
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 3366–3381

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

RATSD: Retrieval Augmented Truthfulness Stance Detection from Social
Media Posts Toward Factual Claims

Zhengyuan Zhu, Zeyu Zhang, Haiqi Zhang, Chengkai Li
University of Texas at Arlington

{zhengyuan.zhu, haiqi.zhang}@mavs.uta.edu
{zeyu.zhang, cli}@uta.edu

Abstract

Social media provides a valuable lens for as-
sessing public perceptions and opinions. This
paper focuses on the concept of truthfulness
stance, which evaluates whether a textual ut-
terance affirms, disputes, or remains neutral or
indifferent toward a factual claim. Our system-
atic analysis fills a gap in the existing litera-
ture by offering the first in-depth conceptual
framework encompassing various definitions
of stance. We introduce RATSD (Retrieval
Augmented Truthfulness Stance Detection), a
novel method that leverages large language
models (LLMs) with retrieval-augmented gen-
eration (RAG) to enhance the contextual un-
derstanding of tweets in relation to claims.
RATSD is evaluated on TSD-CT, our newly
developed dataset containing 3,105 claim-
tweet pairs, along with existing benchmark
datasets. Our experiment results demonstrate
that RATSD outperforms state-of-the-art meth-
ods, achieving a significant increase in Macro-
F1 score on TSD-CT. Our contributions es-
tablish a foundation for advancing research in
misinformation analysis and provide valuable
tools for understanding public perceptions in
digital discourse.

1 Introduction

Online information provides a valuable lens
through which we can gauge people’s percep-
tions and opinions, offering insights into societal
trends, beliefs, and behaviors that shape human so-
ciety (Sobkowicz et al., 2012; Zhang et al., 2018;
Willaert et al., 2020). This paper focuses on the
concept of truthfulness stance which, given a fac-
tual claim, assesses whether a textual utterance
affirms its truth, disputes it as false, or expresses
a neutral or indeterminate position. Specifically,
the study examines social media posts, focusing on
tweets from Twitter (now rebranded as X) as the pri-
mary form of textual utterance. Figure 1 presents
examples of tweets that express positive, neutral,

Figure 1: Four tweets illustrating different truthfulness
stances toward the same factual claim.

negative, or no stance regarding the truthfulness of
the same factual claim.

Truthfulness stance has the potential to be
a useful tool in discerning how misinformation
spreads (Ecker et al., 2022) and shapes decision-
making in political discourse (Ognyanova et al.,
2020) and health-related contexts (Suarez-Lledo
and Alvarez-Galvez, 2021). Such insights can
help social scientists assess the impact of misinfor-
mation and develop effective interventions (Watts
et al., 2021). Additionally, health organizations
can utilize this information to gauge public opinion
and identify communities in specific geographic
regions that may be more susceptible to health-
related misinformation (Loomba et al., 2021; Zhu
et al., 2021). Truthfulness stance can also be
a valuable tool for marketers and media strate-
gists in evaluating the effectiveness of their cam-
paigns (Dwivedi et al., 2021) and tracking shifts in
public perception regarding a product or political
figure (Dimitrova and Matthes, 2018).

Definitions of stance across various studies share
a common conceptual framework, wherein a de-
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Figure 2: The RATSD framework.

clared stance comprises four components: a textual
utterance expressing the stance (e.g., a news article
or a social media post), a target that receives the
stance (e.g., an entity, a topic, an event, or a factual
claim), the orientation of the stance (e.g., positive,
neutral, or negative), and the type of stance, which
specifies what the stance is about (e.g., favorabil-
ity toward the target entity, the likelihood of an
event, or the target claim’s truthfulness). Section 2
presents this conceptual framework of stance defini-
tions in greater detail. While prior studies (Küçük
and Can, 2020; Hardalov et al., 2022; Alturayeif
et al., 2023) have addressed various aspects of it,
our systematic articulation of the conceptual frame-
work represents a significant contribution to the
field, as such a nuanced and fine-grained analysis
has been largely absent from the literature. Regard-
ing the specific definition of stance examined in
this paper, ours is the first to focus on the stance
of social media posts toward the truthfulness of
general claims, as further explained in Section 2.

Section 3 proposes novel methods for truthful-
ness stance detection. Specifically, we present
RATSD (retrieval augmented truthfulness stance
detection), a large language model (LLM)-powered
framework, as illustrated in Figure 2. The frame-
work leverages LLMs, including open-source mod-
els such as Zephyr (Tunstall et al., 2023) and pro-
prietary models such as GPT-3.5 (Achiam et al.,
2023), for three purposes. First, RATSD generates
contextual knowledge related to factual claims and
tweets using the approach of retrieval augmented
generation (RAG) (Lewis et al., 2020). Incorporat-
ing contextual knowledge enables the framework to

access relevant, up-to-date information, thereby en-
hancing stance detection models’ accuracy and con-
textual awareness. Second, RATSD produces stance
analyses — narratives that describe tweets’ stance
toward claims — by prompting LLMs with the
generated contextual knowledge. This leverages
LLMs’ ability to analyze stance while integrating
contextual information into the learning process.
Additionally, it helps mitigate the informal tone of-
ten present in social media content. Third, RATSD
includes a classifier based on a fine-tuned language
model that takes as input a claim, the tweet analy-
sis, and the contextual knowledge. It then outputs
a classification label representing the orientation
of the tweet’s truthfulness stance toward the claim.
To our knowledge, this work pioneers the applica-
tion of RAG to stance detection, demonstrating the
utility of contextual knowledge for the task.

Section 4 introduces our new benchmark dataset
TSD-CT which consists of 3,105 claim-tweet pairs
(hence the “CT” in its name). The dataset captures
tweets’ stances on the truthfulness of factual claims
sourced from PolitiFact, labeled using our in-house
annotation tool. This tool includes multiple quality
control mechanisms to ensure the accuracy of the
annotated dataset.

Section 5 discusses our experiments with RATSD

on TSD-CT and three existing datasets — SemEval-
2019 (Gorrell et al., 2019), WT-WT (Conforti et al.,
2020) and COVIDLies (Hossain et al., 2020) —
across various experimental settings and choices of
LLMs. The results show that RATSD with GPT-3.5
outperforms state-of-the-art models (Reddy et al.,
2022; Arakelyan et al., 2023), achieving a 6.38-
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point increase in Macro-F1 score on TSD-CT. Our
ablation study revealed that both contextual knowl-
edge and stance analyses play crucial roles in en-
hancing the model’s performance.

In summary, this paper’s contributions are as
follows:

• We developed a novel conceptual framework
for defining stance and introduced a unique task
formulation for truthfulness stance detection.

• We created a new benchmark dataset, TSD-CT,
which has the potential to be a valuable resource
for research in this field and computational social
science more broadly.

• We designed RATSD, a method that integrates
RAG for generating contextual knowledge and
LLMs for stance analysis. In our experiments,
RATSD, based on GPT-3.5, achieves the highest
Macro F1 score compared to other models.

• The TSD-CT dataset and RATSD’s codebase are
available at https://github.com/idirlab/RATSD to
promote research reproducibility and faciliate fur-
ther studies.

2 Conceptual Framework and Task
Definition

Given a factual claim c and a tweet t, the task of
truthfulness stance detection is to return one of
three distinct classification labels — positive (⊕),
negative (	), or neutral/no stance (�). A positive
stance applies when t conveys the belief that c is
true. A negative stance indicates that t believes
c is false. A neutral/no stance signifies that t ei-
ther expresses uncertainty about the truthfulness
of c (neutral) or does not explicitly take a position
on c’s truthfulness, even though both t and c dis-
cuss the same topic (no stance). As summarized
in Section 1, the conceptual framework of stance
consists of four components: the utterance, target,
orientation, and type of the stance. This section
examines each component in greater detail and dis-
cusses how our work both aligns with and diverges
from existing definitions of stance in the literature.

Orientation of Stance. Figure 3 illustrates the
relationship among all stance orientation labels.
Note that our truthfulness stance detection model
does not consider unrelated pairs, because detect-
ing the relevance between c and t falls within the
scope of fields such as textual semantic similar-
ity (Wang and Dong, 2020; Gomaa et al., 2013),
which is beyond the focus of this work. We did
annotate unrelated pairs while creating TSD-CT,

Figure 3: A claim c and a tweet t may be related or un-
related. Related claim-tweet pairs are partitioned into
four cases of stance.

though, in order to exclude such pairs in training
and evaluating detection models.

Conceptually, we recognize the difference be-
tween a neutral stance and no stance. A tweet holds
a neutral stance if it expresses a mixed verdict or
uncertainty about a claim’s truthfulness. On the
other hand, a tweet has no stance if, while being
related to the claim in terms of topic, it does not
express an intentional stance reflecting beliefs or
desires (Dretske, 1988) regarding the claim’s truth-
fulness. This distinction is similarly recognized
in some existing studies, such as SemEval-19 and
(Grimminger and Klinger, 2021), though they use
different terminology for stance labels.

In practice, though, discerning no stance is
highly challenging. Example (3) in Figure 7 in
the Appendix demonstrates one such challenging
case. Although the tweet is highly pertinent to the
claim, as it mentions Paul Ryan, gun laws, and
“action,” it does not indicate whether Paul Ryan
has blocked such actions or not. Its stance is not
neutral; rather, it does not express any stance on the
claim’s truthfulness. Neutral stance and no stance
often exhibit strong similarities. This difficulty is
evident in our preparation of the TSD-CT dataset
where, among all pairs of stance labels, the (neutral
stance, no stance) pair received the lowest inter-
annotator agreement among expert annotators.

Given this intrinsic challenge, we chose to merge
neutral stance and no stance into a single class �
for both dataset creation and detection model devel-
opment. A similar approach was used in sentiment
analysis, where Koppel and Schler (2006) cate-
gorized documents’ neutrality sentiment into two
types. The first type of neutrality sentiment (anal-
ogous to no stance in our framework) applies to
documents that present objective information with-
out expressing a clear sentiment. The second type
(akin to neutral stance) applies to documents that
convey a mix of positive and negative sentiment.
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Type of stance Target of stance

Entities or Topics Events or Rumors Fact Triples Factual Claims

Favorability SemEval-2016 (Mohammad et al.,
2016); VAST (Allaway and McK-
eown, 2020); P-Stance (Li et al.,
2021); (Grimminger and Klinger,
2021); (Aleksandric et al., 2024)

MGTAB (Shi et al., 2023)

Likelihood WT-WT (Conforti et al., 2020)

Truthfulness PHEME (Zubiaga et al., 2016);
SemEval-2017 (Derczynski
et al., 2017); SemEval-2019
(Gorrell et al., 2019)

NewsClaims (Reddy
et al., 2022); FactBank
(Saurí and Pustejovsky,
2009); (Diab et al., 2009)

Emergent (Ferreira and Vlachos,
2016); FNC-1 (Pomerleau and Rao,
2017); COVIDLies (Hossain et al.,
2020); This work (TSD–CT)

Table 1: Various definitions of stance differ in the type, utterance, and target of stance.

Utterance of Stance. Table 1 compares the def-
initions of stance across existing datasets, listing
dataset names (if available) and their correspond-
ing references. Our ensuing discussion refers to
these names whenever applicable. Researchers
have developed various methods and models for
these datasets and their respective stance detection
tasks. Such models are referenced throughout this
paper but not necessarily in Table 1.

To distinguish between utterances in existing
definitions and our own, Table 1 uses two colors —
brown for news articles and blue for social media
posts (primarily tweets, though SemEval-2019 in-
cludes Reddit posts and VAST considers comments
on news websites). In stance detection, the preva-
lence of informal language traits, such as slang,
abbreviations and misspellings, poses greater chal-
lenges (Al Qundus et al., 2020; Smirnov, 2017)
compared to news articles, which predominantly
adhere to formal language conventions.

Target of Stance. Table 1 identifies four pri-
mary types of stance targets in prior studies:
1) entities (e.g., Hillary Clinton) and topics
(e.g., “legalization of abortion”) in SemEval-2016,
VAST, P-Stance, (Grimminger and Klinger, 2021),
and (Aleksandric et al., 2024); 2) events (e.g., merg-
ers and acquisitions of companies in WT-WT and
Japan’s nuclear wastewater release in MGTAB) and
rumors — true or false eventually — in PHEME,
SemEval-2017 and SemEval-2019 (e.g., the rumor
about a second shooter in the 2014 Parliament Hill
shootings in Ottawa); 3) factual claims (e.g., news
claims in Emergent, news headlines in FNC-1, and
COVD-19 related misconceptions in COVIDLies);
and 4) fact triples (i.e., subject-predicate-object
triples) extracted from the utterance itself. For ex-
ample, in NewsClaims and FactBank (Saurí and
Pustejovsky, 2009), the stance is about whether an
utterance affirms or refutes a particular fact triple,

e.g., (Vitamin C, cure, COVID-19 virus). Simi-
larly, Diab et al. (2009) explored committed belief
by evaluating whether a writer conveys belief in the
truth of a fact triple, such as (GM, layoff, workers),
within their utterance.

Note that the datasets also vary in the number of
targets, ranging from fewer than ten to several thou-
sand. Some datasets have a small number of targets,
such as MGTAB (1 target), P-Stance and (Grim-
minger and Klinger, 2021) (3 targets), WT-WT
(5 targets), and SemEval-2016 (6 targets). Others
contain dozens to hundreds of targets, including
COVIDLies (86 misconceptions), Emergent (300
news claims), NewsClaims (889 fact triples), and
PHEME, SemEval-2017 and SemEval-201 (several
hundred latent rumors as their source tweets, each
mentioning a rumor, are on such a scale). Finally,
some datasets feature thousands of targets, such as
our TSD-CT (1,520 factual claims), FNC-1 (2,542
news headlines), FactBank (4,801 fact triples), and
VAST (5,634 topics).

Type of Stance. The type of stance in various ex-
isting definitions falls into three main categories:
1) likelihood of target events occurring (e.g., WT-
WT); 2) favorability — determining whether the
stance expressed in an utterance is in favor of or
against a given target (e.g., SemEval-2016, VAST,
P-Stance, (Grimminger and Klinger, 2021), (Alek-
sandric et al., 2024), and MGTAB); 3) the truth-
fulness of a rumor (PHEME, SemEval-2017 and
SemEval-2019), a news headline (FNC-1), a fact
triple (NewsClaims, FactBank and (Diab et al.,
2009)), or a claim (Emergent and COVIDLies).
These stance types are not equivalent and therefore
require distinct detection models. This is clearly
illustrated by the upper-left example in Figure 1 —
the tweet conveys a negative favorability stance but
a positive truthfulness stance toward the claim.

Among the aforementioned datasets and
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definitions of stance, TSD-CT most closely
resembles COVIDLies, as both focus on
tweets’ stance toward the truthfulness of factual
claims. One key distinction is that COVIDLies
(https://ucinlp.github.io/covid19/misinformation/)
exclusively focuses on COVID-19-related miscon-
ception claims, which were manually examined
and rephrased and tend to be simple and short. On
the contrary, the claims in TSD-CT, sourced from
PolitiFact, are more complex both syntactically
and semantically, covering a broader range of
topics relevant to fact-checkers. It is also worth
noting that COVIDLies only includes false claims
as targets, whereas TSD-CT contains a mix of true
and false claims. The expression of truthfulness
stance may differ depending on whether the claim
is true or false.

3 Methodology

The design of the RATSD framework hinges on two
key challenges associated with the data: 1) Both
claim c and tweet t are standalone sentences that
often lack sufficient context, making it difficult
for a classification model to make an informed
decision. 2) Tweets frequently contain acronyms,
hashtags, and slang, which pose challenges for the
classification model to interpret accurately.

RATSD counters these challenges with two in-
novative data augmentation ideas, both leveraging
LLMs’ abilities. One is to employ RAG (retrieval
augmented generation) to retrieve relevant contex-
tual information from external knowledge corpora
to compensate for the inherent lack of context. The
other is to synthesize an analysis of the tweet t
based on the retrieved context. The tweet analy-
sis directly incorporates LLM’s perspective on t’s
truthfulness stance toward c. Additionally, it helps
mitigate the challenges posed by the aforemen-
tioned informal language. Recent advancements
have demonstrated the effectiveness of RAG in
knowledge retrieval (Lewis et al., 2020; Wang et al.,
2023) and LLMs’ success in text analysis (Tang
et al., 2024).

Reflecting this design, the RATSD framework as
depicted in Figure 2 comprises three main com-
ponents: the construction of external knowledge
corpora (dashed blue box), the LLM-enabled data
augmentation which includes RAG and tweet anal-
ysis generation (dotted orange box), and the fine-
tuning of truthfulness stance classification model
(dash-dotted yellow box). The rest of this section

discusses these components in detail.

3.1 Knowledge Corpora Construction
Two knowledge corpora were constructed to pro-
vide contextual knowledge for other components
in RATSD, one for claims and the other for tweets.

The first knowledge corpus, denoted DC , en-
compasses 52, 596 synthesized documents for fac-
tual claims. It is worth noting that, although the
claim-tweet pairs in the TSD-CT dataset include
claims from PolitiFact only, the knowledge corpus
incorporates claims and corresponding fact-checks
published by seven fact-checking websites from
1995 to 2023. Additionally, some claims were fact-
checked by multiple websites. Given a claim c,
the corresponding synthesized document dc was
constructed by concatenating excerpts from fact-
checks (i.e., articles) on the claim. Each excerpt
includes the following information: the claim c
itself, the name of the claimant and their profile
description from the fact-checking website, the
date and location of the claim, the publication date
of the fact-check article, the summary of the fact-
checking ruling provided in the article, and the
main body of the article. The resulting dc typically
ranges from 10,000 to 30,000 words in length.

The second knowledge corpus, DT , consists of
8, 236 synthesized documents for tweets posted
from 2010 to 2023. Given a tweet t, the corre-
sponding document dt was constructed by concate-
nating the following information: the raw HTML
content of all web pages linked in the tweet, the
profile description (retrieved using Twitter API) of
the account that posted the tweet, and information
(name and description, from Twitter API) about the
entities mentioned in t.

3.2 Contextual Knowledge Generation
Using the constructed knowledge corpora DC and
DT , RATSD generates contextual knowledge in the
form of a document ec for c and a document et for t,
given a claim-tweet pair (c, t). Note that the set of
claims from the claim-tweet pairs in TSD-CT, i.e.,
the set of c for which ec was generated (let us call it
C1), is not identical to the set of c for which dc was
constructed in formingDC (call itC2). Specifically,
C2 is a much larger superset of C1, as each c ∈ C1

is sourced from PolitiFact while each c ∈ C2 can
be from any of the seven fact-checking websites.
The rationale was that useful contextual knowledge
for a claim can come from not only the claim itself
but also other relevant claims. Similarly, the set
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of tweets from TSD-CT is the annotated subset of
tweets in dt (see Section 4.1 for the tweet collection
process of dt).

The ec and et are critical for accurate truthful-
ness stance detection. Particularly, such contex-
tual information is instrumental in mitigating LLM-
generated hallucination (Ji et al., 2023; Yao et al.,
2023; Tonmoy et al., 2024). The generation pro-
cess of ec and et follows four steps: 1) document
preprocessing, 2) relevant document selection, 3)
relevant chunk retrieval, and 4) prompting LLM.

Document Preprocessing. All the documents in
both DC and DT were segmented into smaller
chunks (i.e., continuous sequence of tokens), each
with a token size of 512. For each chunk, we used
the BAAI general embedding (BGE) model (Xiao
et al., 2024) to generate its text embeddings.
The BGE model, being a lightweight, pre-trained
model, has demonstrated strong performance in the
text embedding leaderboard (Muennighoff et al.,
2023).

Relevant Document Selection. We used a
keyword-based approach to select relevant docu-
ments for c from the claim knowledge corpus DC .
Nouns, verbs, and adjectives were extracted from
c. Jaccard similarity between the extracted words
and each document dci ∈ DC was calculated. Top
10 documents based on the similarity scores were
selected as relevant documents for c. The same
approach was used to select the 10 most similar
documents for t from the tweet knowledge corpus
DT . This step excludes irrelevant documents from
consideration and thus reduces noise in the next
step. Furthermore, it also helps reduce the compu-
tational cost of LLM retrieval by limiting it to a
smaller set of documents.

Relevant Chunk Retrieval. Not all the chunks
of the selected top documents are relevant to c and t.
Given each c and t, the top 10 most relevant chunks
were retrieved. For retrieving relevant chunks, we
used the BGE embeddings and applied cosine sim-
ilarity to measure the semantic alignment between
each chunk and a text query based on c (or t). The
query is essentially the same prompt instruction
used in prompting the LLM, as follows.

Prompting the LLM. To generate high-quality
ec and et, we designed a prompt. It includes both c
and t, along with the specific instruction to generate
relevant contextual knowledge. The top portion of
Figure 5 in the Appendix shows an example prompt.
As described above, this prompt was used to find

relevant chucks based on their vector embeddings.
Once the most relevant chunks have been retrieved,
they are fed into the LLM along with the same
prompt to generate the contextual knowledge ec
and et for the factual claim c and the tweet t. An
example of ec and et can be found in Figure 5.

3.3 Stance Analysis
Utilizing the contextual knowledge described
above, RATSD generates the stance analysis for
each claim-tweet pair (c, t). Specifically, an LLM
is prompted using c, t, ec and et as the input to gen-
erate a narrative of t’s truthfulness stance regarding
c. We use a to denote the generated stance analysis.
The prompt instruction and an example input can
be found in Figure 6.

When training the stance detection model, a will
replace t in the input claim-tweet pair, as detailed
in Section 3.4. This approach is helpful for pro-
ducing the final stance classification model in three
ways. First, it leverages the power of LLMs to ana-
lyze the tweet’s stance and the analysis is directly
included in training the detection model. (Sec-
tion 5 reports experiment results comparing our
approach with directly prompting LLMs.) Second,
the analysis incorporates additional context from
ec and et which is not in the original t. Finally, this
approach helps reduce the informality in tweet con-
tent (e.g., acronyms, hashtags, slang, and nickname
references of entities) which otherwise presents a
challenge in training the model.

3.4 Classification Model
RATSD produces the final stance label by using a
fine-tuned LLM as a classifier. Given a claim-
tweet pair (c, t) as well as the corresponding a,
ec and et generated by other components described
earlier, the LLM converts the i-th input into a
vector representation hi = ([CLS], ai, [SEP], ci,
[SEP], eti, eci). The vector is fed into a single
fully connected layer and a softmax layer to pro-
duce the probability distribution of stance orien-
tation labels {ŝ⊕i , ŝ�i , ŝ	i } = softmax(Whi + b)
where W and b are trainable parameters. The LLM
is optimized by a cross-entropy loss minΘ L =
−∑

i

∑
o∈{⊕,�,	} s

o
i log(ŝoi ) + λ‖Θ‖2 where soi

and ŝoi are the ground-truth probability and pre-
dicted probability for stance orientation o of the
i-th input, Θ denotes all trainable parameters of
the model, and λ represents the coefficient of L2-
regularization. The model parameters are fine-
tuned during training and optimized using the
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Adam optimizer (Kingma and Ba, 2015). The
fine-tuning process involves minimizing the cross-
entropy loss between the predicted stance distribu-
tion and the ground-truth stance distribution.

4 Creation of the TSD-CT Dataset

4.1 Claim-tweet Pair Collection

We chose factual claims from PolitiFact in our fact-
check collection (details in Appendix A.1), exclud-
ing those that were phrased as questions. We then
used spaCy to extract keywords (nouns, verbs, ad-
jectives, pronouns, and numbers) from the claims.
For each claim, we retrieved related tweets via
Twitter API v2 using a conjunctive (ANDed) query
formed by the extracted keywords from the claim.
We filtered out tweets with fewer than 30 charac-
ters, as well as retweets, replies, and quotes, to
avoid duplicates. To ensure temporal relevance be-
tween tweets and factual claims, we restricted the
API search to tweets posted within one month be-
fore and up to one year after the claim’s publication.
This process led to 36,154 claim-tweet pairs.

4.2 Claim-tweet Pair Sanitization

A claim-tweet pair was removed from the collec-
tion if it triggers one of the following conditions:
(1) the tweet closely resembles the factual claim,
with a similarity score higher than 0.9; (2) the tweet
was nearly identical to the tweet in another pair (the
pair containing the tweet collected earlier was kept
and the one later was removed), with a similarity
score above 0.8; and (3) the tweet was published
by a fact-checker and it fact-checks the claim. For
(1) and (2), the similarity scores were calculated by
removing links and hashtags from tweets and apply-
ing the longest contiguous matching subsequence
(LCS) algorithm (Bergroth et al., 2000). Removing
these pairs can avoid wasting efforts in annotat-
ing similar pairs and can help diversify the dataset.
For (3), such pairs were identified using a heuristic
rule: the tweet contains the claim and any of the
following: a hyperlink to a fact-check, the name of
a fact-checking website, or the claimant’s name at
the beginning of the tweet. Removing these pairs
can avoid wasting efforts in annotating easy cases
where the tweet’s stance could be highly accurately
labeled according to the fact-checker’s verdict re-
garding the claim. After removing 30,032 pairs in
cases (1) and (2) and 329 pairs in case (3), we were
left with 2,283 unique factual claims paired with
5,793 tweets from 5,227 distinct Twitter accounts.

4.3 Claim-tweet Pair Annotation

Human annotation was conducted via an in-house
website with detailed instructions, progress moni-
toring, and compensation based on annotation qual-
ity (see Appendix A.2 for details). To identify high-
quality annotators, we used 287 carefully selected
screening pairs. Each pair received consistent label-
ing from five researchers. These pairs were mixed
with the pairs that need real annotation. They were
randomly chosen and presented to an annotator at
an average frequency of one in every ten pairs, with-
out the annotator’s knowledge. Annotators were
scored based on how well their labels match the
experts’ labels on the screening pairs. Annotations
from low-quality annotators were excluded from
the dataset. A pair’s annotation is considered com-
plete when at least three high-quality annotators
contribute, and the majority of their labels are in
agreement.

Among all 206 annotators, 30 were deemed high-
quality based on the approach mentioned above. A
total of 18,584 annotations were collected, with
13,594 from these high-quality annotators. This
resulted in 3,105 completed pairs, containing 1,520
unique claims. Of the completed pairs, 216 were la-
beled as “different topics” and 669 as “problematic.”
As explained in Section 2, detecting unrelated pairs
(i.e., “different topics”) is a separate task and there-
fore falls outside the scope of our study, as does the
detection of “problematic” pairs. Therefore, while
these pairs are included in the released TSD-CT
dataset, they were excluded from model training
and evaluation.

5 Evaluation

5.1 Experiment Datasets

As noted in Section 2, several benchmark datasets
are available for stance detection and only a few
of these datasets closely align with our concepts.
Therefore, we selected the three most similar
benchmark datasets—SemEval-2019, WT-WT, and
COVIDLies—for performance comparison, along
with our own TSD-CT dataset. However, the stance
and class categories are defined and named dif-
ferently in these datasets. Thus, we merged and
renamed labels (see Appendix B) in those datasets
to ensure a fair comparison of model performance.
The label distributions of SemEval-2019, WT-WT,
and COVIDLies are shown in Table 3.
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Model TSD–CT SemEval-2019 WT-WT COVIDLies
F⊕ F� F	 FM F⊕ F� F	 FM F⊕ F� F	 FM F⊕ F� F	 FM

BUT-FIT 83.38 72.00 65.11 80.11 49.09 50.98 92.01 64.03 81.29 94.73 79.29 85.10 47.62 97.82 23.53 56.32
BLCU_NLP 85.37 71.43 63.29 73.36 70.15 40.00 88.12 66.09 81.02 94.74 77.09 84.28 52.38 97.71 45.46 65.18
BERTSCORE+NLI 88.68 72.53 81.04 80.75 46.96 60.67 91.32 66.32 82.02 95.06 79.11 85.39 57.14 98.20 58.33 71.22
BART+NLI 88.00 73.42 74.25 78.56 47.96 51.71 91.90 63.86 82.82 95.52 81.75 86.70 50.00 98.00 60.87 69.62
TESTED 84.09 72.37 67.90 74.75 46.43 58.04 92.08 65.52 81.75 94.98 78.00 85.91 40.00 97.12 51.85 62.99

RATSDZephyr 88.67 77.38 80.28 82.10 41.71 55.42 91.80 62.97 83.85 95.72 82.66 87.44 51.42 97.63 54.55 67.87
RATSDGPT-3.5 93.27 80.24 87.90 87.13 56.12 63.79 83.67 67.86 75.78 92.98 75.07 81.27 51.16 98.06 52.63 67.30

Table 2: Performance comparison on datasets TSD-CT, SemEval-2019, WT-WT, and COVIDLies.

Dataset (⊕) (�) (	) Total

SemEval-2019 1,184 (13.8%) 6,784 (79.1%) 606 (7.1%) 8,574

WT-WT 6,663 (21.0%) 20,864 (65.7%) 4,224 (13.3%) 31,751

COVIDLies 670 (9.9%) 5,748 (85.1%) 340 (5.0%) 6,758

TSD–CT 1,262 (56.9%) 451 (20.3%) 507 (22.8%) 2,220

Table 3: Label distribution of SemEval-2019, WT-WT,
COVIDLies and TSD-CT datasets.

5.2 Implementation Details

All experiments were conducted using 1 NVIDIA
A100 80GB GPU. Due to our limited GPU memory,
we applied 8-bit quantization for LLM fine-tuning.
Steps 3 and 4 of contextual knowledge generation
were implemented using LlamaIndex (Liu, 2022).
The classification model in RATSD was fine-tuned
using selected hyperparameters. The learning rate
was set to 5e-5, balancing convergence speed and
stability. We utilized a batch size of 8 for both
training and evaluation. The models were trained
for three epochs. We applied a weight decay of
0.01. We used GPT-3.5, with a temperature of
0.1 and a maximum output token length of 4,096,
for contextual knowledge generation and stance
analysis in RATSD.

5.3 Experiment Results

We evaluated the performance of two types of
stance detection models: LM-based and LLM-
based. And the evaluation was conducted in two
different settings: fine-tuning the models for stance
detection and applying them directly in a zero-shot
setting. Consistent with previous studies, we used
F1 scores for each class—denoted as F⊕, F�, and
F	—and the Macro F1 score (FM ) as our evalua-
tion metrics.

Fine-tuned Model Performance. We evaluated
the performance of RATSD by comparing it to
several state-of-the-art stance detection models,
including fine-tuned LMs such as pre-trained
model (BUT-FIT (Fajcik et al., 2019)), gen-

erative pre-trained model (BLCU_NLP (Yang
et al., 2019)), domain-adaptive pre-trained
model (BERTSCORE+NLI (Hossain et al.,
2020), BART+NLI (Reddy et al., 2022) and
TESTED (Arakelyan et al., 2023)). In RATSD,
we utilize two fine-tuned LLMs: the open-source
model Zephyr (Tunstall et al., 2023) and the pro-
prietary model GPT-3.5.

As shown in Table 2, RATSD demonstrates
strong performance across all datasets compared
to other stance detection models. On the TSD-
CT dataset, RATSDGPT-3.5 achieves the highest
scores across all metrics. For the SemEval-2019
dataset, RATSDGPT-3.5 surpasses other models in
F� score and achieves the highest macro F1
score. RATSDZephyr demonstrates its strength on
the WT-WT dataset, where it secures the high-
est performance across all metrics. While on
the COVIDLies dataset, BERTSCORE+NLI and
BART+NLI slightly outperform RATSD, RATSD

still delivers competitive results. These re-
sults suggest that the RATSD models, especially
RATSDGPT-3.5, demonstrate strong performance.
However, different fine-tuned LLM in RATSD may
excel in specific datasets or stance categories, high-
lighting the importance of model selection based
on the specific task and dataset characteristics.

The improved performance of RATSD can be at-
tributed to two key factors. The first is dataset
quality. TSD-CT is annotated under a rigorous qual-
ity control mechanism, and our empirical analy-
sis suggests that its quality surpasses that of other
benchmark datasets. For instance, we observed that
some tweets in SemEval-2019 contain only user
mentions, which should have been excluded from
the dataset. The second factor is dataset design. For
example, the targets in SemEval-2019 consist of
rumors embedded in tweets, whereas TSD-CT con-
tains formal factual claims from PolitiFact. Due to
the informal nature of the targets in SemEval-2019,
models may struggle to comprehend them, leading
to challenges in stance detection.
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Zero-shot Performance on TSD-CT. To assess
the model’s ability to generalize its learning to
unseen classes without any prior examples. We
conducted zero-shot performance evaluation on
the TSD-CT dataset, as shown in Table 4. In
the zero-shot setting, models were not trained
on any stance detection data, leading to naturally
lower performance compared to fine-tuned counter-
parts. Among the models, RATSDZephyrzero achieves
the highest overall performance, with the FM of
36.55. This suggests that RATSDZephyrzero is a strong
framework for truthfulness stance detection in
the zero-shot setting. RATSDZephyrzero outperforms
RATSDGPT-3.5zero across most metrics. The results
suggest that Zephyr is better suited for zero-shot
scenarios, potentially due to its model architecture
or the nature of its fine-tuning, which might be
better at generalizing to new tasks without task-
specific training. Notably, GPT-3.5zero uses di-
rect prompting, as described in Section 3.3, which
demonstrates its difficulty in achieving strong per-
formance without fine-tuning.

Model F⊕ F� F	 FM

BUT-FITzero 12.82 0.00 33.88 15.56
BLCU_NLPzero 27.05 0.00 32.81 19.95
BERTSCORE+NLIzero 6.82 41.71 17.65 22.06
BART+NLIzero 33.55 40.58 3.96 26.03
TESTEDzero 55.84 38.91 4.04 32.93
GPT-3.5zero 34.04 16.81 39.74 30.20

RATSDZephyrzero 49.74 32.14 27.78 36.55
RATSDGPT-3.5zero 28.76 29.71 33.46 30.64

RATSDZephyr 88.67 77.38 80.28 82.10
w/o analysis 87.85 74.39 81.01 81.08
w/o context & analysis 87.16 75.15 78.01 80.11

Table 4: The zero-shot model performance comparison
and ablation study on the TSD-CT dataset.

5.4 Ablation Study
To assess the effectiveness of contextual knowledge
generation and stance analysis, we conducted an
ablation study with two model variations on the
TSD-CT dataset: RATSDZephyr without stance anal-
ysis (w/o analysis) and RATSDZephyr without con-
textual knowledge generation and stance analysis
(w/o context & analysis). The results in the bottom
three rows of Table 4 reveal the impact of key com-
ponents on the performance of RATSDZephyr. When
stance analysis is removed, both the F⊕ and F� de-
cline, indicating that stance analysis provides use-
ful additional context for both positive and neutral
pairs, although it slightly reduces the performance
for the negative class. Further removing contextual
knowledge generation results in a drop in perfor-

mance across all F1 categories. The decline in the
F� and F	 indicates that contextual knowledge
generation is crucial in handling neutral or negative
pairs. The decrease in F⊕, although smaller, still
highlights the contextual knowledge’s contribution
to detecting positive class.

6 Related Work

The concept of truthfulness stance was first intro-
duced by Zhu et al. (2022). We refine this definition
further, providing additional details and proposing
a novel conceptual framework that encompasses
other types of stance definitions. While Zhang
et al. (2024b) also explored truthfulness stance,
their work primarily focused on applying a truth-
fulness stance detection model to climate change-
related claims. In contrast, our study centers on
creating a new dataset covering general topics and
introduces a novel application of RAG in truthful-
ness stance detection.

Methodologically, recent studies show that LLM
such as GPT-3.5 can achieve impressive results
in stance detection (Zhang et al., 2022, 2023).
Researchers have explored the incorporation of
contextual knowledge to enhance stance detection
model performance. For example, Li et al. (2023)
developed a topic-based heuristic algorithm to re-
trieve relevant Wikipedia documents for input in-
stances. However, their approach does not utilize
RAG or stance analysis. Zhang et al. (2024a) and
Singal et al. (2024) proposed methods to prompt
LLMs to generate contextual knowledge, but their
approaches do not leverage external knowledge cor-
pora. Additionally, the stance considered in these
works (Li et al., 2023; Zhang et al., 2024a; Sin-
gal et al., 2024) focuses on favorability rather than
truthfulness.

7 Conclusion

This paper revisits stance detection by proposing
a conceptual framework of stance definitions and
focuses on the concept of truthfulness stance. It
introduces a newly annotated dataset (TSD-CT) and
presents RATSD, an LLM-powered framework that
leverages RAG for truthfulness stance detection.
RATSD outperformed state-of-the-art models on
TSD-CT and existing benchmark datasets. This
work provides key concepts, methods, and a dataset
to advance research on public opinion analysis and
misinformation mitigation.

3374



Limitations

One major limitation of RATSD is its inability to
differentiate between neutral and no-stance claim-
tweet pairs. For simplicity, these two classes were
combined into a single category due to their inher-
ent similarities. As a result, RATSD loses the ability
to capture this finer distinction, which may be valu-
able in applications where distinguishing between
neutral stance and no stance is important.

Another limitation of RATSD is its inability to as-
sess the truthfulness stance of individual sub-claims
within a single factual claim. For example, in “We
won and we won a lot,” which comprises two sub-
claims (“We won” and “We won a lot”), RATSD

treats the entire claim as a single unit. As a result,
RATSD may oversimplify the semantic complexity
of multi-part claims, potentially overlooking differ-
ences in stance that could exist across sub-claims.

Furthermore, while RATSD is capable of process-
ing multi-sentence claims and even paragraphs, it
was trained and evaluated on TSD-CT, which com-
prises exclusively single-sentence claims. Since
TSD-CT was not designed to handle multi-sentence
factual claims, the model’s performance on such in-
put may be less reliable. This underscores the need
for a more comprehensive dataset that includes
multi-sentence claims to fully assess RATSD’s ca-
pabilities in these scenarios.

Ethics and Risks

Bias and Misinformation. One significant risk
involves the potential for bias in the model’s predic-
tions, arising from both the training data and anno-
tations. The dataset may reflect biases from social
media posts or annotators themselves. Addition-
ally, while RATSD is designed to detect truthfulness
stances, there is a risk that users might misinterpret
the model’s output as a measure of truthfulness of
factual claims. This could inadvertently amplify
misinformation if the model’s stance detection is
taken as an endorsement or validation of misin-
formation. Mitigating these risks requires careful
curation of training data and transparency in how
the model’s output should be interpreted.

Impact on Public Discourse. By automating
stance detection, RATSD has the potential to in-
fluence public discourse, particularly in highly po-
larized contexts, such as politics, public health, or
social justice. Misuse of the system could lead to
the selective presentation of results, thereby rein-

forcing biased narratives or suppressing dissenting
opinions. To prevent this, it is critical to ensure that
the model’s use is transparent and its limitations
are well understood, emphasizing that it is a sup-
portive tool for human decision-making rather than
a replacement.

Privacy and Data Protection. Privacy concerns
are especially important when analyzing social me-
dia posts, as users often share personal opinions
in semi-public spaces. The application of auto-
mated tools based on RATSD must comply with
data protection and privacy regulations, ensuring
responsible handling of user information. This in-
cludes respecting user consent, anonymizing data,
and adhering to legal and ethical standards.

Ethical Considerations in Annotation. Ethical
considerations extend to the annotation process.
The content of the tweets may negatively impact
annotators, exposing them to harmful or distressing
material. To address this, we obtained Institutional
Review Board (IRB) approval before recruiting
annotators and implemented guidelines to protect
their well-being.
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A Creation of the TSD-CT Dataset

A.1 Fact-check Collection

We developed a tool to collect the fact-checks
from seven well-known fact-checking websites,
including AFP Fact Check, AP Fact Check,
FactCheck.org, FullFact, Metafact, PolitiFact, and
Snopes. Table 5 provides various statistics of this
collection. The collected data is coded using Claim-
Review’s data schema, a widely adopted standard
for structuring fact-checks. The data schema in-
cludes fields such as Publisher, ClaimReviewed,
Summary, Review, Verdict, Author, ClaimPub-
lishedDate, FactcheckPublishedDate, Thumbnail-
URL, URL and Tags. Particularly, the Summary
field provides a summary of the fact-check, while
the Review field contains the main body of the fact-
checking article, including background information
and the evidence supporting the verdict.

The factual claims for claim-tweet pair annota-
tion were sourced exclusively from PolitiFact, as
it offers the largest and most structured fact-check
collection. This choice ensured consistency in the
annotation interface and helped reduce costs.

A.2 Details of Claim-tweet Pair Annotation

Annotation Website. The human annotation
was conducted through our in-house website
(https://idir.uta.edu/stance_annotation/), as shown
in Figure 4. For each claim-tweet pair, the an-
notation task is to choose one of the five distinct
options, as shown in the figure. These options cor-
respond to the positive stance, neutral/no stance,
negative stance, unrelated pairs (“different topics”)
in Figure 3, and an additional “problematic” op-
tion which allows annotators to flag tweets that are
created for sarcasm only or contain invalid links.

To help annotators better understand the task,
the website includes a detailed instruction page
that provides a clear definition of the task along
with thorough explanation of each classification
class. For each class, it provides three examples
claim-tweet pairs, each accompanied by the correct
class and analysis of the choices. Additionally, we
developed an administrative progress monitoring
page to monitor the overall progress, track annota-
tor performance, and examine detailed annotation
history of individual claim-tweet pairs.

Annotators. During annotator recruitment, we
distributed flyers and emailed announcements
across the campus of our university. All annotators
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DataSource AFP Fact Check AP Fact Check FactCheck.org FullFact Metafact PolitiFact Snopes

Claims 0* 297 0* 2,783 3,428 21,023 18,097
Review Summary 4,204 297 3,452 2,783 0* 21,023 2,638

Review 4,304 297 3,452 2,783 3,428 21,022 18,474
Verdict 0* 225 0* 0* 3,428 21,023 13,947

Table 5: Numbers of claims, review summaries, reviews, and verdicts in the fact-check collection. * Not all
websites follow a consistent structure in their fact-checks. For instance, AFP Fact Check and FactCheck.org do
not separately list the claims they fact-check. In such cases, a document dc is generated in the knowledge corpus
to represent the latent claim c in each fact-check article.

Figure 4: The annotation interface.

were at least 18 years old and fluent in English.
Compensation for their work was provided in the
form of gift cards. Their earnings were determined
by their annotation quality, with the potential to
earn up to 20 US cents for each claim-tweet pair.

B Merging and Renaming Dataset
Labels

We renamed “support” as “positive” and “deny”
as “negative” for the SemEval-2019 dataset. We
merged the “comment” and “query” classes into a
single “neutral/no stance” class because “query” is
included in the “neutral” class in our conceptual
framework. For WT-WT, we renamed “support” as
“positive,” “refute” as “negative,” and removed the
“unrelated” category as “unrelated” falls outside the

scope of our research. For the COVIDLies dataset,
we renamed “agree” as “positive,” “disagree” as
“negative” and “no stance” as “neutral/no stance.”

C Challenging Examples in Truthfulness
Stance Detection

To highlight the nuances among our stance la-
bels within our conceptual framework, as well as
the challenges encountered during the truthfulness
stance annotation process, we present six challeng-
ing examples in Figure 7.

D Use of AI Assistants

Some of our code was developed using GitHub
Copilot, and the writing was polished using Chat-
GPT and Grammarly.
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Figure 5: A contextual knowledge generation example.

3380



Figure 6: An example of stance analysis.

Figure 7: A few samples of challenging cases in truthfulness stance annotation.
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