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Abstract

For program languages, testing plays a cru-
cial role in the software development cycle,
enabling the detection of bugs, vulnerabilities,
and other undesirable behaviors. To perform
software testing, testers need to write code snip-
pets that execute the program under test. Re-
cently, researchers have recognized the poten-
tial of large language models (LLMs) in soft-
ware testing. However, there remains a lack
of fair comparisons between different LLMs in
terms of test case generation capabilities.

In this paper, we propose TESTEVAL, a novel
benchmark for test case generation with LLMs.
We collect 210 Python programs from an on-
line programming platform, LeetCode, and de-
sign three different tasks: overall coverage,
targeted line/branch coverage, and targeted
path coverage. We further evaluate 17 pop-
ular LLMs, including both commercial and
open-source ones, on TESTEVAL. We find
that generating test cases to cover specific pro-
gram lines/branches/paths is still challenging
for current LLMs, indicating a lack of abil-
ity to comprehend program logic and execu-
tion paths. We have open-sourced our dataset
and benchmark pipelines at https://github.
com/LLM4SoftwareTesting/TestEval.

1 Introduction

Software testing is a crucial aspect of software de-
velopment, allowing developers to identify poten-
tial bugs and check if the program behavior meets
expectations. A key task in software testing is test
case generation, which involves creating test inputs
to cover different statements and branches in the
program under test. Previous research indicates
that test case generation can be extremely time-
consuming, taking up over 15% of the time spent
in software development (Daka and Fraser, 2014).

*These authors contributed equally to this work.

Therefore, automated test case generation has
been a long-standing challenge in software engi-
neering research. Various methods have been de-
veloped to address this issue, including symbolic
execution testing (Chipounov et al., 2011; Cadar
et al., 2011), search-based testing (Fraser and Ar-
curi, 2011; Baresi and Miraz, 2010; Fraser and
Zeller, 2010), and deep learning-based approaches
(Tufano et al., 2020). Recently, researchers have
been exploring the potential of using LLMs to gen-
erate unit test cases (Lemieux et al., 2023; Xie
et al., 2023; Yuan et al., 2023). However, despite
the rapid development of LLM-based test case gen-
eration, there is still a lack of public benchmarks to
evaluate different LLMs’ capabilities in this area.
Hence, there is a need for a comprehensive analysis
to determine whether current LLMs can (1) gener-
ate diverse test cases to achieve high coverage on a
program under test, (2) generate test cases to cover
a specific line or branch, and (3) generate test cases
to cover a specific execution path by following the
tester’s intent.

To bridge this gap, we present a new benchmark,
TESTEVAL, which focuses on evaluating LLMs’
test case generation capabilities. The TESTEVAL

dataset consists of 210 Python programs from the
online coding platform LeetCode. We design three
tasks to address the aforementioned challenges: (1)
overall coverage, (2) targeted line/branch coverage,
and (3) targeted path coverage.

Notably, unlike popular code generation bench-
marks (Chen et al., 2021; Austin et al., 2021) or
software testing datasets (Just et al., 2014; Lemieux
et al., 2023), the tasks in our TESTEVAL bench-
mark require LLMs to reason about intricate pro-
gram execution behaviors. To generate inputs that
invoke specific branches or paths in the program
under test, the LLM must have a comprehensive
understanding of how to satisfy certain branch
conditions during execution. Furthermore, our
tasks emphasize program logic analysis rather than
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Figure 1: The pipeline for running and evaluating LLMs
for test case generation on TESTEVAL.

merely simulating numerical operations, as seen in
benchmarks designed for predicting a program’s
input/output (Gu et al., 2024).

We perform extensive experiments on TESTE-
VAL with both commercial and open-source LLMs.
Our results indicate that while state-of-the-art
LLMs can generate executable and diverse test
cases, they struggle to identify which specific state-
ments or branches need to be covered. For exam-
ple, in targeted line coverage, 12 out of 16 LLMs’
performances are not significantly improved (im-
provements ≤ 5%) compared to the results when
the target line information is even not given. Quan-
titative results show that commercial LLMs, such
as GPT-4, generally outperform open-source LLMs
in both overall coverage and targeted line/branch/-
path coverage. These findings suggest that future
work on test case generation should focus on devel-
oping advanced LLM-based reasoning frameworks
to enhance the understanding of program behaviors
during testing.

Our work makes the following contributions:

• Benchmark. We propose TESTEVAL, a bench-
mark focused on evaluating LLMs’ capabilities
in generating test cases for a given program under
test, encompassing three different tasks.

• Evaluation. We design new metrics to measure
the LLM’s test generation performance and con-
duct experiments with 17 popular LLMs.

• Analysis. We perform a systematic analysis of
LLMs’ performance on TESTEVAL and discuss
the challenges and opportunities in test case gen-
eration using LLMs.

2 Approach

In this section, we first introduce the tasks included
in our benchmark (§ 2.1). Following that, we pro-
vide an overview of the dataset used (§ 2.2).

2.1 Task Description

Figure 1 shows the workflow of TESTEVAL. We
propose three distinct tasks in our benchmark: (1)
overall coverage, (2) targeted line and branch cov-
erage, and (3) targeted path coverage. For each
task, we prompt an LLM to generate test cases for
a specified program based on the task description in
natural language. Specifically, in each query round,
we prompt the LLM to generate a testing function
containing a single test case (see Appendix A for
the complete prompt templates). Then, we filter
out any non-code content that may have been gen-
erated outside the testing function, retaining only
the first test case generated in each query round to
ensure a fair comparison across different LLMs.

After generation, all test cases must undergo
a correctness check, which consists of syntactic
correctness, execution correctness, and assertion
correctness. Syntactic correctness determines if the
generated test case is free of syntax errors, while
execution correctness evaluates if the test case can
be executed successfully without any runtime er-
rors. Assertion correctness evaluates whether the
generated test case contains correct test assertions.
Regarding execution correctness, we do not con-
sider incorrect test assertion statements to be failed
cases, since test cases with assertion errors can still
cover the program under test. Finally, we evaluate
coverage metrics on test cases that pass the correct-
ness check. We now illustrate our three benchmark
tasks in detail.

Algorithm 1: Computing the average
line/branch cov@k given a set of programs

Input: A set of programs under test P = {p1, p2, ...}, k
Output: The average cov@k for all programs: cov@kall

cov@k = [];
for pi in P do

Generate N test cases Ti = {ti1, ti2, ..., tiN};
Retain M executable test cases Ti = {ti1, ti2, ..., tiM};
if Ti = ∅ then

cov@k.append(0);
else

Randomly split Ti into max(⌊M/k⌋, 1) groups, each
group Tij with k test cases;

covi = [];
for Tij in

{
Ti1, Ti2, ..., Ti⌊M/k⌋

}
do

Compute line/branch coverage covTij
;

covi.append(covTij
);

end
cov@k.append(avg(covi))

end
end
cov@kall ← avg(cov@k);
return cov@kall

Overall coverage. In this task, we query each
LLM for N rounds given a program under test.
During the ith (1 < i ≤ N ) round, we prompt the
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20    for i, c in enumerate(s):

21  if c == '.':

22   if seenDot or seenE:

23    return False

24   seenDot = True

25  elif c == 'e' or c == 'E':

26   if seenE or not seenNum:

27    return False

28   seenE = True

29   seenNum = False

Target branches: […, [21-24], 
[22-23], [25-29], [26-27], …]

Target lines: {…, 21, 22, 23, 
24, 25, 26, 27, 28, 29, …}

Figure 2: An example for selecting targeted lines and
branches from programs under test.

LLM to generate a test method different from the
j (1 ≤ j < i)th rounds. After all rounds of query,
we obtain N test cases for each program under test.
The overall coverage for a program is computed
by the proportion of lines/branches in the program
that have been covered by at least one test case.

We further propose a new metric, cov@k, to mea-
sure the diversity of LLM’s generated test cases for
a given program. Intuitively, cov@k measures the
line/branch coverage with a subset of the generated
test cases with a size of k (k < M ). To achieve
this, we randomly split M executable test cases into
max(⌊M/k⌋, 1) subsets. Then for each of these
subsets, we calculate its overall line/branch cover-
age. In our experiments, we choose k as 1, 2, and
5. When k increases, the improvements of cov@k
can measure the diversity of the LLM’s generated
test cases. We summarize the calculation of the
average line/branch cov@k for a set of programs
under test in Algorithm 1.

Targeted line and branch coverage. Different
from overall coverage, targeted line and branch
coverage requires the LLM to generate test cases
that could cover a specific branch, or a line inside
this branch. This simulates the scenario in which
a human tester is asked to craft test cases to cover
a specific part of the program. Figure 2 shows an
example of targeted branches and lines in a given
program. To measure the targeted line/path cov-
erage, we prompt the LLMs by including the line
number(s) in the instruction (see prompt templates
in Appendix A). For each targeted line/branch, an
LLM is prompted to generate one test case.

Targeted path coverage. In real-world software
development, testers sometimes need to craft test
cases to cover a specific execution path that in-
cludes multiple branches. We refer to this task as
the target path coverage. We show an example
program in Figure 3 to demonstrate the importance
of the target path coverage.

In Line 6, a bug (divided by zero) will occur
only if branches “condition 1” and “condition 2”
are both not executed. In this case, only covering
the two conditional branches is not sufficient. By
contrast, if we can cover all three paths (Figure 3),
we can successfully detect the “divided by zero”
bug. To obtain the target path coverage, we prompt
an LLM by including a specific execution path (see
Appendix A for the prompt template). For each
path, an LLM is queried to generate one test case.

We further propose two metrics to evaluate the
performance of target path coverage. First, for a
given target path, we measure whether the gener-
ated test case covers the target path completely.
Second, we measure the similarity between the
given target path PATHtgt and the execution path of
the LLM’s generated test case PATHgen by Eq. 1:

sim(PATHgen, PATHtgt) =
lcs(PATHgen, PATHtgt)

len(PATHtgt)
(1)

where lcs() calculates the length of the longest
contiguous common sub-sequence between two
paths and len() calculates the length of a path.

2.2 Benchmark Dataset

Data collection. To construct our benchmark
dataset, we first collect solution programs of Leet-
Code, an online platform for evaluating a program-
mer’s coding performance. We choose LeetCode as
our data source since it has a clear task description
and input constraint for each programming task.
We first select all publicly available tasks up to Apr.
2024. Then, we collect its Python solution for each
task from a GitHub repository 1. At this stage, we
collect 3,123 programs under test.

The main goal of our benchmark is to evalu-
ate LLMs’ capability to generate test cases that
cover specific statements/branches. Therefore, we
filter out programs that are too simple (e.g., pro-
grams that only have one branch) according to the
cyclomatic complexity (McCabe, 1976). Given
the control flow graph of a program, the cyclo-
matic complexity V of this program is measured
by: V = e−n+p, where e is the number of edges
in the graph, n is the number of nodes, and p is the
number of connected components. The cyclomatic
complexity is positively correlated with the number
of branches/loops in a program. In this work, we
consider programs with the cyclomatic complexity

1https://github.com/walkccc/LeetCode. The repository is
under MIT license.
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…
1    a = 0
2    if condition 1:
3    a += 1
4    elif condition 2:
5    a += 2
6    b = 1/a
…

Execution paths:
… -> condition 1 -> …
… -> not(condition 1) -> condition 2 -> …
… -> not(condition 1) -> not(condition 2) -> …

Execution paths:
… -> Enter if branch at #2 -> …
… -> Enter elif branch at #4 -> …
… -> …

condition 1

condition 2

b = 1/a

a += 1

True False

condition 1

condition 2

b = 1/a

a += 1

a += 2

True False

True

condition 1

condition 2

b = 1/a

a += 1

a += 2

True False

True

1. … -> condition 1 -> … 2. … -> not(condition 1) 
-> condition 2 -> …

3. … -> not(condition 1) 
-> not(condition 2) -> …

Figure 3: A motivating example showing the importance of path coverage (left), and examples of execution paths
extracted from this program (right).

≥ 10. This filters down the sample size from 3,123
to 216. We further check these 216 problems and
remove similar problems with identical solutions.
Finally, we collect 210 Python programs for our
benchmark, consisting of 9 easy problems, 100
medium problems, and 101 hard problems accord-
ing to LeetCode’s difficulty label. Each program
under test is also paired with its task description
in natural language. Note that most programs al-
ready have test cases in their task descriptions. We
remove these cases to prevent LLMs from directly
copying these test cases.

For each program, we perform the following pre-
processing steps:

• We add all necessary import statements for
the packages required by the Python solution.

• Python programmers often split long state-
ments into multiple physical lines. For all
statements split into multiple lines, we rewrite
them in a single line. This ensures each state-
ment only corresponds to one line when mea-
suring line coverage.

• We reformat the in-line conditional statements
(e.g., the ternary conditional operator) into
multi-line blocks. This ensures that each line
of the program is one statement that belongs
to one specific branch.

• We remove all natural language comments.

Targeted line/branch/path identification. To
obtain targeted lines/branches, we first extract all
conditional branches of a given program based on
its abstract syntax tree (AST). Since loop branches
(i.e., for/while loops) are usually easy to cover,
we only consider conditional branches in our task.
Specifically, we extract all if, elif, and else
branches. We refer to these branches as our targeted
branches. Then, we consider all statements within

these targeted branches as our targeted lines (see
Figure 2 for the example). Overall, we identified
983 target branches in 210 programs under test (4.7
target branches per program on average). The total
number of target lines in 210 programs is 1,312
(6.2 target lines per program on average). The de-
tailed algorithm for extracting target lines/branches
can be found in Appendix B.

In a given program under test, certain branches
could be hard to cover without carefully crafting the
test cases. Therefore, we label each targeted branch
in a program as easy, medium, or hard according to
the average coverage after executing 100 randomly
generated inputs. For each problem in TESTEVAL,
we construct a random input generator to assess the
difficulties of covering a specific branch. Each gen-
erator is a Python program that uniformly samples a
valid test input for the LeetCode problem according
to its constraint description. We leverage GPT-4 to
generate these generators from the constraints in
LeetCode problem descriptions. Then, we perform
manual inspection and correction to ensure they
adhere to the problem’s constraints. An example
of an input generator is shown in Figure 4. These
generators are then used to sample 100 executable
test cases for each problem. Branch difficulty is
determined by the frequency at which a branch is
covered across theese 100 sampled test inputs. We
categorize branches as follows: easy (covered by
[99%, 100%] of test cases), medium (covered by
[40%, 99%) of test cases), and hard (covered by
[0, 40%) of test cases). This partitioning ensures
that easy branches do not significantly outnumber
other categories, and promotes a balanced distri-
bution between medium and hard branches. The
number of easy, medium, and hard target branches
are 498, 225, and 260.

For the targeted path coverage task, as the num-
ber of execution paths in a program can be enor-
mous or even undecidable, it is impossible to col-
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def generate_random_input():
# Define the constraints
min_len = 1
max_len = 1000
min_val = -pow(10, 6)
max_val = pow(10, 6)
# Generate random length for two arrays within the constraints
len_nums1 = random.randint(min_len, max_len)
len_nums2 = random.randint(min_len, max_len)
# Make sure the total length is within the limits
while len_nums1+len_nums2>2000:

len_nums1 = random.randint(min_len, max_len)
len_nums2 = random.randint(min_len, max_len)

# Create two lists with random int within the given value constraints
nums1 = sorted([random.randint(min_val, max_val) for _ in range(len_nums1)])
nums2 = sorted([random.randint(min_val, max_val) for _ in range(len_nums2)])
# Return the resulting lists as a tuple
return nums1, nums2

Constraints:

* `nums1.length == m`
* `nums2.length == n`
* `0 <= m <= 1000`
* `0 <= n <= 1000`
* `1 <= m + n <= 2000`
* `-10^6 <= nums1[i], nums2[i] <= 10^6`

Figure 4: The input constraints for a LeetCode problem (left) and its random input generator for TESTEVAL (right).

lect all execution paths. Instead, we collect the
target execution paths from the example test cases
given by LeetCode problem descriptions. For each
example test case, we execute it and record its exe-
cution path using all the condition/loop branches it
executed. The complete execution path would be
too long and difficult for LLMs to understand, so
we perform clipping after obtaining full paths. For
each execution path, we randomly sample two sub-
paths with lengths of 5 consecutive branches taken.
We further remove duplicated sampled paths, result-
ing in an average of 4.1 target paths per problem.

3 Evaluation

3.1 Experiment Setup

We evaluate 17 popular instruction-following
LLMs, including both commercial and open-source
ones. The parameter sizes of open-source models
range from 1.3B to 34B. The temperature is set to
0 or 1e-5 (for models on Huggingface that do not
support temperature=0) to ensure that the evalua-
tion results can be reproduced. All experiments on
open-source LLMs are run on two NVIDIA A6000
GPUs. We set the length limit of outputs to 256
tokens. We use the pytest-cov (pytest cov) to
measure the code coverage.

3.2 Overall Coverage

In this experiment, we query every model 20
rounds (N = 20) to generate test cases (one test
case per round) for each program under test. Ta-
ble 1 shows the evaluation results on the overall
coverage task.

Regarding correctness metrics, we observe that
most models can achieve high syntactical and ac-
ceptable execution correctness, but all models have
much lower assertion correctness. For test cases
that do not pass the execution correctness check,
we perform a preliminary study in the Appendix
C. Regarding the coverage performance, most of

the LLMs are able to generate test cases that
cover over 80% lines/branches per program under
test. Notably, the latest GPT-4o achieves the best
overall line (98.65%) and branch (97.16%) cover-
age. We also notice that the open-source model,
DeepSeek-coder-33b, outperforms the commercial
LLM, Gemini-1.0-pro, on both overall line and
branch coverage.

We further use cov@k to measure the diver-
sity of each LLM’s generated test cases. Sim-
ilar to the overall coverage results, GPT-4o has
the best line and branch cov@1, demonstrating its
ability to craft complex test cases that are able to
cover most of the program branches within a sin-
gle attempt. We also find all LLMs have a higher
cov@2 and cov@5 compared with cov@1. This
indicates that the LLMs are able to generate dif-
ferent test cases. Gemma-7b shows the most sig-
nificant improvements in the line (+9.67%) and
branch (+13.14%) cov@5 compared with its line
and branch cov@1. We also notice that Starcoder-2-
Instruct has the least improvement on cov@5 com-
pared with cov@1 (+0.47% and +0.70% for line
and branch coverage, respectively). By manually
checking the test cases generated by Starcoder-2-
Instruct, we find that it frequently repeats previ-
ously generated cases despite being instructed to
generate different ones.

3.3 Targeted Line and Branch Coverage
Table 2 and Table 3 show the evaluation results for
the targeted line and branch coverage, respectively.
For each subject LLM, we also include a baseline
by excluding the information about the targeted
lines/branches in the text prompt. For each program
under test, we reuse the first test case generated for
the overall coverage task and measure its cover-
age accuracy on the targeted lines/branches. The
intuition is that, if an LLM could not outperform
the baseline, it might be struggling with identify-
ing the line/branch that is expected to cover when
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Table 1: Result on the overall coverage task. The results in parenthesis are the improvements over cov@1.

Model Size Correctness Overall coverage Line cov@k Branch cov@k

syntax execution assertion line branch k = 1 k = 2 k = 5 k = 1 k = 2 k = 5

GPT-3.5-turbo N/A 100 97.43 40.40 96.27 93.65 88.35 90.02 (1.67) 92.14 (3.79) 81.87 84.32 (2.45) 87.55 (5.68)
GPT-4 N/A 100 92.33 54.16 94.94 92.81 85.65 87.77 (2.12) 90.04 (4.39) 78.89 81.93 (3.04) 85.39 (6.50)
GPT-4-turbo N/A 100 94.79 56.24 96.08 94.81 85.46 87.87 (2.41) 90.81 (5.35) 78.62 82.06 (3.44) 86.64 (8.02)
GPT-4o N/A 99.59 98.30 52.99 98.65 97.16 90.23 92.16 (1.93) 94.33 (4.10) 84.05 86.89 (2.84) 90.31 (6.26)
GPT-4o-mini N/A 100 99.92 43.86 98.76 97.58 88.06 90.33 (2.27) 93.51 (5.45) 81.64 85.03 (3.39) 89.60 (7.96)

Gemini-1.0-pro N/A 93.05 71.93 35.31 93.01 90.66 84.48 86.60 (2.12) 88.47 (3.99) 78.35 81.29 (2.94) 84.11 (5.76)

CodeLlama
7b 99.52 73.86 31.07 86.09 81.56 79.46 80.72 (1.26) 82.04 (2.58) 72.28 73.96 (1.68) 75.90 (3.62)
13b 67.55 50.40 25.28 85.66 80.55 80.49 82.26 (1.77) 83.44 (2.95) 73.21 75.54 (2.33) 77.13 (3.92)
34b 66.33 46.86 40.32 87.96 83.74 78.83 81.25 (2.42) 83.71 (4.88) 71.37 74.50 (3.13) 77.80 (6.43)

Llama3 8b 99.25 82.24 44.61 90.98 89.02 77.40 80.08 (2.68) 84.42 (7.02) 69.47 73.37 (3.90) 79.22 (9.75)

Llama3.1 8b 98.69 94.69 50.00 88.94 85.79 74.42 77.49 (3.07) 82.07 (7.65) 65.65 69.92 (4.27) 76.16 (10.51)

Gemma 7b 98.98 64.64 35.30 93.16 91.46 76.23 80.54 (4.31) 85.90 (9.67) 67.15 72.94 (5.79) 80.29 (13.14)

Starcoder-2-Instruct 15b 97.07 94.07 54.11 89.84 84.41 88.03 88.22 (0.19) 88.50 (0.47) 81.80 82.09 (0.29) 82.50 (0.70)

DeepSeek-coder
1.3b 96.05 82.48 38.66 81.22 75.99 75.89 76.50 (0.61) 77.09 (1.20) 69.06 69.90 (0.84) 70.70 (1.64)
6.7b 97.42 82.43 40.43 93.48 91.61 82.40 84.74 (2.34) 87.97 (5.57) 75.29 78.73 (3.44) 83.46 (8.17)
33b 99.21 83.57 50.75 94.86 91.92 85.47 87.38 (1.91) 90.30 (4.83) 78.49 81.23 (2.74) 85.12 (6.63)

CodeQwen 7b 100 84.26 46.36 90.73 86.90 84.53 85.33 (0.80) 86.71 (2.18) 77.66 78.94 (1.28) 80.95 (3.29)

Table 2: Results for targeted line coverage. Results in parenthesis are the improvements over baselines.

Model Size Targeted line Baseline: no targeted line

syntax execution assertion cov. Recall Syntax execution cov. Recall

GPT-3.5-turbo N/A 99.40 95.67 41.93 67.76 (-1.27) 100 100 69.03
GPT-4 N/A 100 98.81 61.22 78.20 (10.14) 100 99.52 68.06
GPT-4-turbo N/A 99.20 98.73 67.29 80.52 (11.64) 100 100 68.88
GPT-4o N/A 99.63 98.96 67.52 80.97 (9.48) 100 100 71.49
GPT-4o-mini N/A 100 99.92 56.02 76.94 (8.73) 100 100 68.21

Gemini-1.0-pro N/A 100 96.04 53.37 70.75 (4.93) 100 95.71 65.82

CodeLlama
7b 99.85 90.97 34.04 58.13 (0.89) 99.52 93.81 57.24
13b 99.63 85.22 48.42 54.63 (-4.03) 99.05 94.76 58.66
34b 98.66 90.60 44.34 59.48 (-0.29) 100 96.19 59.77

Llama3 8b 98.96 85.52 37.08 60.22 (-0.60) 99.52 95.24 60.82

Llama3.1 8b 99.25 98.43 48.56 56.49 (-3.36) 99.05 88.10 59.85

Gemma 7b 99.78 88.21 33.28 62.91 (4.92) 99.52 89.52 57.99

Starcoder-2-Instruct 15b 98.36 92.84 57.14 64.40 (-2.39) 100 99.05 66.79

DeepSeek-coder
1.3b 98.81 91.04 41.05 58.81 (2.69) 94.76 90.0 56.12
6.7b 94.78 92.99 45.09 65.60 (3.81) 99.05 96.67 61.79
33b 99.63 97.61 59.29 70.52 (2.09) 100 99.52 68.43

CodeQwen 7b 94.78 92.99 61.05 65.60 (3.81) 99.05 96.67 61.79

generating the test case.
Regarding the targeted line coverage, we find

that the GPT-4 series has the best performance im-
provement (around 10%) over their baselines. The
best-performing LLM is GPT-4o, reaching a cover-
age accuracy of 80.97% on average. We also find
that six out of seventeen LLMs do not improve over
their baseline and seven LLMs only have marginal
improvement (less than 5%). These results suggest
that most LLMs may have trouble with multi-step
reasoning. Specifically, to reach a specific line
inside a branch, the LLM needs first to identify
which branch the targeted line belongs to and then
generate a valid test input to invoke this branch.

We observe a similar trend in the targeted branch
coverage (Table 3). Specifically, the GPT-4 series
has the best performance improvement (12%~15%)
over their baselines. GPT-4o is the best-performing
LLM, which can cover 80.87% branches, respec-

tively. By contrast, eight LLMs only exhibit
marginal improvements and four LLMs do not im-
prove compared with the baselines. Regarding
branches with different difficulties, we find that
branches more likely to be covered by random test
cases are also easier for LLMs to cover (recall we
use random testing to label each branch’s difficulty
level in § 2.2). The GPT-4 series shows the smallest
performance gap between branches with different
difficulty levels. We also notice that twelve out
of sixteen LLMs show the largest performance im-
provements over the baselines on “hard” branches.
These results indicate that providing target branch
information can indeed help us to cover branches
that are hard to reach by random testing.

3.4 Targeted Path Coverage

Table 4 presents the results of the targeted path
coverage task. We adopt a similar baseline as in
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Table 3: Results for targeted branch coverage. Results in parenthesis are the improvements over the baseline. We
omit the correctness metrics of the baseline because they are the same as the targeted line coverage task.

Model Size
Targeted branch Baseline: no targeted branch

Correctness Coverage Coverage

syntax execution assertion total easy medium hard total easy medium hard

GPT-3.5-turbo N/A 100 98.78 47.62 70.40 (4.38) 82.93 (0.40) 65.33 (1.77) 50.77 (14.23) 66.02 82.53 63.56 36.54
GPT-4 N/A 100 98.17 61.88 78.23 (13.33) 86.14 (4.41) 79.56 (16.89) 61.92 (27.30) 64.90 81.73 62.67 34.62
GPT-4-turbo N/A 100 98.67 67.60 80.77 (15.15) 88.35 (5.42) 79.11 (16.00) 67.69 (33.07) 65.62 82.93 63.11 34.62
GPT-4o N/A 100 99.08 68.74 80.87 (12.61) 87.55 (3.21) 83.11 (11.55) 66.15 (31.53) 68.26 84.34 71.56 34.62
GPT-4o-mini N/A 100 99.39 57.65 78.13 (12.01) 87.35 (4.02) 77.33 (13.33) 61.15 (26.15) 66.12 83.33 64.00 35.00

Gemini-1.0-pro N/A 100 97.04 55.43 68.97 (5.80) 82.13 (2.21) 69.78 (6.22) 43.08 (12.31) 63.17 79.92 63.56 30.77

CodeLlama
7b 100 81.99 40.57 50.97 (-4.17) 64.25 (-8.04) 51.11 (-3.56) 25.38 (2.69) 55.14 72.29 54.67 22.69
13b 99.29 82.91 52.86 51.58 (-4.68) 64.86 (-7.83) 46.67 (-11.55) 30.39 (5.78) 56.26 72.69 58.22 24.61
34b 99.39 95.02 42.12 63.17 (5.69) 78.51 (2.20) 60.44 (6.22) 36.15 (11.92) 57.48 76.31 54.22 24.23

Llama3 8b 98.88 84.94 37.93 58.39 (-0.31) 73.09 (-0.61) 59.11 (0.89) 29.26 (-1.12) 58.70 73.70 58.22 30.38

Llama3.1 8b 99.49 85.86 48.20 58.09 (-0.71) 69.08 (-6.42) 57.33 (2.22) 37.69 (7.69) 58.80 75.50 55.11 30.00

Gemma 7b 99.59 85.35 37.47 56.15 (1.11) 71.89 (2.01) 49.78 (0.45) 31.54 (0.00) 55.04 69.88 49.33 31.54

Starcoder-2-Instruct 15b 98.68 95.42 64.63 64.19 (-0.41) 78.71 (0.20) 63.56 (-1.33) 36.92 (-0.77) 64.60 78.51 64.89 37.69

DeepSeek-coder
1.3b 97.05 89.32 41.11 54.22 (0.81) 68.67 (1.20) 52.89 (-1.78) 27.69 (2.31) 53.41 67.47 54.67 25.38
6.7b 96.74 93.79 43.91 66.43 (7.22) 77.11 (5.62) 69.33 (4.89) 43.46 (12.31) 59.21 71.49 64.44 31.15
33b 100 97.05 55.43 68.46 (2.54) 80.12 (-2.21) 66.22 (4.00) 48.08 (10.39) 65.92 82.33 62.22 37.69

CodeQwen 7b 99.49 95.02 61.76 65.82 (0.51) 81.12 (1.60) 63.56 (-3.55) 38.46 (1.92) 65.31 79.52 67.11 36.54

our targeted line/branch coverage tasks by exclud-
ing the targeted path in the text prompts. Overall,
GPT-4o and Gemini-1.0-pro have the best perfor-
mance on the path coverage, reaching 56.67% and
56.09% on average, respectively. However, they do
not outperform their baselines. Generally, we do
not find any LLMs that show obvious performance
improvement (more than 5%) on the path coverage
compared with the baselines. Nine out of sixteen
LLMs do not outperform the baselines. Regarding
the path similarity, we also do not find any LLMs
exhibiting large performance improvement com-
pared with the baselines. These results suggest that
comprehending the program logic and identifying
a specific execution path is still a challenging task
for the current LLMs.

Targeted path coverage is considerably more
complicated compared with overall coverage and
targeted line/branch coverage. Specifically, the
LLM needs to identify a sequence of multiple
branches, and create a test input that can execute
these branches following a certain order, which is
challenging even for human programmers.

3.5 Advanced Prompting

Advanced prompting techniques, such as in-context
learning (Brown, 2020) and chain-of-thought
(COT) (Wei et al., 2022), can improve the perfor-
mance of LLMs on language understanding and
generation. We further conduct a study on the influ-
ence of different prompting strategies on TESTE-
VAL. In this advanced prompt setting, we adopt

an explicit two-step COT for the targeted line cov-
erage task. LLMs are first asked to generate the
conditions that need to be satisfied when the target
line is executed. Then, we ask LLMs to generate
a test case that satisfies these conditions. We pro-
vide a one-shot example of the reasoning process,
which is created from the solution of a LeetCode
easy-level problem (not included in the TESTEVAL

dataset). The complete prompt template for this
setting is shown in Appendix A.5.

Table 5 shows the results of our COT prompting
on the targeted line coverage task. Because the cost
of COT is significantly higher than basic prompting,
we only run experiments on several cost-efficient
models, and omitted expensive proprietary models
or large open-source models. For most models (ex-
cept GPT-4o-mini and DeepSeek-coder 6.7b), COT
can improve the performances on target line cov-
erage. This suggests that building more complex
LLM pipelines or agents for test case generation is
worth investigating in the future.

With the two-step COT setting, we can have a
detailed analysis of the reason behind failures in
generated test cases. Figure 5 demonstrates a test
case generated by GPT-4o that failed to cover the
target line: line 33. We find that although the LLM
is capable of generating correct conditions (Fig-
ure 5 (b)) for covering the target line, the generated
test case did not satisfy those conditions, suggest-
ing that the LLM’s code generation ability needs
further improvement. In this case, the generated
test case (Figure 5 (c)) does not satisfy the condi-
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Table 4: Results for targeted path coverage. Results in parenthesis are the improvements over the baseline.

Model Size Given target path Baseline: no target path

syntax execution assertion path cov path similarity path cov path similarity

GPT-3.5-turbo N/A 99.88 98.95 49.58 49.30 (-5.97) 77.35 (-2.39) 55.27 79.74
GPT-4 N/A 100 99.18 61.71 54.10 (-0.94) 80.77 (3.23) 55.04 77.54
GPT-4-turbo N/A 100 99.41 63.00 50.47 (-3.74) 79.82 (1.08) 54.21 78.74
GPT-4o N/A 100 99.53 70.62 56.67 (-1.76) 82.35 (1.29) 58.43 81.06
GPT-4o-mini N/A 100 99.77 52.93 51.87 (-2.58) 80.09 (0.67) 54.45 79.42

Gemini-1.0-pro N/A 100 96.02 54.51 56.09 (0.70) 77.59 (-0.23) 55.39 77.82

CodeLlama
7b 99.76 90.98 39.63 41.57 (-1.05) 67.66 (0.14) 42.62 67.52
13b 99.18 94.15 44.80 40.28 (-4.10) 64.63 (-4.98) 44.38 69.61
34b 98.95 96.25 41.11 48.01 (2.93) 72.33 (2.69) 45.08 69.64

Llama3 8b 98.24 89.46 33.72 41.92 (1.29) 68.03 (0.40) 40.63 67.63

Llama3.1 8b 99.88 95.78 39.64 44.02 (-1.41) 72.51 (4.24) 45.43 68.27

Gemma 7b 100 88.06 29.99 37.11 (4.09) 64.54 (2.29) 33.02 62.25

Starcoder-2-Instruct 15b 96.83 90.28 47.86 48.48 (-5.38) 70.91 (-6.78) 53.86 77.69

DeepSeek-coder
1.3b 97.89 88.99 40.27 40.16 (0.46) 64.91 (0.67) 39.70 64.24
6.7b 99.06 95.90 43.49 53.04 (0.23) 76.77 (1.56) 52.81 75.21
33b 100 96.49 63.28 54.10 (-4.33) 77.99 (-2.73) 58.43 80.72

CodeQwen 7b 99.77 94.96 62.87 55.97 (-3.16) 77.46 (-2.67) 59.13 80.13

Table 5: Results for two-step COT prompting on tar-
geted line coverage. The results in parenthesis are the
improvements over the basic prompting setting.

Model Size syntax execution assertion line coverage

GPT-3.5-turbo N/A 99.70 98.13 47.86 71.79 (4.03)
GPT-4o N/A 100 98.66 63.37 84.85 (3.88)
GPT-4o-mini N/A 100 97.84 49.73 76.72 (-0.22)

Llama3 8b 99.93 87.99 35.37 62.54 (2.32)

Llama3.1 8b 99.70 97.24 38.14 64.48 (7.99)

DeepSeek-coder 6.7b 99.92 96.79 47.82 65.07 (-0.53)

Step 1: If line 33 `l += 1` is executed, then the `while` 
condition `nums[l] == nums[l - 1] and l < r` in line 32 should 
be true.
Step 2: For the condition ̀ nums[l] == nums[l - 1]` to be true, 
the element at index ̀ l` must be equal to the element at 
index `l - 1`.
Step 3: For the condition ̀ l < r` to be true, the index ̀ l` 
must be less than the index `r`. 
Step 4: Generally, to execute line 33, we need to ensure that 
after finding a triplet that sums to zero (i.e., `summ == 0`), 
the next element in the list `nums` at index ̀ l` is the same 
as the previous element at index `l - 1`, and `l` is still less 
than `r`.

def test_threeSum(): 
    solution = Solution() 
    assert solution.threeSum([-1, 0, 1, 2, -1, 
-4]) == [(-1, -1, 2), (-1, 0, 1)]

import math
import itertools
import bisect
import collections
import string
import heapq
import functools
import sortedcontainers
from typing import List, Dict, Tuple, Iterator

class Solution:
    def threeSum(self, nums: List[int]) -> List[List[int]]:
        if len(nums) < 3:
            return []

        ans = []

        nums.sort()

        for i in range(len(nums) - 2):
            if i > 0 and nums[i] == nums[i - 1]:
                continue

            l = i + 1
            r = len(nums) - 1
            while l < r:
                summ = nums[i] + nums[l] + nums[r]
                if summ == 0:
                    ans.append((nums[i], nums[l], nums[r]))
...                 l += 1
31.                 r -= 1
32.                 while nums[l] == nums[l - 1] and l < r:
33.                     l += 1
...                 while nums[r] == nums[r + 1] and l < r:
                        r -= 1
                elif summ < 0:
                    l += 1
                else:
                    r -= 1

        return ans
(a) (c)

(b)

Figure 5: Example of a generated test case that failed
to cover the target line. (a): the program under test. (b):
LLM-generated reasoning steps. (c): LLM-generated
test cases based on reasoning steps.

tion ‘nums[l] == nums[l - 1]’.

4 Related Work

Code-related Benchmarks for LLMs. In re-
cent years, researchers have endeavored to de-
velop more rigorous and comprehensive evaluation
frameworks for LLMs on coding abilities from var-
ious perspectives. One of the earliest attempts is
HumanEval (Chen et al., 2021), which consists of

164 hand-craft programming challenges that evalu-
ate LLMs’ ability to understand natural language
descriptions and generate the corresponding func-
tional correct code. Since then, there have been
several studies attempting to construct benchmarks
with more diverse problems (Austin et al., 2021),
more rigorous evaluations (Liu et al., 2024a), and
more complex scenarios (Lai et al., 2023; Zheng
et al., 2023; Li et al., 2024b). Beyond these estab-
lished code-generation scenarios, numerous stud-
ies are expanding their focus to include a broader
range of real-world applications, such as reviewing
code (Li et al., 2022), performing repo-level code
completion (Liu et al., 2023; Zhang et al., 2023a;
Guo et al., 2023; Ding et al., 2024), and resolv-
ing GitHub issues (Jimenez et al., 2023). While
all the aforementioned studies examine the coding
abilities of LLMs from different perspectives, none
specifically target test case generation, a crucial
phase in the software engineering lifecycle. The
most relevant study is DevBench (Li et al., 2024a),
which evaluates LLMs across software develop-
ment stages, including testing. Unlike DevBench,
our benchmark provides more comprehensive eval-
uations specifically tailored to test case generation
using coverage-guided tasks and includes a broader
range of studied models.

LLMs for Software Testing. Recent studies
have extensively utilized LLMs to develop efficient
and effective testing pipelines for various software
applications (Xia et al., 2023; Wang et al., 2024a).
Unit test case generation (Schäfer et al., 2023),
which aims to test individual software components
independently, is the primary focus of current LLM-
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aided software testing. One line of research tries
to pre-train/fine-tune LLMs on focal methods and
related assertion statements to enhance their test-
generation capabilities (Alagarsamy et al., 2023;
Hashtroudi et al., 2023; Rao et al., 2023; Steenhoek
et al., 2023). Although effective, these methods can
be cost-intensive and challenging to scale. Alterna-
tively, some researchers focus on crafting effective
prompts that instruct LLMs to analyze relevant
information (Yuan et al., 2023; Xie et al., 2023;
Zhang et al., 2023b; Li and Doiron, 2023; Dakhel
et al., 2024; Ryan et al., 2024; Liu et al., 2024b;
Pizzorno and Berger, 2024; Wang et al., 2024b) or
documentation (Vikram et al., 2023; Plein et al.,
2024), or integrate LLMs with traditional software
testing tools (Lemieux et al., 2023).

5 Conclusion

We present TESTEVAL, a novel benchmark for eval-
uating automated test case generation with LLMs
for Python programs. Based on this dataset, we pro-
pose three different tasks and standardized evalua-
tion pipelines. Our targeted coverage tasks enable
the assessment on the LLM’s capabilities in com-
prehending complex program logic and execution
path and generating test cases following the tester’s
intent, which is not considered in previous works
on either code generation or test case generation
with LLMs.

We further conduct extensive experiments with
seventeen popular LLMs on TESTEVAL. We find
that although LLMs can achieve high overall cover-
age by generating diverse test cases, generating test
cases to cover a specific element is still challenging.
Our results reveal that there is a common lack of
abilities in comprehending program logic among
current LLMs, despite their promising performance
on other code-related tasks (e.g., code generation).

Limitations

As a pioneering work of benchmarking LLM-based
test case generation, our TESTEVAL still has a few
limitations. Here, we will discuss these limitations
and how we addressed them in our work (or in the
future).

First, the current TESTEVAL is only limited to
Python. Although the solutions in LeetCode are
written in multiple languages, we find that their
adopted algorithm and logical structures are largely
the same. We believe the behaviors of LLMs in
other languages of LeetCode solutions will be sim-

ilar to those of Python, which we aim to verify in
the future.

The second limitation is that our TESTEVAL

dataset is created from online programming prob-
lems, which may be different from real-world sce-
narios. We argue that at the current stage of LLM
for test case generation, datasets from program-
ming problems are still important. First, many
LLMs in real-world test case generation still strug-
gle with the correctness problem (whether the gen-
erated test case can be executed), which makes it
too early to consider the coverage problem. For
example, in (Yuan et al., 2023), ChatGPT only
achieves 42.1% success rate in compilation and
24.8% in execution. In contrast, on TESTEVAL,
proprietary LLMs such as GPT-4 can achieve near
100% accuracies in execution (although some open-
source LLMs still have difficulties in generating
correctly formatted test cases), which allows re-
searchers to focus on how to improve test cover-
age. Second, compared to real-world software test-
ing datasets, programs in TESTEVAL have more
complex control flow structures, which allow us
to have a deeper study on how LLMs can reason
about branches/loops in programs. For example,
the real-world Python test case generation dataset
CodaMOSA (Lemieux et al., 2023) has an average
cyclomatic complexity of 5.85, while the average
complexity of our TESTEVAL dataset is 13.35.

Ethical Discussion

Regarding the dataset, our dataset is built upon user-
written solutions for LeetCode problems. These
solutions are stored in a GitHub repository licensed
with the MIT license, so we are granted permission
to create our own dataset from this repository.

Regarding the use of automated systems, the
automatic tools we used to create our dataset are
all rule-based tools with no bias introduced.

The research of LLMs for test case generation
may encourage the software development industry
to use LLMs instead of human developers for soft-
ware testing. However, our findings in the paper
suggest that existing LLMs still encounter various
difficulties in generating correct test cases with ac-
curate target test coverage. As software testing in
real-world practice may introduce new questions
not discussed in this paper, thus the impact of this
paper on the industry community is still limited
and not likely to cause major concerns.

Also, using LLMs for automated software test-
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ing may raise security concerns. As our dataset
only consists of self-contained, single-file pro-
grams, there are no security vulnerabilities in our
dataset that can be exploited by LLM-generated
test cases. However, if we extend the scope of our
dataset to real-world software in the future, the
security of experiments should be carefully consid-
ered.
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A Prompt Templates

The prompt templates for TESTEVAL tasks are
shown as follows. For the targeted line/branch/-
path coverage tasks, we add line numbers to both
the program under test and the target information
in order to accurately locate the position of the tar-
get line/branch/path. Notice that our prompt tem-
plate is only a primary setting without advanced
prompting techniques such as few-shot examples or
chain-of-thought reasoning, and we encourage fu-
ture researchers to design more advanced prompts
for TESTEVAL.

A.1 Prompt Template for Overall Coverage

Please write a test method for the function
‘{func_name}’ given the following program
under test and function description. Your an-
swer should only contain one test input.
Program under test:
—-
{program}
—-
Function description for ‘{func_name}’:
—-
description
—-
Your test method should begin with:
def test_func_name():

solution=Solution()

Prompt for generating the next test case:
Generate another test method for the function
under test. Your answer must be different from
previously-generated test cases, and should
cover different statements and branches.

A.2 Prompt Template for Targeted Line
Coverage

Please write a test method for the function
‘{func_name}’ given the following program
under test and function description. Your an-
swer should only contain one test input.
Program under test:
—-
{program}
—-
Function description for ‘{func_name}’:
—-
description
—-
Your test case must cover line {target_line}.

Your test method should begin with:
def test_func_name():

solution=Solution()

A.3 Prompt Template for Targeted Branch
Coverage

Please write a test method for the function
‘{func_name}’ given the following program
under test and function description. Your an-
swer should only contain one test input.
Program under test:
—-
{program}
—-
Function description for ‘{func_name}’:
—-
description
—-
Your test case must cover the branch {tar-
get_branch}.
Your test method should begin with:
def test_func_name():

solution=Solution()

A.4 Prompt Template for Targeted Path
Coverage

Please write a test method for the function
‘{func_name}’ given the following program
under test and function description. Your an-
swer should only contain one test input.
Program under test:
—-
{program}
—-
Function description for ‘{func_name}’:
—-
description —-
Your test case must cover the following execu-
tion path in function {func_name}. The path
is a sequence of branch conditions. When ex-
ecuting your test case, each branch condition
in the target execution path must be satisfied
sequentially.
Target execution path: {target_path}
—-
Your test method should begin with:
def test_func_name():

solution=Solution()

A.5 Prompt Template for Two-step COT
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Prompt template for generating conditions in the two-step COT

Given a Python code snippet and a target line number, you are asked to generate reasoning steps to
satisfy a specific line to be executed.
[Example]
Given the following code snippet:
```Python
class Solution: #1

def twoSum(self, nums: List[int], target: int) -> List[int]: #2
numMap = #3
n = len(nums) #4

#5
for i in range(n): #6

numMap[nums[i]] = i #7
#8

for i in range(n): #9
complement = target - nums[i] #10
if complement in numMap and numMap[complement] != i: #11

return [i, numMap[complement]] #12
#13

return [] #14
```
Identify when executing funtion twoSum, what conditions need to be satisfied if line 12 is to be
executed.
Answer:
<cond>
Step 1: If line 12 ‘return [i, numMap[complement]]‘ is executed, then the ‘if‘ condition ‘(complement
in numMap and numMap[complement] != i)‘ in line 11 shoud be true.
Step 2: If condition ‘complement in numMap‘ is true, at least one ‘target - nums[i]‘ in line 10 equals
an element in nums, which means there exists two elements in ‘nums‘ that their sum is equal to
‘target‘.
Step 3: If condition ‘numMap[complement] != i‘ is ture, then ‘numMap[target - nums[i]] != i‘,
meaning that the index of ‘target - nums[i]‘ is not equal to ‘i‘.
Step 4: Generally, to execute line 12, we need to ensure that there exists two different elements in
‘nums‘ that their sum is equal to ‘target‘.
<\cond>
[\Example]
In a similar fashion, identify the conditions that need to be satisfied when line targetline is to be
executed for the following Python code.
```Python
{program}
```
Surround your answer with <cond> and <\cond>.
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Prompt template for generating test case in the two-step COT

For the given code snippet and a list of conditions need to be satisfied, generate a test case that will
satisfiy these conditions. Here is an example:
[Example]
Code:
```Python
class Solution: #1

def twoSum(self, nums: List[int], target: int) -> List[int]: #2
numMap = #3
n = len(nums) #4

#5
for i in range(n): #6

numMap[nums[i]] = i #7
#8

for i in range(n): #9
complement = target - nums[i] #10
if complement in numMap and numMap[complement] != i: #11

return [i, numMap[complement]] #12
#13

return [] #14
```
Conditions:
Step 1: If line 12 ‘return [i, numMap[complement]]‘ is executed, then the ‘if‘ condition ‘(complement
in numMap and numMap[complement] != i)‘ in line 11 shoud be true.
Step 2: If condition ‘complement in numMap‘ is true, at least one ‘target - nums[i]‘ in line 10 equals
an element in nums, which means there exists two elements in ‘nums‘ that their sum is equal to
‘target‘.
Step 3: If condition ‘numMap[complement] != i‘ is ture, then ‘numMap[target - nums[i]] != i‘,
meaning that the index of ‘target - nums[i]‘ is not equal to ‘i‘.
Step 4: Generally, to execute line 12, we need to ensure that there exists two different elements in
‘nums‘ that their sum is equal to ‘target‘.
Generated test case:
```Python
def test_twoSum():

solution = Solution()
assert solution.twoSum([2,7,11,15], 9) == [0, 1]

```
[\Example]
In a similar fashion, generate a test case for the following code snippet and conditions. Your test
function should be named ‘test_func_name‘. Code:
```Python
{program}
```
Conditions:
{conditions}
You should only generate the test case, without any additional explanation.
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B Targeted Line/Branch Identification

The complete algorithm for extracting targeted
lines/branches from a program under test is shown
in Algorithm 2. At a high level, we first extract all
conditional branches by locating the branches start-
ing with conditional operators (i.e., ‘if’, ‘elif’,
and ‘else’) through parsing the program’s abstract
syntax tree. For each branch, we record the line
numbers of its first and last lines (e.g., Lines 1:5)
as one targeted branch. Then, we record the line
numbers of all lines (except the line that only in-
cludes the ‘else’ operator) within this branch as
the targeted lines (e.g., [1, 2, 3, 4, 5]). We repeat
this process until finishing parsing all branches of
a program.

Algorithm 2: Targeted Line/Branch Identi-
fication.
Input: Program with L lines:

p = {s1, s2, ..., sL}
Output: Target lines ls, target branches bs
ls = [], bs = [], i = 1;
while i <= L do

if si starts with ‘if’, ‘elif’, or ‘else’
then

curent_branch = [] ;
j = i ;
repeat

curent_branch.append(j) ;
j = j + 1

until sj not in this branch;
bs.append(curent_branch);

end
end
for target_branch in bs do

for line si in target_branch do
if si is inside a branch and not si

starts with ’else’ then
ls.append(i);

end
end

end
return ls, bs

C Error Analysis

For the failure of LLMs in generating test cases
that failed to execute, we choose Llama3 as the
example. Figure 6 shows several examples of failed
test cases generated by Llama 3. Figure 6 (a) shows
an example with a slight syntax error: it generated

def test_isMatch():
    solution=Solution()
    assert not solution.isMatch(\"aa\", \"a*\"),

Errors in raw test 
cases

result in all 
errors in 
Llama3

def test_getSubarrayBeauty():
    solution=Solution()
    nums = [-1, -1, -1, -1, -1, -1, -1, -1, -1, 
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -

(a): format error

(b): overlength test case

Figure 6: Examples of erroneous test cases generated
by LLMs.

a redundant comma at the end of the last statement.
Figure 6 (b) is another common type of error: the
LLM generates an endless statement by repeating
a simple pattern. In our post-processing statements,
we remove the last statement if it is uncompilable.
These erroneous statements are removed and result
in empty test cases, which are counted as execution
errors. We find that all execution errors in Llama 3-
8b for targeted line coverage are made up of these
two types of errors.

D Data Leakage Analysis

We choose GPT-4o as an example to study the
potential of data leakage. The training data of
GPT-4o covers up to October 2023, so we filter
the problems from our dataset released after Oct
2023, which results in a total of 21 problems. Cor-
respondingly, we also create a subset with 21 oldest
problems which are released before Oct 2023.

For the problems released after Oct 2023, in their
49 official test cases, we found none of them ap-
peared in the generated test cases. On the contrary,
for the 21 problems before Oct 2023, 35 out of 52
official test cases have been found in the generated
test cases. However, as the LLM has generated 20
different test cases for each problem (which means
420 test cases for 21 problems), the issue of copy-
ing official test cases is minor. We further measure
the overall coverage for all problems before/after
Oct 2023, the results are shown in Table 6.

Table 6: Coverage metrics of the overall coverage task
with data source before and after Oct 2023.

Model Before Oct 2023 After Oct 2023
line branch line branch

GPT-4o 98.74 97.24 97.79 96.38

We can see that the coverage metrics before/after
Oct 2023 are similar, indicating that potential data
leakage is not a major concern of TestEval.
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