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Abstract

Significant advancements has recently been
achieved in the field of multi-modal large lan-
guage models (MLLMs), demonstrating their
remarkable capabilities in understanding and
reasoning across diverse tasks. However, these
models are often trained for specific tasks and
rely on task-specific input-output formats, lim-
iting their applicability to a broader range of
tasks. This raises a fundamental question: Can
we develop a unified approach to represent and
handle different multi-modal tasks to maximize
the generalizability of MLLMs? In this paper,
we propose UnifiedMLLM, a comprehensive
model designed to represent various tasks using
a unified representation. Our model exhibits
strong capabilities in comprehending the im-
plicit intent of user instructions and preforming
reasoning. In addition to generating textual re-
sponses, our model also outputs task tokens
and grounding tokens, serving as indicators
of task types and task granularity. These out-
puts are subsequently routed through the task
router and directed to specific expert models for
task completion. To train our model, we con-
struct a task-specific dataset and an 100k multi-
task dataset encompassing complex scenarios.
Employing a three-stage training strategy, we
equip our model with robust reasoning and task
processing capabilities while preserving its gen-
eralization capacity and knowledge reservoir.
Extensive experiments showcase the impres-
sive performance of our unified representation
approach across various tasks, surpassing exist-
ing methodologies. Furthermore, our approach
exhibits exceptional scalability and generality.

1 Introduction

Large language models have demonstrated remark-
able performance in various natural language pro-
cessing tasks, and the field of multi-modal large lan-
guage models (MLLMs) has also made significant
progress. Representative models like LLaVA (Liu
et al., 2023b) and MiniGPT-4 (Zhu et al., 2023)

have exhibited great capabilities in tasks such
as image captioning and visual question answer-
ing. Some models have been designed to tackle a
broader range of multi-modal tasks, including im-
age segmentation (Lai et al., 2023) and image edit-
ing (Huang et al., 2023) using MLLMs. However,
these models are primarily designed and trained
for specific tasks, which constrains their applica-
bility to a broader range of tasks and their overall
generality in diverse scenarios due to their reliance
on task-specific input-output formats. Some ap-
proaches have explored the utilization of MLLMs
to accomplish more tasks. For example, LLaVA-
Interactive (Chen et al., 2023) integrates multiple
visual expert models with LLaVA to perform tasks
such as image segmentation, editing, generation.

However, these methods view MLLMs as chat-
bots and heavily rely on scheduling expert models
to handling visual tasks, thus failing to fully lever-
age the knowledge base and reasoning capabilities
of MLLMs. Furthermore, while these models can
handle multiple visual tasks simultaneously, they
often rely on explicit instructions or predefined cat-
egories to execute visual tasks, lacking the ability
to understand more implicit and complex human
instructions. We expect models to comprehend
implicit human intent, which encompasses under-
standing the tasks intend to perform and the spe-
cific regions where these tasks need to be executed.
Therefore, it is necessary for models to possess
strong reasoning and grounding abilities, which
were lacking in previous work.

In this paper, we propose UnifiedMLLM, which
models and handles different multi-modal tasks in
a unified manner. Our approach introduce task to-
kens and grounding tokens to establish a unified
representation across different tasks. The model
understands the implicit intent behind user instruc-
tions and outputs not only the textual response but
also our expanded special tokens indicating the task
type and specific region to be processed. These
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In the image, there is a man sitting on a | outagainst the white snow, creating a
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striking contrast.The overall atmosphere
of the image would shift from a serene,
sunset-lit beach scene to a cold, wintry
scene.

Which dog is closer to the person?

J Replace the rose with a pine tree.
Segment it please.

If we replace the rose with a pine tree, the
image will depict a scene with a pine tree
growing among rocks on a beach. This is
a possible picture.

Segment the car in this video please.

Below is the segmentation result according
to your requirements.

What would this video look like if it is
transformed into a snowy scene?

The snowy landscape will add a sense of
winter and create a contrasting backdrop
for the car. The snowy road will also give
a different feel to the video, emphasizing
the car's journey through the snowy
terrain.

~E

Please generate an image with a similar

ﬂ

|

Here is an image with a similar layout.

Great, how about generate an image with
a similar layout but replace the cat with a
dog?

What kind of sounds would be associated
with the scene in the image?

L |
Certainly! Here is an image with a similar (Bird singing)
layout, but instead of a cat, there is a dog
lying on an orange floating device in the
pool. The dog is wearing sunglasses and

enjoying the sun.

The sound of a bird chirping can be heard
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3 Turn this image into a video, accompanied by sounds from
1 the audio

} running through the grass in a park, but with the addition of
| ! rain. The raindrops falling from the sky will create a
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Figure 1: We introduce UnifiedMLLM, a model that represents and handles different multi-modal tasks in a unified
manner, enabling it to perform tasks involving multi-modal understanding, processing, and generation.

tokens are then routed through a task router, acti-
vating the corresponding expert model for task exe-
cution. Based on this design, as illustrated in Fig-
ure 1, our model exhibits excellent performance in
accomplishing a wide range of multi-modal tasks.

To construct the datasets, we leverage publicly
available datasets to create task-specific datasets.
Additionally, we curate an 100k multi-task instruc-
tion instruction tuning dataset for complex scenar-
ios using advanced grounding models (Li et al.,
2024) and GPT-3.5.

During training, we adopt a three-stage training
strategy. Initially, the model is trained to acquire
perceptual understanding of multi-modal inputs.
Subsequently, it is trained using the task-specific
datasets, enabling the model to comprehend human
intent, perform reasoning, and effectively accom-
plish a wide range of tasks. Finally, we further
fine-tune the model with a multi-turn, multi-task
dataset. Inspired by LORAMOE (Dou et al., 2023),

we incorporate its training methodology to ensure
accurate understanding and execution of multiple
tasks while mitigating knowledge forgetting and
performance degradation. Experimental results
across multiple multi-modal tasks demonstrate that
our model effectively coordinates the MLLM and
expert models, outperforming existing methods in
task completion. Furthermore, our unified represen-
tation empowers our model to seamlessly integrate
more tasks without the need for additional training,
further demonstrating the generality and scalability
of our approach. In summary, our contributions
can be summarized as follows:

* We propose a unified representation for multi-
task learning by introducing task tokens and
grounding tokens to represent different tasks
and regions. This enables us to seamlessly
integrate multiple tasks.

* We construct task-specific datasets and multi-
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task datasets for complex scenarios. We pro-
pose a three-stage training strategy to continu-
ously improve the model’s understanding and
reasoning abilities while preserving its exist-
ing knowledge and capabilities.

» Extensive experiments conducted on various
benchmarks validate the effectiveness and
scalability of our unified approach.The re-
sults demonstrate the model’s superior per-
formance in handling multiple tasks and its
ability to generalize across different domains.

2 Related Work

Multi-modal Large Language Models (MLLMs)
In recent years, there has been significant advance-
ments in large language models (LLMs) such as
GPTs (OpenAl, 2023) and LLaMA (Touvron et al.,
2023) due to their exceptional performance across
various natural language processing tasks. The field
of multi-modal language models (MLLMs) has
also made notable progress, extending the capabili-
ties of LLMs to handle multi-modal inputs and out-
puts beyond text alone. Models like LLaVA (Liu
et al., 2023b) and MiniGPT-4 (Zhu et al., 2023)
have demonstrated remarkable performance in vi-
sual question answering tasks. Similarly, video
models like Video-LLaMA (Zhang et al., 2023c)
and Video-Chatgpt (Maaz et al., 2023), as well
as speech models like SpeechGPT (Zhang et al.,
2023b), have also showcased their ability to com-
prehend the input in multiple modalities. In MoE-
LLaVA (Lin et al., 2024), the exploration of incor-
porating the MOE (Mixture of Experts) structure
into MLLMs has yielded outstanding performance
while reducing the number of parameters.

Multi-tasks MLLMs Some studies (Wang et al.,
2024; Zheng et al., 2025) have explored the applica-
tion of MLLMs to other tasks, while other research
has investigated MLLMs that can handle a greater
number of modalities or tasks. Next-GPT (Wu
et al., 2023) achieves multi-modal input and output
by connecting modality-specific diffusion models
at the output end. Trained on multi-modal and
multi-granularity data, GroundingGPT (Li et al.,
2024) is capable of understanding and grounding
multi-modal inputs including images, videos, and
audios. LLaVA-Interactive (Chen et al., 2023) in-
tegrates multiple models and enables tasks such
as text-image dialogues, segmentation, generation,

and editing, while also facilitating visual interac-
tions. LLaVA-Plus (Liu et al., 2023c) incorporates
a skill library comprising various pre-trained visual-
language models. It dynamically combines the ex-
ecution results of these models in real-time based
on user’s multi-modal inputs to accomplish these
tasks. LLMBind (Zhu et al., 2024) integrates dif-
ferent tasks into an MLLM by designing specific
tokens. It can handle multi-modal inputs and in-
voke corresponding models to accomplish various
tasks. However, these methods lack uniformity in
handling multiple tasks and also do not possess
strong capabilities in understanding human intent
and reasoning.

3 Method

We propose UnifiedMLLM, a unified multi-modal
model capable of handling various tasks in a uni-
fied manner. We will introduce the structure of
UnifiedMLLM and its multi-task unified represen-
tation. Then we describe the pipeline for construct-
ing the training dataset and our training strategy.

3.1 Architecture

Figure 2 presents the overall architecture of the
model. Then we will proceed to introduce each
component of the model structure.

Encoder and Adapter For each modality input,
we employ different encoders to extract features,
followed by modality-specific adapters. Specif-
ically, we employ the CLIP visual encoder ViT-
L/14 (Radford et al., 2021) to extract image fea-
tures. For videos, we extract image features by uni-
formly sampling M frames. After adding temporal
positional encoding to the video frames, we aggre-
gate the video features using Q-Former, which has
a structure similar to BLIP-2 (Li et al., 2023a). For
audio modality, we sample N 2-second audio seg-
ments and extract features using the audio encoder
from Imagebind (Girdhar et al., 2023). Similar
to the video branch, a Q-Former is used to aggre-
gate the audio features with the added temporal
positional encoding. Following the feature extrac-
tion process, each modality input obtains a fixed-
length embedding. Then, we use modality-specific
adapters, which are two-layer MLPs, to map the
features to the embedding space of LLMs.

Unified Representation Due to the different
input-output formats across different tasks, achiev-
ing a unified approach to scaling and modeling
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Figure 2: The model structure and three-stage training strategy of UnifiedMLLM.(a) Model structure and training
strategy in the first two stages. (b) Training strategy in the third stage.

various tasks poses a significant challenge.

Moreover, for fine-grained tasks like image rea-
soning editing, it is essential for the model to ac-
curately identify the specific regions to be edited
based on the given instruction, as this greatly in-
fluences the successful completion of the user’s
requested task. As shown in Figure 2, in addi-
tion to generating textual responses, our language
model generates task tokens and grounding tokens.
To achieve this, we expand the vocabularies of the
LLM and introduce multiple task-specific tokens
and grounding tokens, which appear in pairs (e.g.,
<Edit></Edit>). The content between task tokens
indicates the task to be executed, while the content
between grounding tokens contains region-relative
coordinates expressed in text format. To handle
the various tasks and modalities, we employ a task
router component, which utilizes the special tokens
to determine the type and region of the task to be
executed. The task router will activate the corre-
sponding expert model to perform the task based
on the special tokens. This representation approach
facilitates seamless integration of different tasks
across multiple modalities. Furthermore, decou-
pling the LLM from the subsequent expert models
not only reduces training costs but also ensures
excellent scalability.

Experts Integration We activate different ex-
ternal modules based on the output of the task
router to execute different tasks, enabling seam-
less integration of various tasks. For text-to-image
generation and layout-based generation tasks, we
utilize Stable Diffusion (Rombach et al., 2022)
and GLIGEN (Li et al., 2023b) models. Instruct-
pix2pix (Brooks et al., 2023) and GLIGEN are
employed for image global editing and reason-
ing editing tasks in image editing. SEEM (Zou
et al., 2024) is utilized for image and video seg-
mentation tasks. For video editing tasks, we
utilize the FRESCO (Yang et al., 2024) model.
ModelScopeT2V (Wang et al., 2023) and [2vgen-
xl (Zhang et al., 2023d) are used for text-based
video generation and image-based video genera-
tion, respectively. Additionally, Auffusion (Xue
et al., 2024) is employed for audio generation.

LoRA Mixture of Experts It has been ob-
served (Dou et al., 2023) that when LLMs intro-
duce a large amount of instruction data during the
SFT stage to enhance performance on multiple
tasks, it may compromise the stored world knowl-
edge within the model. In order to mitigate this
issue and ensure that the model retains its reser-
voir of knowledge and reasoning abilities during
the training process, we adopt a strategy where
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Task-specific Dataset
Human: What kind of sounds might be heard in this image?

Assistant: The audio could be like this. <AUGEN>the sounds of baseball players chatting and getting
ready for the game on the field.</AUGEN>(Image to Audio Task)

Multi-task Multi-turn Dataset
Human: Segment the dog in the image please.

0.193, 0.758, 0.615]</BOX>(Image Reasoning Editing Task)

\§

Assistant: Here is the segmentation result of the dog in the image. <IMGSEG>dog</IMGSEG>
<BOX>dog:[0.188, 0.632, 0.394, 0.944]</BOX>(Image Segmentation Task)

Human: Thank you. Can you edit the background of the image to make it look like a park?

Assistant: Certainly! By replacing the current background with a park, the image will depict a more
serene and natural setting. The green grass, trees, and benches will create a peaceful atmosphere.
<IMGEDIT>change the background to a park.</IMGEDIT>(Image Editing Task)

Human: Thank you. Can you edit the man's appearance to make him wear a t-shirt?
Assistant: Of course! By editing the man's appearance to make him wear a t-shirt, it will enhance his
comfort and present a more casual look. <IMGEDIT>add a t-shirt</IMGEDIT><BOX>t-shirt:[0.226,

J

Figure 3: Examples of UnifiedMLLM Dataset in Unified Representation Format. We provide examples of task-

specific datasets and multi-task multi-turn datasets.

the backbone of the model is frozen to preserve
its capabilities. Additionally, multiple expert mod-
els are introduced to handle various downstream
tasks. We employ LoRA as the structure for the
expert models, which enhances the efficiency of
both training and inference processes. For the trans-
formers architecture, the forward propagation of
the feed-forward neural (FFN) network block can
be denoted as follows:

f(z) =z + fenn(z). (D
The linear layer in the FFN can be expressed as:
o=Wx =W+ AWz 2)

where W € R%n*dout represents the parameter of
the backbone while AT € Rd%n*dout denotes the
updated parameter during training. We replace the
linear layer with the MoE, then the forward process
of the layer can be denoted as follows:

N
o= Wox + AWz = Wox + Z G(z)iEi(x),
i=1
G(x) = Softmax(x - Wy),

3)
where E;(-) denotes the i-th expert, G(-) represents
the router network and the W is a trainable param-
eter of the route network. With this design, the
experts are able to efficiently handle different tasks
through collaboration.

To enhance the training efficiency, we replace
the experts in the MoE layer with a low-rank for-
mat. The parameter matrix AWg € Rdin*dout of

a single expert can be expressed as follows:
AWy = BA, “)

where A € R%n*" B € r x R%n and the rank
r << min(dip, doyt). The forward process of the
LoRAMOE layer can be written as follows:

N
o
o=Woz+— Y wBidA, 5)
r-
i=1
where w; denotes the weight of i-th expert and «
is a constant. This low-rank design significantly
reduces training costs, improves training speed,
and avoids degradation of model knowledge and
capabilities during the training process.

3.2 Dataset

Task-specific Dataset To enable the model to
handle different tasks in a unified manner, we con-
struct task-specific datasets following the represen-
tation method described in section 3.1. For each
task, we select task-relevant datasets and transform
them into a conversation format, where the model’s
output includes task tokens and grounding tokens.
Additionally, to further enhance the model’s rea-
soning ability, we utilize several reasoning datasets
constructed in our work. These include the rea-
soning segmentation dataset from LISA (Lai et al.,
2023), the reasoning editing dataset from SmartE-
dit (Huang et al., 2023), and the layout-based image
generation dataset from LayoutGPT (Feng et al.,
2024). These datasets further enhance the model’s
understanding of human intent. Figure 3 showcases
some task-specific datasets.
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Multi-turn Multi-task Dataset The existing
multi-task datasets are quite limited, especially
those with coordinates for regions like the reason-
ing segmentation dataset. Due to our model’s uni-
fied representation for different tasks, we can maxi-
mize the model’s performance across a wider range
of tasks, even with limited data availability. To
further expand our dataset with grounding tokens,
we utilize advanced grounding model Grounding-
GPT (Li et al., 2024) for data generation. Given
an input image, we first use GroundingGPT to gen-
erate captions with bounding boxes. Then we uti-
lize GPT-3.5 for multi-turn dialogue data construc-
tion. By providing GPT-3.5 a system prompt that
outlines roles, requirements, and several human-
annotated examples, we ask GPT-3.5 to generate
multi-turn dialogues using the provided captions.
Subsequently, we filter the generated data to re-
move samples that do not adhere to the expected
output format. We totally generate 100k instances
of multi-turn, multi-task dialogues, covering vari-
ous multi-modal tasks in complex scenarios.

3.3 Training

We adopted a three-stage training strategy. Firstly,
we train the model to acquire the ability to perceive
and understand different modal inputs. Secondly,
we train the model using multiple task-specific
datasets to develop its capability to understand hu-
man intent and complete different tasks. Lastly,
we further optimize the model’s responses and en-
hance its reasoning ability to enable it to complete
a variety of tasks in complex scenarios.

Modality-perception Pretraining In this stage,
we expect the model to understand multi-modal
inputs and establish the knowledge base, which
serves as the foundation for subsequent reason-
ing and completion of various multi-modal tasks.
During training, we utilize publicly available multi-
modal training data, consisting of three pre-training
datasets for each modality. Throughout the training
process, we keep the LLM and encoder frozen and
only train the adapters for each modality.

Task Adaptation Tuning After the the first stage
of training, where the model gains the ability to
understand inputs, it still lacks the capability to
handle various multi-modal tasks. In this stage, we
train the model to understand human intent and
accomplish a variety of tasks. The training data
used in this stage includes task-specific datasets
that we constructed based on publicly available

data, following the unified representation format
described in section 3.1. These datasets contain
replies with task tokens and grounding tokens, en-
abling the model to comprehend human intent. Ad-
ditionally, we also use some open source general
instruction fine-tuning datasets for training to im-
prove the model’s ability to understand general
instructions. During this stage of training, we keep
the encoders for each modality frozen while jointly
training the LLM and adapters.

Multi-task LoORAMOE Tuning To enable the
model to further understand human intent, perform
reasoning, and accomplish a variety of tasks in
complex scenarios while avoiding knowledge for-
getting and performance degradation caused by
further training, we utilize the constructed multi-
turn multi-task dataset for training. As depicted in
Figure 2, during the training process, we keep all
parameters frozen except for LORAMOE, which
is updated. This training strategy enhances the
model’s capability to handle different tasks in com-
plex scenarios while preserving its general ability
and maintaining training efficiency.

4 Experiment

4.1 Experimental Setup

We employ Vicuna-v1.5 (Chiang et al., 2023) as the
language model. Each training stage lasts for one
epoch. During the training process, all images were
padded to a square shape and resized to a resolution
of 336 x 336. For each video, 64 frames were sam-
pled, and for each audio, three 2-second segments
were sampled and processed. All experiments were
conducted on 8 A100-80G GPUs.

4.2 Quantitative Evaluation

Referring Segmentation For the reference seg-
mentation task, the model needs to segment
the objects in the image corresponding to the
given expressions. We conduct experiments us-
ing the RefCOCO (Kazemzadeh et al., 2014), Re-
fCOCO+ (Kazemzadeh et al., 2014), and Ref-
COCOg (Mao et al., 2016) datasets and evaluate
the models based on the cloU metric.

As shown in Table 2, we have achieved excel-
lent results on multiple datasets due to the strong
grounding ability of our model.

Reasoning Editing The image reasoning edit
task requires the model to reason the areas that
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Method RefCOCO RefCOCO+ RefCOCOg

val testA testB | val testA testB | val test

VLT (Ding et al., 2021) 67.5 705 652 |563 610 50.1 |55.0 57.7
CRIS (Wang et al., 2022) 705 732 66.1 | 623 68.1 53.7 |59.9 604
LAVT (Yang et al., 2022) 7277 758 688 | 62.1 684 551 |61.2 621
LISA (Lai et al., 2023) 749 791 723 | 651 70.8 58.1 |67.9 70.6
NExT-Chat (Zhang et al., 2023a) | 74.7 78.9 69.5 | 65.1 719 56.7 | 67.0 67.0
UnifiedMLLM ‘ 763 788 727 | 664 724 59.1 | 68.0 69.6

Table 1: Quantitative results of image referring image segmentation on three referring segmentation datasets:
RefCOCO, RefCOCO+, and RefCOCOg with metric cloU.

Methods Understanding Scenarios Reasoning Scenarios
PSNR?|SSIM? | CLIP Scoret | PSNRT|SSIM 1| CLIP Scoret
InstructPix2Pix (Brooks et al., 2023) | 21.576 | 0.721 22.762 24.234 | 0.707 19.413
MagicBrush (Zhang et al., 2024) | 18.120 | 0.68 22.620 22.101 | 0.694 19.755
InstructDiffusion (Geng et al., 2024) | 23.258 | 0.743 23.080 21.453 | 0.666 19.523
SmartEdit (Huang et al., 2023) 22.049 | 0.731 23.611 25.258 | 0.742 20.950
UnifiedMLLM 20.670 | 0.776 | 23.633 | 26.667 | 0.808 | 21.104

Table 2: Quantitative results (PSNR/SSIM/CLIP Score) of reasoning editing on Reason-Edit (Huang et al., 2023).

need editing based on user instructions and per-
form editing. We conducted experiments on the
Reason-Edit (Huang et al., 2023) dataset. For the
background, we evaluated the models using the
PSNR and SSIM metrics. For the foreground re-
gions that require editing, we calculated the CLIP
Score between the edited foreground regions in
the image and the ground truth labels. The results
are shown in Table 2. It can be observed that our
method achieves better results in both understand-
ing and reasoning the scenes compared to other
methods. Our model successfully edits the target
regions while avoiding interference with the back-
ground areas.

Layout-based Image Generation The layout-
based image generation task is used to evalu-
ate the controllable generation capability of the
model,where the objective was to generate coher-
ent images by arranging the layout based on user
instructions. Evaluations are conducted using the
NSR-1K (Feng et al., 2024) dataset to examine the
model’s proficiency in comprehending quantity and
spatial relationships for layout tasks. Following
LayoutGPT (Feng et al., 2024), for the numerical
reasoning subset, we report precision, recall, and
accuracy based on generated bounding box counts
and spatial positions. For spatial seasoning, we use

the bounding box center for evaluation. For evalu-
ating the generated images, we use GLIP (Li et al.,
2022) to obtain bounding boxes and compute av-
erage accuracy based on the bounding box counts
or spatial relations. Additionally, we also report
the CLIP cosine similarity between text prompts
and generated images. As shown in Table 3, our
model is capable of generating layouts that are
more reasonable and accurate compared to other
models. Additionally, the generated images exhibit
better consistency with the prompts, validating the
reasoning and planning ability of our model.

Multi-modality Generation In this section, we
evaluate the performance of our model in multi-
modal text-based generation tasks. Specifically, in
the text-to-image generation task, we evaluate us-
ing the COCO-caption (Lin et al., 2014) dataset,
and the evaluation metric is the Fréchet Inception
Distance (FID) score. In the text-to-video gener-
ation task, we evaluate using the MSR-VTT (Xu
et al., 2016) dataset, and the evaluation metrics are
FID for content quality and CLIPSIM for textual
alignment. Furthermore, in the text-to-audio gener-
ation task, we conduct experiments on the Audio-
Caps (Kim et al., 2019) dataset and evaluate using
the Frechet Distance (FD) and Inception Score (IS)
metrics. As observed from Tables 4, 5, 6, compared
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Numerical Reasoning Spatial Reasoning

Methods Layout Eval.  Image Eval. |Layout Eval Image Eval.
P R Acc Acc-G Sim-C Acc Acc-G Sim-C

Stable Diffusion (v2.1) - - - 4244 0.256 - 17.81 0.256
Attend-and-Excite (Chefer et al., 2023) | - - - 4574 0.254 - 26.86 0.264
LayoutTransformer (Gupta et al., 2021) |75.70 61.69 22.26 40.55 0.247 6.36 28.13 0.241
LayoutGPT (GPT3.5) (Feng et al., 2024)|94.81 96.49 86.33 51.20 0.258| 82.54  52.86 0.264
LayoutGPT (GPT-4) 78.36 86.29 78.43 55.64 0.261 91.73 60.64 0.268
UnifiedMLLM ‘93.03 95.02 85.43 57.94 0.266 ‘ 9293  61.78 0.270

Table 3: Quantitative results of layout-guided image generation on NSR-1K (Feng et al., 2024), evaluated using
counting and spatial correctness. "P" refers to precision. "R" refers to recall. "Acc-G" refers to accuracy calculated
based on the GLIP (Li et al., 2022) model, while "Sim-C" refers to similarity calculated based on the CLIP (Radford

et al., 2021) model.

Method FID | Method FD| ISt

GLIDE (Nichol et al., 2021) 12.24 DiffSound (Yang et al., 2023) 47.68 4.01

GILL (Koh et al., 2024) 12.20 AudioLDM-S (Liu et al., 2023a) 29.48 6.90

Emu (Sun et al., 2023) 11.66 AudioLDM-L (Liu et al., 2023a) 23.31 8.13

Codi (Tang et al., 2024b) 11.26 NEXT-GPT (Wu et al., 2023) 23.58 8.35

NEXT-GPT (Wu et al., 2023) 11.28 UnifiedMLLM 22.42 995
UnifiedMLLM 10.84

Table 4: Quantitative results of text-to-image generation
on COCO-captions dataset, evaluated with FID.

Method

FID/ CLIPSIM?

CogVideo (Hong et al., 2022) 23.59 0.2631

Make-A-Video (Singer et al., 2022)13.17 0.3049
Latent-Shift (An et al., 2023) 15.23 0.2773
NEXT-GPT (Wu et al., 2023) 13.04 0.3085

UnifiedMLLM 11.15 0.3120

Table 5: Quantitative results of text-to-video generation
on MSR-VTT dataset, evaluated with FID and CLIP-
SIM.

to previous expert models or multi-task models, our
model demonstrates strong performance across var-
ious multi-modal generation tasks.

4.3 Qualitative Results

Figure 1 presents a selection of visual results that
effectively demonstrate the remarkable capabili-
ties of our model. These results demonstrate our
model’s exceptional performance in tasks involving
multi-modal understanding, segmentation, genera-
tion, editing and so on. As depicted in the Image
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Table 6: Quantitative results of text-to-audio generation
on AudioCaps dataset, evaluated with FID and IS.

Editing example, our model is able to comprehend
and reason implicit human intent, enabling it to
select the appropriate regions for editing. Addi-
tionally, our model exhibits robust generalization
capabilities, successfully completes tasks that it
has not encountered during training. For instance,
tasks such as generating videos from images and
audio, as depicted in the bottom right of the figure,
validate the scalability of our model.

5 Conclusion

In this paper, we propose UnifiedMLLM, a multi-
modal large language model that handles various
multi-modal tasks using a unified representation.
By introducing task tokens, grounding tokens, and
a task router, we seamlessly integrate multiple tasks
with excellent scalability and versatility. We con-
struct a task-specific dataset and a multi-task multi-
turn instruction-tuning dataset, and employ a three-
stage training approach to enable the model to ef-
fectively perform diverse multi-modal tasks while
avoiding degradation of general capabilities. Due
to the powerful reasoning and grounding abilities
of our model, a significant number of quantitative



experiments and visual results demonstrate the ef-
fectiveness of our approach.

6 Limitation

Model Architecture Due to limited training re-
sources and the complexity of tasks, our model
primarily relies on external models to accomplish
various multi-modal tasks. This approach ensures
the effectiveness and scalability of completing vi-
sual tasks. However, the scope and effectiveness of
the model are still constrained by the expert models.
A future research direction is to construct an end-
to-end trainable multi-modal system. One possible
approach is to discretize various modal informa-
tion, following the methodology of AnyGPT (Zhan
et al., 2024).

Multi-modal Interleaving Currently, our model
mainly focuses on processing single-modal inputs.
Effectively handling multi-modal information si-
multaneously or interleaved is a challenge that
needs to be addressed. CoDi-2 (Tang et al., 2024a)
provides some insights, but due to the lack of this
type of data, the number of tasks that can be han-
dled is relatively limited. A future research direc-
tion is to explore how to achieve interleaved under-
standing and generation of inputs and outputs.
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