turkish Base 0.0231 2.7236 3.3850 5.2398 7.5745
Step1 0.0693 2.7123 3.3267 5.2520 7.9995
Step50+sbeam8 0.0393 2.7291 3.0071 5.3435 8.9119

Gujarati, Urdu Base 0.0462 0.4768 3.6012 4.2957 7.5971
Step1 0.0231 0.4678 3.6518 4.7169 7.8532
Step50+sbeam8 0.0231 0.4579 3.2620 4.0107 8.3644

Hindi, Urdu Base 0.3327 0.8645 3.6261 4.0579 7.4791
Step1 0.3258 0.8347 3.5240 3.8894 7.7025
Step50+sbeam8 0.3064 0.8460 3.2558 3.7994 8.1493

Arabic, Hebrew Base 0.0000 0.3206 3.9135 4.6422 7.2555
Step1 0.0000 0.3290 3.0216 3.8845 7.1863
Step50+sbeam8 0.0000 0.3056 3.0272 4.1192 7.3948

Gujarati, Punjabi Base 0.0231 0.2332 4.3682 5.0570 7.9168
Step1 0.0231 2.4993 3.1955 4.0486 8.2486
Step50+sbeam8 0.0000 0.2220 2.7857 4.2355 9.1628

Kazakh, Mongolian Base 0.0995 4.9836 4.6250 5.5072 9.0396
Step1 0.0761 4.9836 4.3483 5.1664 9.6267
Step50+sbeam8 0.0995 4.9947 3.6838 5.6001 10.8565

Cr
os

s-F
am

ily
/C

ro
ss

-S
cr

ip
t

Gujarati, Turkish Base 0.0693 0.6534 1.7507 3.1341 7.3780
Step1 0.0463 0.6525 2.4953 3.1636 7.6174
Step50+sbeam8 0.0463 0.6409 2.1876 3.1276 8.1549

Chinese, Japanese Base 0.0231 0.7897 1.9550 3.2433 6.4919
Step1 0.0511 0.7067 3.2448 4.7459 6.5438
Step50+sbeam8 0.0231 0.7285 3.7689 4.0670 6.6168

Punjabi, Turkish Base 0.0231 0.6417 2.1019 3.4377 8.0628
Step1 0.0231 0.6440 2.8690 3.6396 7.2908
Step50+sbeam8 0.0231 0.6548 2.5556 3.6179 7.9988

Hindi, Turkish Base 0.3682 1.0384 2.3767 3.5239 -
Step1 0.3489 1.0369 2.2821 3.1379 -
Step50+sbeam8 0.3601 1.0321 2.3311 3.1449 -

Hindi, Kazakh Base 0.4053 0.9859 2.8022 4.7000 -
Step1 0.4069 0.9749 3.2070 4.3596 -
Step50+sbeam8 0.3735 0.9994 3.4030 3.9206 -

Gujarati, Kazakh Base 0.0761 0.5911 2.8922 3.9972 7.8211
Step1 0.0857 0.5548 2.4678 3.0565 8.2088
Step50+sbeam8 0.0531 0.5810 2.0942 2.9441 8.8596

Turkish, Urdu Base 0.0462 0.9011 2.9759 4.0922 7.5098
Step1 0.0693 0.8723 2.3225 3.3931 7.7308
Step50+sbeam8 0.0462 0.9011 2.1042 3.3795 8.1401

Kazakh, Punjabi Base 0.0764 0.5697 3.2837 4.0113 8.4029
Step1 0.0531 0.5435 2.2224 3.2103 8.6699
Step50+sbeam8 0.0764 0.5705 1.6113 3.1262 9.3574

Table 13: Language Confusion Entropy at each step in
the Monolingual and Crosslingual generation settings at
both Line and Word level, with BLEU score for textual
embedding inversion tasks for train languages.
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Language Graph #Languages #Features Category of Fea-
tures

Datasource References Representation Similarity Metric

Grambank 2292 195 Morpho-
syntactical

Skirgård et al. (2023) Multivalued Vectors Jaccard

WALS 424 192 Structural proper-
ties of languages

Haspelmath (2008) Multivalued Vectors Jaccard

WALS\ Phon. 431 172 WALS w/o Phono-
logical Features

Haspelmath (2008) Multivalued Vectors Jaccard

Lang2Vec (Littell et al., 2017) 8070 - Inventory, Syntax,
Phonology, Geneal-
ogy, Geography,
Featural

Collin (2010); Haspelmath
(2008); Collins and Kayne (2011)

Vectors Cosine similarity and Arccosine

CLICS3 1347 4228 Colexifications Rzymski et al. (2020) Binarized Vectors Jaccard
WN 519 2,518,357 Colexifications Navigli and Ponzetto (2010) Binarized Vectors Jaccard

Colex2Lang (Chen et al., 2023b)
CLICS3 1609 4228 Colexifications Rzymski et al. (2020) Combined Graph Embeddings Cosine Similarity
WN 519 2,525,591 Colexifications Navigli and Ponzetto (2010) Combined Graph Embeddings Cosine Similarity
WN_CONCEPT 519 2,486,485 Colexifications Navigli and Ponzetto (2010) Combined Graph Embeddings Cosine Similarity

ASJP SVD 1012 40 lexicon (Wichmann et al., 2012) UMAP on a mean normalized Leven-
shtein distance pairwise distance matrix
from ASJP

Cosine Similarity

ASJP UMAP 1012 40 lexicon (Wichmann et al., 2012) Truncated SVD on a mean normalized
Levenshtein distance pairwise distance
matrix from word alignments

Cosine Similarity

Östling and Tiedemann (2017) 943 - - Bible Translations Lang. Vectors trained on Bible Data Cosine Similarity

Table 14: Statistics and Incorporated Features for Language Graphs.

Language Graph
LCB Textual Embedding Inversion

AVG ALL Monolingual Crosslingual AVG ALL Monolingual Crosslingual
Line Word Line Word Line Word Line Word Line Word Line Word

Grambank 0.2650 0.1830 0.2827 0.2726 0.4042 0.1791 0.2682 0.7538 0.8005 0.7891 0.7504 0.5434 0.8230 0.8162
WALS 0.1947 0.0420 0.2908 0.0816 0.4286 0.0388 0.2865 0.7377 0.8722 0.7854 0.6618 0.4102 0.8803 0.8164
WALS \ Phon. 0.1892 0.0409 0.2889 0.0799 0.4253 0.0379 0.2620 0.7360 0.8768 0.7880 0.6495 0.4036 0.8837 0.8147

Lang2Vec
Inventory 0.1650 0.0812 0.2003 0.1374 0.3114 0.0637 0.1961 0.8154 0.9678 0.8410 0.8225 0.4124 0.9720 0.8768
Syntactic 0.2925 0.1949 0.3771 0.2244 0.4679 0.1505 0.3405 0.8651 1.0179 0.8668 0.8872 0.5447 1.0001 0.8742
Phonological 0.2260 0.1009 0.3126 0.1552 0.4235 0.0830 0.2808 1.3161 1.7178 1.6133 0.6859 0.6004 1.6599 1.6191
Genetic 12.8307 13.4548 12.2278 12.9350 12.3563 13.5850 12.4249 14.9443 14.6988 14.9756 18.5227 13.5734 13.8721 14.0232
Geographical 1.5976 1.5924 1.8769 0.9753 1.8614 1.4996 1.7798 2.5218 2.4910 2.3964 2.6389 2.7875 2.4732 2.3439
Featural 0.3174 0.2094 0.4099 0.2429 0.5033 0.1626 0.3762 1.0628 1.0940 0.9355 1.5467 0.7976 1.0673 0.9359

CLICS3 1.6777 1.6516 1.7336 1.5453 1.7043 1.7182 1.7130 1.1806 1.1601 1.0850 1.4595 1.2880 1.0670 1.0237
WN 1.1372 1.1211 1.1423 1.1491 1.2521 1.0906 1.0680 2.1364 2.2197 2.0398 2.9402 1.6996 2.0687 1.8501

Colex2Lang
CLICS3 0.1665 0.0289 0.2522 0.0589 0.3776 0.0260 0.2490 0.7333 0.9492 0.8335 0.3690 0.2672 0.9503 0.8693
WN 0.1489 0.0242 0.2154 0.0522 0.3404 0.0218 0.2149 0.7794 1.0105 0.8892 0.3263 0.3894 1.0445 0.9454
WN_CONCEPT 0.1490 0.0242 0.2175 0.0522 0.3426 0.0218 0.2168 0.7791 1.0100 0.8836 0.3263 0.3894 1.0427 0.9390

ASJP SVD 0.5859 0.0253 1.0597 0.0522 1.0395 0.0225 1.3164 2.8254 2.9730 3.3461 0.0820 1.6568 3.8882 5.0063
ASJP UMAP 0.9318 0.0994 1.6767 0.1290 1.6055 0.0946 1.9856 3.3217 3.5364 4.0245 0.0811 2.3479 4.3690 5.5711

Östling and Tiedemann (2017)
L1 0.5697 0.0504 0.9843 0.0920 0.9616 0.0483 1.2819 4.7062 5.3973 5.9836 0.2837 1.7125 7.1117 7.7482
L2 0.5644 0.0497 0.9749 0.0918 0.9536 0.0452 1.2710 4.6788 5.4149 5.9684 0.1421 1.7019 7.1158 7.7296
L3 0.5589 0.0534 0.9601 0.0981 0.9336 0.0523 1.2558 4.7099 5.4686 6.0242 0.1138 1.6944 7.1689 7.7895
ALL 0.5595 0.0471 0.9673 0.0900 0.9437 0.0450 1.2641 4.6870 5.4175 5.9885 0.1482 1.6916 7.1240 7.7525

Table 15: KL Divergence between Language Similarity Graphs and the Language Confusion Matrices for Target/
Eval Languages from LCB and Inversion Tasks. The best results (lowest) are bolded, and the second best are
underlined.
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