CODERAG-BENCH:
Can Retrieval Augment Code Generation?

Zora Zhiruo Wang**
Frank F. Xu *
Graham Neubig *

Xinyan Velocity Yu"

’Carnegie Mellon University

Akari Asai®*
Yiqing Xie *
Daniel Fried ¢

<>University of Washington

Q7University of Southern California
https://code-rag-bench.github.io/

Abstract

While language models (LMs) excel at generat-
ing code, many programs are difficult to gener-
ate using only parametric knowledge. Despite
the success of retrieval-augmented generation
(RAG) in text-centric tasks, its potential for
code generation remains under-explored. This
work introduces CODERAG-BENCH, a holis-
tic retrieval-augmented code generation bench-
mark covering tasks like basic programming,
open-domain, and repository-level problems
and provide reproducible evaluations on both
retrieval and end-to-end code generation perfor-
mance. We further create a diverse, open datas-
tore for code retrieval, aggregating sources such
as competition solutions, tutorials, library doc-
umentation, StackOverflow posts, and GitHub
repositories. Based on CODERAG-BENCH, we
conduct large-scale evaluations of 10 retrievers
and 10 LMs and systematically analyze when
retrieval can benefit code generation models
and identify remaining challenges. We find that
while retrieving high-quality contexts improves
code generation, retrievers often struggle to
fetch useful contexts, and generators face limi-
tations in using those contexts effectively. We
hope CODERAG-BENCH encourages further
development in code-oriented RAG methods.

1 Introduction

Generating code from natural language has rapidly
advanced with language models (LMs; Chen et al.
2021; Li et al. 2022, 2023; Roziere et al. 2023).
However, most models follow an NL (Natural
Language)-to-code approach without integrating
external context, which is crucial in complex sce-
narios like using unfamiliar libraries (Zhou et al.,
2023; Jimenez et al., 2024). Relying solely on para-
metric knowledge also limits adaptation to new
data distributions at test time, such as evolving pub-
lic libraries or private code bases not seen during
training (Zhang et al., 2023; Jimenez et al., 2024).

*Equal contribution.

Retrieval-augmented generation (RAG; Lewis
et al. 2020; Guu et al. 2020) addresses this by re-
trieving relevant documents at inference time, re-
ducing reliance on model parameters (Asai et al.,
2024) and improving accuracy across tasks (Izac-
ard et al., 2022b). Despite success in text-based
tasks, its application to diverse coding problems
and retrieval sources remains under-explored (Zhou
et al., 2023; Su et al., 2024).

We present CODERAG-BENCH, a holistic
benchmark designed to advance research in
retrieval-augmented code generation (RACG; §2).
CODERAG-BENCH (as in Figure 1) covers six pro-
gramming tasks across four categories: basic pro-
gramming, open-domain coding, repository-level,
and code retrieval tasks. For each task, we man-
ually annotate canonical documents as references
for evaluating RACG systems. We also compile
a diverse corpus of documents from five sources:
programming solutions, online tutorials, Python
library documentation, StackOverflow posts, and
GitHub files. In total, CODERAG-BENCH has 9k
coding tasks and 25 million retrieval documents,
providing a robust foundation for reproducible and
reliable evaluations in retrieval and RACG.

We conduct holistic evaluations in retrieval, gen-
eration, and RACG (§3). Code generation mod-
els significantly benefit from access to canonical
documents (i.e., from the canonical retrieval cor-
pus) in various scenarios. For example, GPT-40
achieves a 27.4% gain on SWE-Bench and a 6.9%
gain on the harder ODEX subset when canonical
documents are provided. In RACG settings, where
models retrieve top relevant documents, some even
surpass their performance when using gold docu-
ments, highlighting the strong potential of retrieval-
augmented approaches for enhancing code genera-
tion. However, current retrieval models face chal-
lenges in selecting useful documents, particularly
for open-domain and repository-level tasks. Ad-
ditionally, generation models with limited context

3199

Findings of the Association for Computational Linguistics:
NAACL 2025, pages 3199-3214
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

https://code-rag-bench.github.io/

8 Coding Tasks for Code RAG

Basic Programming x 3 Open-Domain x 2
def has_close_elements(df.columns = n
ey . K = np.concatenate(

t\:lroboehrs List[float], threshold: float) [dfiloc[0, :2], df.columns[2:1])
"™ Check if in given list of numbers, df = -
are any two numbers closer to each df.iloc[1:].reset_index(drop=True) ~__ 'mpg"'
other than given threshold. return df pandas

.

import

numpy as
Pnp Py

Repository-Level x 2 Code Retrieval x 1
run_colmap(

— image. path, ..) Q: Print a log message to

def main(): standard error.

utils.copy_img(data, img_dir)
utils.downscale(img_dir, config)

def downscu\e$
call COLMAP executable

img_dir, con

ig): def print_log(text, *colors):
g sys.stderrwrite(
sprint(text, *colors))

5 Document Sources for Retrieval

Reproducible retrieval and end-to-end evaluation

(" Programming Solutions N (

def truncate_number(number) -> float:
""" Return the decimal part.
return number % 1.0

""" Library Documentation
numpy.dot(a, b, out=None)
Dot product of two arrays.

e If both a and b are 1-D arrays ...
Example #1: Using shutil.move() to
move file from source to destination

.. import shutil
dst = shutil.move(src, dst_path) ...

Online Tutorials

® oneuser/codemodels

¥ main ~ ¥ 4Branches © 0 Tags

Models

StackOverflow Posts I [preprocess .
. [[evaote_exscutionpy Datastore Retriever
Pandas map multiple columns baseu
on specific conditions GitHub Repositories v Evaluation against v Execution-based
 [#fill NaN val ith old val .) .
: oulr["ni(;"]\;aoieti“:ild"fﬁnr:/;:jrs["id"]) Evaluation canonical docs end-to-end evaluation
. VAN J

Q &)
VOYAGE Al 3y starcoder
G openal [T N

& déepseek coder
—&—E
LM

me elasticsearch
-

Figure 1: Overview of CODERAG-BENCH.

windows exhibit smaller improvements, suggesting
considerable room for future advancements.
Beyond canonical retrieval, we also explore
RACG with open retrieval, i.e., retrieving docu-
ments from various sources with different chunk-
ing strategies (§4). We find that models can benefit
from functionally relevant snippets from certain
sources, and chunking documents to 200—800 to-
kens often gives the best results. For instance, by
retrieving from StackOverflow or online tutorials,
both StarCoder and GPT4o can significantly im-
prove, while on repository-level tasks, the gains
are rather limited. Overall, we hope CODERAG-
BENCH can serve as a testbed for future work ex-
ploring, analyzing, and improving RACG systems.

2 The CODERAG-BENCH

For CODERAG-BENCH (Figure 1), the curation
is driven by three factors: (i) Diverse tasks:
Code generation spans multiple levels (line, func-
tion, repository) across closed and open do-
mains. (ii) Rigorous evaluation: We offer high-
quality ground-truth annotations for retrieval and
execution-based evaluation to measure functional
correctness. (iii) Unified interface: Our codebase
provides a consistent interface for retrieval, aug-
mented generation, and evaluation, unlike current
datasets with varied pipelines.

In this section, we introduce the creation process
of CODERAG-BENCH: programming problem in-
tegration (§2.1), retrieval source collection (§2.2),
canonical document annotation (§2.3), and the eval-
uation pipeline (§2.4). Examples with canonical
documents are available in §A.

2.1 Programming Problems

We categorize existing Python-based coding
datasets into four types:1 code retrieval, basic pro-
gramming, open-domain problems, and repository-
level problems. To ensure the diversity of datasets,
we choose and unify multiple frequently adopted
datasets for each category, as listed in Table 1.
Basic programming problems This category
includes interview-style problems that mostly re-
quire Python built-in operations and pose algorith-
mic challenges. We select the two most widely
used datasets: HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021), which ask the
model to complete a function from an NL prob-
lem description. However, due to limited public
knowledge about model training data, it is unclear
whether models suffer from data contamination on
HumanEval and MBPP (Jain et al., 2024). Hence,
we also include LiveCodeBench (Jain et al., 2024)
with problems collected from coding websites af-
ter the training cutoff of LMs that we consider, to
decrease the risk of contamination.

Open-domain problems Open-domain coding
problems require Python libraries beyond the stan-
dard libraries used in basic programming prob-
lems. We adopt the DS-1000 (Lai et al., 2023)
and ODEX (Wang et al., 2023b) datasets that cover
data-science and general open-domain coding prob-
lems. DS-1000 collects data science problems
with programs using seven common data-related
libraries such as pandas and numpy. ODEX cov-

"In this work we focus on Python-related tasks because
it is the most widely-used programming language for bench-
marking code generation. We leave extensions to other pro-
gramming languages for future work.

3200

Type Dataset \ # Examples # Corpus Ground-Truth Docs Evaluation
HumanEval 164 164 program solutions execution
Basic programming MBPP 500 500 program solutions execution
LiveCodeBench 400 - - execution
Open-domain DS-1000 1000 34,003 docs execution
P ODEX 945 34,003 docs, stackoverflow execution
Repository-level RepoEval (function) 373 237 github repository execution
P y SWE-bench-Lite 300 40,868 github repository execution
Code retrieval CodeSearchNet-Py | 22,177 22177 CSN functions ndcg@10

Table 1: Overview of the datasets in CodeRAG-Bench. CSN stands for CodeSearchNet.

ers problems using a broader range of 79 libraries,
such as web requests with requests and database
operations with sqlalchemy.

Repository-level coding problems Beyond
function-level, some problems require editing files
in the context of an entire GitHub repository. We
thus adopt RepoEval (Zhang et al., 2023) and SWE-
bench (Jimenez et al., 2024) for repository-level
code generation and issue-solving tasks. We inte-
grate all three splits of RepoEval but only report
its function split, as it is the only split supporting
execution-based evaluation.” Notably, our code-
base is the first to enable reproducible execution
evaluation on RepoEval. SWE-bench focuses on re-
solving GitHub issues by asking models to edit mul-
tiple files that pass the required test cases. We use
SWE—bench—Lite,3 a 300-problem subset whose re-
sults can be reproduced, with a packaged Docker
container (Wang et al., 2024).

Code retrieval problems In addition to retrieval
for augmenting generations, we adopt the Python
split of CodeSearchNet (CSN) as a code retrieval
task. CSN searches for the correct implementation
of an NL query from a pool of functions collected
from GitHub repositories. Instead of monitoring
how generation changes with various retrieval re-
sults, CSN can directly measure retrieval quality.

2.2 Retrieval Sources

We collect retrieval documents from five commonly
used resources for program developers, listed in Ta-
ble 2. CODERAG-BENCH supports two retrieval
setups: canonical retrieval—retrieves documents
from only the canonical datastore (§2.3), and open
retrieval—retrieves documents from any datastore.
Programming solutions = We create one doc-
ument from each basic programming problems
that have canonical solutions (i.e., HumanEval and

*Two other splits (API and line) are evaluated by lexical
measures that have been shown as ineffective in signifying
functional correctness (Chen et al., 2021; Wang et al., 2023b).

3https ://www. swebench.com/lite.html

MBPP), following VoyageAl (2024), by concate-
nating its NL problem and program solution.

Online tutorials We collect tutorials from multi-
ple websites including GeeksforGeeks, W3Schools,
tutorialspoint, and Towards Data Science,4 via the
raw HTML pages obtained from ClueWeb22 (Over-
wijk et al., 2022), a large-scale crawled web corpus.
Each page contains code snippets and their text
explanations, covering topics from basic program-
ming techniques to advanced library usage.

Library documentation We collect the offi-
cial documentation provided by devdocs.io for
all Python libraries following (Zhou et al., 2023).
These could be especially useful for open-domain
and repository-level problems that use some library
functions to realize complex setups.

StackOverflow posts StackOverflow (SO) is
among the most frequently visited sites for develop-
ers. We collect all SO posts from the RedPajama-
1T (Computer, 2023) stackexchange split. We
treat each post as a retrievable document, that has a
question, code responses, and textual explanations.

GitHub repository = We collect high-quality
repositories from GitHub, using the github split of
RedPajama-1T (Computer, 2023), as developers of-
ten refer to popular repositories when writing their
programs. Following this practical paradigm, we
enable LMs to retrieve files from other repositories
as contexts to write the current program.

Resource Corpus size Avg. length
Programming solutions 1.1k 194.6
Online tutorials 79.4k 1502.5
Library documentation 34k 953.4
StackOverflow posts 23.5M 689.2
Github files 1.7TM 51354

Table 2: Five sources to form our retrieval datastore.

4https://geeksforgeeks.org; https://www.
w3schools.com/; https://www.tutorialspoint.com/;
https://towardsdatascience.com

3201

https://www.swebench.com/lite.html
devdocs.io
https://geeksforgeeks.org
https://www.w3schools.com/
https://www.w3schools.com/
https://www.tutorialspoint.com/
https://towardsdatascience.com

2.3 Canonical Document Annotation

To ensure reliable retrieval evaluation and estimate
the upper bound of a RACG system with an ideal
retriever, it’s essential that all examples include
canonical documents—the documents containing
the necessary context to solve the programming
problem. As most existing datasets lack these
canonical documents, we annotate them from the
corresponding retrieval pool, as shown in Table 1.
Basic programming problems The canonical
document for examples in HumanEval and MBPP
is the documents we created in §2.2 in the program-
ming solutions pool. Since LiveCodeBench does
not provide solutions to its problems, we do not
annotate canonical documents for it.
Open-domain problems Since open-domain
problems require libraries, we annotate the canoni-
cal library documentation for DS-1000 and ODEX
examples. We first automatically parse out the li-
brary functions used in each program, and find
their corresponding documentation entries. Then,
we manually verify the functions and remove in-
correct ones. This yields an average of 1.4 and 1.2
entries for DS-1000 and ODEX.
Repository-level problems We adopt canoni-
cal code from the original dataset as our canonical
documents: 20-line code snippets of the missing
functions in RepoEval, and the ground-truth edited
files in SWE-bench. We obtain these from the com-
pleted local repositories from the original datasets.

2.4 Evaluation Metrics

For retrieval, we evaluate NDCG, Precision and
Recall (Thakur et al., 2021) and use NDCG@10
percentage as our primary metric, following prior
work (Izacard et al., 2022a). For code generation,
we adopt the pass@k metric (Chen et al., 2021)
to measure the execution correctness of programs.
We evaluate the final RAG performance both in
canonical and open retrieval setups.

3 Canonical RACG

We evaluate 10 top retrieval and 10 generation
models on CODERAG-BENCH with canonical data
sources. We report results of document retrieval
(§3.2), direct NL-to-code generation (§3.3), and
end-to-end RACG with retrieved context (§3.4).

3.1 Experimental Setup

Retrieval baselines We adopt 10 top-performing
retrievers from three categories: sparse, dense,
and proprietary APIs. For sparse retrievers,

we use BM25 (Robertson and Zaragoza, 2009),
known for its robustness in domain adapta-
tion (Thakur et al., 2021). Dense retriev-
ers include BGE-base/large (Xiao et al., 2023),
GIST-base/large (Solatorio, 2024), and SFR-
Embedding-Mistral (Meng et al., 2024), all top-
ranked on the MTEB leaderboard (Muennighoff
et al., 2022). We also include open code em-
bedding models, Codesage-small (Zhang et al.,
2024) and Jina-v2-code Giinther et al., 2023,
which are specifically trained for code retrieval.
Proprietary APIs include voyage-code-2 (Voy-
ageAl, 2024), optimized for code retrieval, and
openai-text-embedding-small-03, selected for
its cost-effectiveness. Finally, we apply rerank-
ing with BGE-reranker-base(Xiao et al., 2023) on
top-100 openai results before generation.
Generation baselines We adopt both code-
specific LMs and strong general text-oriented
LMs. For code-specific LMs, we use StarCoder2
(Lozhkov et al., 2024), CodeGemma (Team, 2024),
CodeLlama (Roziere et al., 2023), and DeepSeek-
Coder (Guo et al., 2024) in various sizes. For gen-
eral text LMs, we include three top-performing
models: Llama3 (Meta, 2024), Command-R (Co-
hereAl, 2024) specially optimized for RAG, and
proprietary GPT models gpt-3.5-turbo-0125
and gpt-40. We use the instruct version of all
generation models if available, since they often
perform better than the base versions.
Experimental setup For retrieval, we imple-
ment BM25 retrievers using pyserini (Lin et al.,
2021) with parameter k; = 1.2 and b = 0.75, and
use sentence-transformers (Reimers and Gurevych,
2019)5 for all dense models with open checkpoints.
We prepend the top-5 retrieved documents to the
original problems (we study the number of docu-
ments in §E), and do not include other contexts
such as few-shot examples. For code generation,
we use temperature ¢t = 0.2, top_p = 0.95 and
sample one response for all generations, following
prior work (Li et al., 2023). Specifically on SWE-
bench-Lite, we adopt the n = 21 way sampling
and majority-vote reranking strategy proposed by
Agentless (Xia et al., 2024).6

3.2 Retrieval Results

Table 3 shows retrieval results on six tasks.

5https: //sbert.net/

SWe found that without these approaches, performance
even with state-of-the-art GPT40 remains around 1-2%.

3202

https://sbert.net/

Method Problem Solutions Library Docs In-Repository Files Avg.
HumanEval MBPP CSN | DS-1000 ODEX | RepoEval SWE-bench-Lite | All

BM25 | 100.0 98.6 89.1 | 52 67 | 932 43.0 | 57.7
GIST-base (768) 98.0 98.0 89.9 12.0 12.1 81.2 46.8 58.0
GIST-large (1024) 100.0 98.9 89.6 13.6 28.0 82.9 47.8 61.7
BGE-base (768) 99.7 98.0 90.0 10.8 22.0 71.5 44.9 58.8
BGE-large (1024) 98.0 99.0 90.6 8.9 11.5 80.4 40.1 56.3
SFR-Mistral (4096) 100.0 99.0 - 19.3 371 83.8 62.7 67.0
Codesage-small (768) 100.0 96.3 90.7 8.9 14.3 94.1 47.1 60.1
Jina-v2-code (768) 100.0 97.7 - 26.2 19.9 90.5 58.3 65.4
OpenAI-03 (1536) 100.0 98.9 - 18.2 16.5 93.0 433 61.7
Voyage-code (1536) 100.0 99.0 - 33.1 26.6 94.3 29.1 63.7

Table 3: Retrieval performance (NDCG@ 10) on code generation datasets. LiveCodeBench is excluded due to lack
of ground-truth solutions. RepoEval is at the function level with 2k context tokens. Embedding dimension sizes are
listed next to method names. Bold indicates best performance, underline indicates second-best. Highlighted models
are specifically trained for code domains. Avg. reflects overall scores, excluding CodeSearchNet.

Comparison of lexical and neural retrievers
BM25 has been widely used as a primary retrieval
model in recent RACG work (Zhou et al., 2023;
Jimenez et al., 2024), yet comprehensive compar-
isons against diverse retrieval systems are often
under-explored. While prior studies indicate that
neural retrieval systems often underperform BM25
baselines in out-of-domain scenarios (Thakur et al.,
2021), our analysis of CODERAG-BENCH reveals
that dense embedding models frequently surpass
BM25. We hypothesize that this is because many
competitive retrieval models are trained on diverse
tasks across various domains, including code data
(Asai et al., 2023; Su et al., 2023), enhancing their
robustness in code retrieval setups.

Do code retrieval models perform better?
At similar parameter scales, models specifically
trained for code retrieval tasks typically show su-
perior performance. Notably, Jina-v2-code outper-
forms GIST-base and BGE-base by 7.4 and 6.6
average NDCG @10, respectively, while Voyage-
code significantly outperforms OpenAI-03.

Do larger retrieval models perform better?
Among dense retrieval models, increasing model
size often leads to better retrieval performance, sim-
ilar to the trends observed in LMs (Brown et al.,
2020). In particular, GIST-large (340 M) constantly
outperforms GIST-base (110M), and SFR-Mistral
(7B) achieves the best among all open sparse and
dense models on all tasks, surpassing proprietary
embedding models on several tasks.

Efficiency While larger retrieval models often
outperform smaller ones, they often introduce sig-
nificant costs. We analyze efficiency, focusing on
(i) encoding latency: latency to encode documents
offline, and (ii) search latency: latency to encode
queries/documents and calculate their similarities,

Method Encoding Search Model Index

BM25 0.15ms 0.02ms - 141MB
GIST-base 3.7ms 9.7ms 440MB 307MB
GIST-large 13ms 18ms 1300MB 409MB
SFR-Mistral 316ms 113ms 14220MB 1638 MB
Voyage-code 22ms 40ms - 1172MB
OpenAlI-03 31ms 47ms - 1172MB

Table 4: Efficiency analysis for document retrieval.

(iii) model storage requirements, and (iv) index
storage requirements. We conduct efficiency analy-
sis on sampled CodeSearchNet Python data.” See
experimental details in §B. As shown in Table 4,
BM25 indexing and searching takes only seconds
to finish. Compared to base-size GIST-base, the
SFR-Mistral model is more powerful in retrieval,
yet requires over 5X larger index storage, and adds
nearly 100X latency to encode documents, sug-
gesting that the efficiency aspect should also be
carefully studied for RAG pipelines.

3.3 Generation with Canonical Documents

We first evaluate possible lower- and upper-bounds
on RACG results by testing generation (i) without
any retrieval, and (ii) with ground-truth documents.
We report both results in Table 5. Compared to
the base generation without contexts, incorporating
canonical contexts improves in most setups, and
substantially so on basic programming problems.

On open-domain tasks, most code-specific LMs
increase up to 5.2 points, signifying that most mod-
els can benefit from indirectly helpful documents.
In contrast, GPTs show no gains with retrieval.
We hypothesize that this is because both datasets
mostly test on common Python libraries, which

"Due to the costs, we randomly sample 10k queries and
100k from CodeSearchNet Python split. For API models, we
use a batch size of 64 for encoding.

3203

Basic Programming Open-Domain Repo-Level

Method HumanEval MBPP LCB DS-1000 ODEX ODEX-hard RepoEval SWE-bench

w/o gold | w/o gold | wlo | wio gold | wo gold | wio gold | wio gold | wio gold

StarCoder2-7B 31.7 945 | 104 348 1.5 1292 300 | 146 175 | 103 172 | 265 420 | 0.0 0.7
CodeGemma-7B 494 774 | 480 522 | 215 | 20.1 19.8 | 189 182 | 13.8 138 | 247 322 | 0.0 0.3
CodeLlama-7B 348 872 | 23.8 428 | 135 | 21.8 26.1 | 358 410 | 276 31.0 | 241 383 | 0.0 0.0
CodeLlama-34B 4277 848 | 512 88.0 58 | 347 370 | 349 38.0 | 172 276 | 298 42,6 | 0.0 0.0
DeepSeekCoder-7B 70.1 87.8 | 60.8 63.6 | 305 | 41.4 432 | 392 417 | 172 241 | 282 437 | 0.0 0.0
DeepSeekCoder-33B | 78.0 95.7 | 61.0 922 | 338 | 402 40.1 | 28.0 289 | 24.1 31.0 | 324 453 | 03 0.7
Llama3-8B 579 652 | 356 528 2.8 | 289 31.1 | 374 337 | 13.8 172 | 26.0 432 | 0.0 0.3
Command-R 433 512 | 372 37.8 | 100 | 258 285 | 355 36.0 | 20.7 20.7 | 239 37.0 | 0.0 0.3
GPT-3.5-turbo 726 915 | 70.8 72.6 | 353 | 43.7 429 | 41.7 403 | 172 24.1 | 239 39.1 | 0.7 6.3
GPT-40 756 92,6 | 794 814 | 43.8 | 527 512 | 446 442 | 207 276 | 324 46.1 | 23 307

Table 5: Code generation pass@ 1 without additional contexts (w/0), and with ground-truth documents (gold). We
only report w/o for LCB because LCB does not have ground-truth documents. We highlight results showing gold >
w/o with green (darker green when having 10+ increases), and with red if gold < w/o.

powerful models may have already memorized,
similar to their memorization of factual knowledge
(Mallen et al., 2023; Kandpal et al., 2023), thereby
reducing the need for retrieval. To verify this hy-
pothesis, we build an ODEX subset of examples
with the 20 least used libraries, i.e., ODEX-hard.
As shown in Table 5, adding documents retrieved
with most methods improves the results by 20.3—
40.1%, showing the effectiveness of RACG on chal-
lenging coding tasks using unfamiliar libraries.
Repository-level challenges All models show
gains of 7.5-17.2 points with canonical snippets in
RepoEval, but SWE-bench Lite proves much more
challenging — only GPT-3.5-turbo and GPT-40
achieve non-trivial results, consistent with previ-
ous findings (Yang et al., 2024). Notably, GPT-40
shows a 27.4% increase when using gold docu-
ments on SWE-bench, indicating that retrieval sig-
nificantly enhances performance when paired with
strong core generation capabilities, even in highly
challenging coding tasks.

3.4 Retrieval-Augmented Code Generation

We now experiment with top-performing retrieval
and generation models in the full RACG setting,
which requires both retrieve documents and gen-
erating conditioned on the documents. We select
the best retrieval models from each type: BM25,
GIST-large, Voyage, and OpenAl embeddings. For
generation, we select (i) StarCoder2-7B: a weaker
model that benefits the most from contexts; (ii)
DeepSeekCoder-7B: one of the strongest open code
LMs; and (iii) GPT-3.5-turbo: one of the top propri-
etary models. For each dataset, we retrieve the most
relevant contexts from its canonical source marked
in Table 1, and retrieve programming solutions for
LiveCodeBench. Table 6 shows the results. Note
that we exclude canonical docs (answers) from the
retrieval corpora for basic programming tasks.

Overall, the best retrieval models vary depending
on the task and underlying LMs. In some cases, top-
performing retrieval models do not lead to the best
RACG outcomes, highlighting the need to evaluate
RACG systems holistically across varied tasks.

Basic programming problems Most retrieved
contexts help StarCoder2 generations. On MBPP,
RACG even outperforms canonical setup by
15.6-17.8. However, RACG does not improve
DeepSeekCoder generations, which we observe
is due to over-complicated and ungrammatically
repetitive generations when with additional con-
texts. In comparison, GPT-3.5-turbo can effectively
improve with added contexts, showing its better
ability to leverage augmented contexts.

Open-domain problems The weaker Star-
Coder?2 benefits from retrieved library documenta-
tion across all datasets, while DeepSeekCoder and
GPT-3.5 show gains mainly on ODEX-hard prob-
lems. This aligns with findings from the canonical
document setup, indicating that RACG is particu-
larly effective for less popular libraries. Interest-
ingly, despite relatively low NDCG @ 10 scores, the
best-performing RACG combinations match their
canonical results on ODEX-hard.

Repository-level problems All models show
improvements with retrieved code snippets on Re-
poEval, with RACG using strong retrievers like
openai-embeddings performing on par with—or
even surpassing—the canonical setup, likely due
to the additional context provided to the models.
On SWE-Bench, the best-performing combination,
Retrieval-then-Rerank and GPT4o, yields a 21-
point improvement over the no-retrieval baseline.
However, there remains a 9-point gap compared to
the gold setup, indicating room for improvement
on the retrieval side, as reflected in the limited code
retrieval performance shown in Table 3.

3204

Method Basic Programming Open-Domain Repo-Level
HumanEval MBPP LCB | DS-1000 ODEX ODEX-hard | RepoEval SWE-bench
w/ StarCoder2-7B
None 31.7 24 1.5 29.2 14.6 10.3 26.5 0.0
BM25 43.9 51.8 1.0 36.7 14.1 13.8 36.7 0.0
GIST-large 38.7 50.4 0.5 35.9 17.3 13.8 40.8 0.3
Voyage, code 39.0 52.6 0.3 36.0 15.3 10.3 45.8 0.3
OpenAl, small 39.0 52.6 1.5 35.5 15.9 17.2 51.2 0.0
OpenAl, rerank 34.8 534 0.5 334 14.1 17.2 53.9 0.3
Gold 94.5 34.8 - 30.0 17.5 17.2 42.0 0.7
w/ DeepseekCoder-7B-instruct
None 70.1 60.8 30.5 414 39.2 17.2 28.2 0.7
BM25 68.9 60.0 31.8 36.6 37.8 20.7 373 0.0
GIST-large 66.3 56.6 33.8 35.9 34.9 20.7 44.5 0.3
Voyage, code 66.5 56.4 31.8 359 394 17.2 46.6 0.3
OpenAl, small 68.9 58.6 32.0 35.5 37.1 20.7 55.2 0.3
OpenAl, rerank 53.0 60.6 31.5 36.5 37.1 24.1 55.5 0.3
Gold 87.8 63.6 - 43.2 41.7 24.1 48.1 0.0
w/ GPT-3.5-turbo GPT-4o
None 72.6 70.8 353 43.7 41.7 17.2 23.9 2.3
BM25 73.2 72.4 35.5 36.9 41.0 24.1 30.8 6.7
GIST-large 73.2 68.2 34.8 36.7 36.2 13.8 383 19.3
Voyage, code 75.0 66.8 34.5 374 41.0 20.7 432 15.7
OpenAl, small 73.8 68.4 35.8 36.9 40.3 17.2 48.0 21.0
OpenAl, rerank 64.0 72.6 33.5 374 40.5 17.2 49.6 21.7
Gold 91.5 72.6 - 429 40.3 24.1 39.1 30.7

Table 6: Performance of retrieval-augmented code generation, with top retrieval and generation models. We
bold-type the best RACG results. We test gpt-40 on SWE-bench to show non-trivial results than gpt-3.5-turbo. Note
that we exclude code canonical answer from the retrieval corpora for basic programming tasks.

Model Retriever ‘ HumanEval H ODEX
| wio Prog Tut Docs SO GitHub | All || wio Prog Tut Docs SO GitHub | All
BM25 97.6 274 293 329 30.5 97.6 182 134 141 11.6 15.9 16.2
StarCoder GIST 31.7 67.1 348 267 323 32.9 69.1 146 146 157 173 114 15.5 17.1
OpenAl 97.6 293 244 36.0 31.1 97.6 18.7 141 159 109 16.9 15.3
GPT-40 OpenAl ‘ 756 945 902 909 915 84.8 ‘ 95.1 ‘ ‘ 446 492 442 476 403 39.4 ‘ 39.6

Table 7: Comparing five retrieval sources on HumanEval and ODEX, using StarCoder2 (top) and GPT-4o (bottom).

4 RACG with Open Retrieval

Besides retrieving documents from the canonical
source, we explore RACG with open retrieval from
all sources (§2.2) on three category-representative
datasets: HumanEval, ODEX, and RepoEval. We
also study mixed retrieval with documents from all
sources, where we aggregate the top-1 documents
from all five sources as augmented contexts.® We
use the three top retrievers along with StarCoder2
and OpenAl retrieval with GPT-40 generation, to
study open RACG with weak and strong LMs.

General programming: HumanEval Among
all sources, SO posts can improve the results by
1.8-4.3, regardless of the choice of retrievers. Tuto-
rials can improve results by 2.1 only with the GIST
retriever.From manual examinations of the results,
many retrieved posts and tutorials are about the
same programming problem as the HumanEval ex-

*We use the first 500 tokens of each document for all
experiments in this section, which we show to be optimal in
ablation studies (§4), and satisfies all model context limits.

ample, with code and detailed textual explanations,
hence could hint or disclose the answer. Other re-
trieval sources do not often contain relevant content
thus do not bring improvements. Surprisingly, gen-
eration with mixed documents performs as well
as using the gold documents, suggesting that the
model can discern and integrate the most useful
content from a mixture of texts.

Open-domain: ODEX Programming solutions
are the most helpful source by bringing 3.8—4.3
gains, even surpassing gains of canonical documen-
tation. Notably, both GPT-40 and StarCoder using
OpenAl retrieval from programming solutions, out-
perform their variants retrieving from documenta-
tion by 3.2 and 1.6 points. Although the retrieved
content is only sometimes functionally relevant to
the ODEX examples, they can exemplify the cor-
rect usage of libraries such as regex in solutions
and requests in GitHub files, thus guiding the
generation to be more functionally correct. Simi-
lar to HumanEval, GIST-large is particularly good

3205

at retrieving tutorials, while BM25 and OpenAl
embeddings find higher-quality program solutions,
indicating their respective domain advantages.

Repository-level: RepoEval Open sources are
less useful than code snippets in the local repository.
Understanding local code contexts is crucial and
irreplaceable than external resources. When using
both local and open-source contexts (L+0), models
surpass the no-retrieval baseline, yet are still only
comparable with Local, suggesting more efforts
and insights to benefit from both sources.

Method | w/o Local Prog Tut Docs SO GitHub | Open L+O

StarCoder2-7B

BM25 36.7 236 252 239 236 255 236 314

GIST 265 408 241 233 21.7 247 244 24.1 418

OpenAl 512 239 241 241 231 22.8 249 509
GPT-40

OpenAl ‘ 324 622 354 287 278 290 282 ‘ 303 542

Table 8: RACG with open retrieval on RepoEval.

Exploring optimal chunking strategies Adding
many documents may exceed model context lim-
its hence impairing RACG, we thus explore vari-
ous chunking strategies to better integrate retrieval.
Compared to the no-chunking baseline, we study (i)
post-retrieval chunking that takes the first N-tokens
of each document, (ii) post-retrieval with reranking
using BGE-reranker-base (§3.1) to find the most
relevant N-token chunk from each document, and
(iii) pre-retrieval chunking that chunks documents
beforehand and retrieves N-token pieces directly.9

@ Tutorials e Library Documentation
StackOverflow posts e Github files

40

o et
"

20

10
200 400 600 800
Number of Tokens

Figure 2: Performance with different chunking sizes.

We compare (i) using the first N-tokens for N from
200 to 1500 (Figure 2). Most sources are best rep-
resented by the first 800 tokens except for SO posts.
However, we find (ii) reranking within this optimal
range of 200-800 tokens greatly degrades the re-
sults, showing limited utility of current rerankers.
Lastly, (iii) pre-retrieval achieves the highest scores
on almost all document sources (Table 9).

*We do not chunk programming solutions since they are
typically short (average <200 tokens as in Table 2).

Method | Tutorials Docs SO GitHub
Full text 6.7 17.7 28.0 3.7
First chunk 27.4 293 30.5 30.5
w/ reranking 9.1 9.1 140 13.4
Pre-retrieval 31.1 329 335 29.3

Table 9: Comparing chunking strategies on HumanEval.

5 Related Work

Code generation Neural code generation has
been a crucial task (Lu et al., 2021), and increas-
ingly strong code LMs have been created (Roziere
et al., 2023; Li et al., 2023; Guo et al., 2024; Team,
2024) to solve various tasks (Chen et al., 2021; Lai
et al., 2023; Jimenez et al., 2024). However, most
LMs generate code solely based on NL queries and
model parametric knowledge, without using exter-
nal programming sources (e.g., tutorials). To fill in
this gap and allow systematic studies of RACG, we
integrate various datasets and retrieval sources to
build CODERAG-BENCH.

Retrieval augmented generation (RAG) RAG
has been widely used in knowledge-intensive
tasks (Lewis et al., 2020; Guu et al., 2020), how-
ever, mostly on text-centric tasks using general do-
main corpora such as Wikipedia (Asai et al., 2024).
Some works used programming context retrieved
from repositories (Ding et al., 2023; Yang et al.,
2024) or documentations (Zhou et al., 2023), yet
none of them considered RACG across varied cod-
ing tasks and knowledge sources. In text-centric
tasks, unified benchmarks such as BEIR (Thakur
et al., 2021) and KILT (Petroni et al., 2020) aggre-
gate retrieval and generation tasks and facilitate its
progress (Muennighoff et al., 2022). To similarly
enable systematic studies of RACG across cod-
ing tasks and retrieval sources, we curate a unified
benchmark and release its RACG codebase.

6 Conclusion

In this work, we propose CODERAG-BENCH, a
benchmark for retrieval-augmented code genera-
tion with various coding tasks and retrieval sources.
With our experiments with top-performing retrieval
and generation models, we show that retrieving
external documents can greatly benefit code gener-
ation. However, current retrieval models struggle
to find useful documents, and generation models
have limited context capacity and RAG abilities,
both leading to suboptimal RACG results. We hope
CODERAG-BENCH can serve as a solid testbed to
advance future endeavors in this direction.

3206

Limitations

We propose a new paradigm, retrieval-augmented
code generation, equipped with a comprehensive
benchmark CODERAG-BENCH. However, as an
initial exploration in this field, our work could be
extended in task and language diversity, as well as
model and methodological improvements.

We aggregate various existing code generation
tasks, but many interesting scenarios such as code
debugging remain under-explored. Meanwhile, we
focus on coding tasks using Python programming
language, but extrapolating to other languages may
bring additional challenges.

Meanwhile, for benchmarking purposes, we
mostly experimented with vanilla retrieval, rerank-
ing, and generation methods, but better backbone
models and advanced methods for each RACG
component are yet fully explored. Our results may
not represent all model behaviors, and we encour-
age future works to build methods that break certain
limitations we observe in current systems.

Acknowledgment

We thank Shuyan Zhou and Xinran Zhao for the
helpful discussions in the early stage of this project;
Saujas Vaduguru, Jing Yu Koh, Alex Xie, and Andy
Liu for providing valuable feedback for the draft.

References

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,
Gautier Izacard, Sebastian Riedel, Hannaneh Ha-
jishirzi, and Wen-tau Yih. 2023. Task-aware retrieval
with instructions. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 3650-
3675, Toronto, Canada. Association for Computa-
tional Linguistics.

Akari Asai, Zexuan Zhong, Dangi Chen, Pang Wei
Koh, Luke Zettlemoyer, Hannaneh Hajishirzi, and
Wen-tau Yih. 2024. Reliable, adaptable, and at-
tributable language models with retrieval. arXiv
preprint arXiv:2403.03187.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens

Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

CohereAl. 2024. Command r.

Together Computer. 2023. Redpajama: An open source
recipe to reproduce llama training dataset.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Han-
tian Ding, Ming Tan, Nihal Jain, Murali Krishna
Ramanathan, Ramesh Nallapati, Parminder Bhatia,
Dan Roth, and Bing Xiang. 2023. Crosscodeeval:
A diverse and multilingual benchmark for cross-file
code completion. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.

Michael Giinther, Jackmin Ong, Isabelle Mohr, Alaed-
dine Abdessalem, Tanguy Abel, Mohammad Kalim
Akram, Susana Guzman, Georgios Mastrapas, Saba
Sturua, Bo Wang, et al. 2023. Jina embeddings 2:
8192-token general-purpose text embeddings for long
documents. arXiv preprint arXiv:2310.19923.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Lij, et al. 2024. Deepseek-coder: When the
large language model meets programming—the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929-3938. PMLR.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022a. Unsupervised dense informa-
tion retrieval with contrastive learning. Transactions
on Machine Learning Research.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane A. Yu,
Armand Joulin, Sebastian Riedel, and Edouard Grave.
2022b. Few-shot learning with retrieval augmented
language models. ArXiv, abs/2208.03299.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint arXiv:2403.07974.

3207

https://doi.org/10.18653/v1/2023.findings-acl.225
https://doi.org/10.18653/v1/2023.findings-acl.225
https://api.semanticscholar.org/CorpusID:218971783
https://docs.cohere.com/docs/command-r
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://openreview.net/forum?id=wgDcbBMSfh
https://openreview.net/forum?id=wgDcbBMSfh
https://openreview.net/forum?id=wgDcbBMSfh
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://api.semanticscholar.org/CorpusID:251371732
https://api.semanticscholar.org/CorpusID:251371732

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric
Wallace, and Colin Raffel. 2023. Large language
models struggle to learn long-tail knowledge. In In-
ternational Conference on Machine Learning, pages

15696-15707. PMLR.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000:
a natural and reliable benchmark for data science
code generation. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23.
JMLR.org.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459—
9474. Curran Associates, Inc.

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia LI, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier,
Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muh-
tasham Oblokulov, Zhiruo Wang, Rudra Murthy, Ja-
son T Stillerman, Siva Sankalp Patel, Dmitry Ab-
ulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni,
Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav
Timor, Jennifer Ding, Claire S Schlesinger, Hailey
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Carolyn Jane Anderson, Brendan Dolan-
Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Mufioz
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha,
Leandro Von Werra, and Harm de Vries. 2023. Star-
coder: may the source be with you! Transactions on
Machine Learning Research. Reproducibility Certifi-
cation.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’ Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code. Science, 378(6624):1092-1097.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A Python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proceedings of the 44th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR
2021).

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
CoRR, abs/2102.04664.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 9802-9822, Toronto,
Canada. Association for Computational Linguistics.

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming
Xiong, Yingbo Zhou, and Semih Yavuz. 2024. Sfr-
embedding-mistral:enhance text retrieval with trans-
fer learning.

Meta. 2024. Introducing meta llama 3: The most capa-
ble openly available 1lm to date.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Arnold Overwijk, Chenyan Xiong, Xiao Liu, Cameron
VandenBerg, and Jamie Callan. 2022. Clueweb22:
10 billion web documents with visual and semantic
information. arXiv preprint arXiv:2211.15848.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vladimir Karpukhin, Jean Mail-
lard, et al. 2020. Kilt: a benchmark for knowl-
edge intensive language tasks. arXiv preprint
arXiv:2009.02252.

3208

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://dl.acm.org/doi/10.1145/3404835.3463238
https://dl.acm.org/doi/10.1145/3404835.3463238
https://dl.acm.org/doi/10.1145/3404835.3463238
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://blog.salesforceairesearch.com/sfr-embedded-mistral/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm?25 and be-
yond. Found. Trends Inf. Retr., 3:333-389.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Aivin V. Solatorio. 2024. Gistembed: Guided in-sample
selection of training negatives for text embedding
fine-tuning.

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu,
Boao Shi, Che Liu, Qian Liu, and Tao Yu. 2024.
Arks: Active retrieval in knowledge soup for code
generation. arXiv preprint arXiv:2402.12317.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One
embedder, any task: Instruction-finetuned text em-
beddings. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 1102-1121,
Toronto, Canada. Association for Computational Lin-
guistics.

CodeGemma Team. 2024. Codegemma: Open code
models based on gemma.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

VoyageAl. 2024. voyage-code-2: Elevate your code
retrieval.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu,
Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, et al. 2024. Open-
devin: An open platform for ai software developers as
generalist agents. arXiv preprint arXiv:2407.16741.

Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan
Parvez, and Graham Neubig. 2023a. Learning to fil-
ter context for retrieval-augmented generation. arXiv
preprint arXiv:2311.08377.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Gra-
ham Neubig. 2023b. Execution-based evaluation for
open-domain code generation. In Findings of the
Association for Computational Linguistics: EMNLP
2023. Association for Computational Linguistics.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and
Lingming Zhang. 2024. Agentless: Demystify-
ing llm-based software engineering agents. arXiv
preprint arXiv:2407.01489.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. arXiv.

John Yang, Carlos E Jimenez, Alexander Wettig, Kil-
ian Lieret, Shunyu Yao, Karthik Narasimhan, and
Ofir Press. 2024. Swe-agent: Agent-computer inter-
faces enable automated software engineering. arXiv
preprint arXiv:2405.15793.

Dejiao Zhang, Wasi Ahmad, Ming Tan, Hantian Ding,
Ramesh Nallapati, Dan Roth, Xiaofei Ma, and Bing
Xiang. 2024. Code representation learning at scale.
arXiv preprint arXiv:2402.01935.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023. Repocoder: Repository-level
code completion through iterative retrieval and gen-
eration. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang,
and Graham Neubig. 2023. Docprompting: Gener-
ating code by retrieving the docs. In The Eleventh
International Conference on Learning Representa-
tions.

3209

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:207178704
https://api.semanticscholar.org/CorpusID:207178704
https://arxiv.org/abs/2402.16829
https://arxiv.org/abs/2402.16829
https://arxiv.org/abs/2402.16829
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.findings-acl.71
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://blog.voyageai.com/2024/01/23/voyage-code-2-elevate-your-code-retrieval/
https://blog.voyageai.com/2024/01/23/voyage-code-2-elevate-your-code-retrieval/
https://doi.org/10.18653/v1/2023.findings-emnlp.89
https://doi.org/10.18653/v1/2023.findings-emnlp.89
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://aclanthology.org/2023.emnlp-main.151
https://aclanthology.org/2023.emnlp-main.151
https://aclanthology.org/2023.emnlp-main.151
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=ZTCxT2t2Ru

A Example Illustrations
A.1 Example with Canonical Documents

To present our canonical document annotation
(§2.3) more concretely, we illustrate examples with
their annotated canonical documents. Figure 3
shows the general-programming examples, with
one HumanEval and one MBPP example, respec-
tively. Figure 4 shows two open-domain coding ex-
amples with canonical library documentation from
DS-1000 and ODEX, respectively.

A.2 RACG with Helpful and Distracting
Documents

Beyond the numerical numbers reported in experi-
ment sections, here we provide some concrete ex-
amples that: (i) benefit from RACG when relevant
documents are retrieved, and (ii) distracted by ir-
relevant documents retrieved hence results in de-
graded performance.

B Additional Details about Retrieval
Efficiency

For open access models, we use the same single
A100 GPU with 80 GRAM, with a batch size of
64 for GIST base and large, and 8 for SFR-Mistral.
For proprietary models, we estimate their efficiency
using a batch size of 64. We then average the time
for each batch for each query and document. For
Voyage-code, we apply a “dynamic-batching” tech-
nique that make sure the total tokens in the batch
won’t exceed the token limit. For both open and
proprietary models, we define the search efficiency
as the time it takes to embed individual query and
the time to calculate similarities. Note that the time
for both can be optimized by tokenizing all docu-
ments and all queries, then taking the dot product.
The actual runtime for API models varies for each
organization with different rate limits and the batch
size. For this experiment, we set the maximum
context length to match the maximum length of
the original models. This notably increases the en-
coding latency of SFR Mixtral, which has a longer
maximum context window size than smaller em-
bedding models.

C Result Reproduction

In Table 5 in §3, we are able to reproduce most
results reported in the original papers, but with
minor variances. Here we explain the differences
in implementation and (potential) reasons that lead
to these small performance variances.

Our approach To keep a fair comparison among
all models, we use the same prompt for each dataset
when evaluating all models. Meanwhile, we use
zero-shot prompts without any additional instruc-
tions, i.e., only input the original problem descrip-
tion of the example, to prevent unknown effects
on the model performance when using different
instructions and/or in-context examples.

According to this setup, we next describe the

differences in prompts used by the original works
and how they may affect the results.
StarCoder2 The StarCoder2 technical report
(Lozhkov et al., 2024) reported results on the Hu-
manEval, MBPP, and DS-1000 datasets. On Hu-
manEval, our reproduced results (31.7) is slightly
lower than their number (35.4), possibly because
the original paper additionally input the test cases
as additional information in the prompt, whereas
in our basic NL-to-code setup, no test cases are
provided. This additional information may cause
their results to be higher.

On MBPP dataset, they adopt a subset of MBPP,
i.e., 399 out of 427 examples that have additional
test cases populated by Liu et al. (2023). In contrast,
we evaluate on the entire dataset, which is likely to
cause the variance in results.

On DS-1000, the original paper samples 40 gen-
erations and report the pass@1 rate, while we only
generate one program with greedy decoding. This
difference in decoding strategy may cause slight
variance in the results.

CodeGemma The CodeGemma technical report
(Team, 2024) reported results on HumanEval and
MBPP datasets, but does not provide any details
about the instructions, few-shot examples, or other
parts of the prompt that they use. We were able to
roughly reproduce their reported results, but with
3-5 points less in pass@1.

CodeLLlama The CodeLlama technical report
(Roziere et al., 2023) reports results on HumanEval
and MBPP datasets. We were able to perfectly
reproduce their results on the HumanEval dataset
under the zero-shot setting. However, for MBPP ex-
periments, they use 3-shot prompting, which could
potentially explain that our zero-shot results are 4
points lower in pass@]1.

DeepSeekCoder The DeepSeekCoder technical
report (Guo et al., 2024) reports results on Hu-
manEval and MBPP for the 7B-instruct-v1.5 and
the 33B-instruct models, the report additionally re-
port DS1000 results for the 33B-instruct model. We
could reproduce the original results on HumanEval

3210

Canonical Document

Canonical Document

def truncate_number(number: float) -> float:
"" Given a positive floating point number, it can
be decomposed into and integer part (largest
integer smaller than given number) and decimals
(leftover part always smaller than 1).

Return the decimal part of the number.
>>> truncate_number(3.5)
0.5

return number % 1.0

Problem

def truncate_number(number: float) -> float:
"" Given a positive floating point number, it can
be decomposed into and integer part (largest
integer smaller than given number) and decimals
(leftover part always smaller than 1).

Return the decimal part of the number.
>>> truncate_number(3.5)
0.5

Write a python function to remove first and last
occurrence of a given character from the string.

def remove_Occ(s,ch):
foriin range(len(s)):

if (s[i] == ch):
s=s[0:i]+s[i+1]
break
foriin range(len(s) - 1,-1,-1):
if (s[i] == ch):
s=s[0:i]+s[i+1]
break
return s

Problem

Write a python function to remove first and last
occurrence of a given character from the string.

Figure 3: HumanEval (left) and MBPP (right) examples with annotated canonical solutions.

and DS-1000, but got slightly worse results on
MBPP because they used few-shot prompting,
which should outperform our zero-shot method.
Llama3 Since there is no technical report avail-
able yet, the official blog post 10 report results on
HumanEval, without any descriptions on prompt-
ing construction or the inference process. Our re-
produced results are about 4 points lower than their
original results.

D Analysis on Open-Domain Coding
Problems

In §3.4, providing the documentation of required
libraries brings limited benefits, especially with
strong proprietary models such as GPT and Gem-
ini. While we hypothesize that these strong models
are sufficiently familiar with the required libraries
and in turn barely benefit from additional informa-
tion about them, in this section, we quantitatively
investigate this issue and verify its validity.
Concretely, we construct a subset of ODEX con-
taining only examples with less common libraries.
We use the real-world distribution of all libraries
involved in ODEX and select examples that use
the top 20 least common libraries (e.g., sqlite3,
ftplib, flask). We then evaluate model perfor-
mance on this subset and compare the results with
and without documentation in model contexts.

10https ://ai.meta.com/blog/meta-1lama-3/

With varied retrieval models Aligning with
§3.4, we examine the RACG results using docu-
mentation retrieved by different retrieval models.
As shown in Table 10, augmenting documentation
retrieved with most methods improves the results
by 20.3-40.1%. Compared to the entire ODEX set
where most queries require common libraries, this
hard-library split more clearly demonstrates the ef-
fectiveness of augmenting library documentation.
This result verifies our hypothesis that strong GPT
models are familiar with most common libraries,
and can only benefit from additional library infor-
mation when harder libraries are required.

Model | none | BM25 GIST Voyage OpenAl | Gold
GPT-3.5-turbo | 17.2 24.1 13.8 20.7 17.2 24.1
GPT-4 20.7 24.1 17.2 27.6 24.1 27.6

Table 10: RACG results on the subset of ODEX exam-
ples using the least common libraries.

E How Many Documents to Augment?

Different models have varied context length lim-
its and context utilization abilities. Therefore, we
study how model performance varies when provid-
ing different numbers of documents in the context.
We experiment with one representative dataset for
each task category: HumanEval since it is the most
commonly used dataset, ODEX for its broad do-
main coverage, and RepoEval for its solvable dif-

3211

https://ai.meta.com/blog/meta-llama-3/

Canonical Document

Canonical Document

pandas.reference.api.pandas.dataframe.groupby
pandas.DataFrame.groupby DataFrame.groupby(by=None, axis=0,
level=None, as_index=True, sort=True, group_keys=True,
squeeze=NoDefault.no_default, observed=False,
dropna=True)[source]

pandas.reference.api.pandas.dataframe.squeeze
pandas.DataFrame.squeeze
DataFrame.squeeze(axis=None)[source]

Squeeze 1 dimensional axis objects into scalars. Series or
DataFrames with a single element are squeezed to a scalar.

Problem

What is best way to achieve this ? closest | got was with the zip
function but haven't managed to make it work for more then one
level (two columns).

A

<code>

import pandas as pd

df = pd.DataFrame({name": [A, ‘A, 'B','C','B','A], 'v1": [A1','A2, 'BT',
'C1,'B2,'A2], 'v2: [A11','A12,'B12','C11,,'B21','A217,'v3" [1,2, 3, 4,
5, 6]})

</code>

result = ... # put solution in this variable

BEGIN SOLUTION

<code>

python.library.socket#socket.socket.send

socket.send(bytes], flags])

Send data to the socket. The socket must be connected to a remote
socket. The optional flags argument has the same meaning as for
recv() above. Returns the number of bytes sent. Applications are
responsible for checking that all data has been sent; if only some of
the data was transmitted, the application needs to attempt delivery
of the remaining data. For further information on this topic, consult
the Socket Programming HOWTO. Changed in version 3.5: If the
system call is interrupted and the signal handler does not raise an
exception, the method now retries the system call instead of raising
an InterruptedError exception (see PEP 475 for the rationale).

Problem

sending http headers to “client’

Figure 4: DS-1000 (left) and ODEX (right) examples with annotated canonical library documentation.

ficulty. We compare RACG performance when
providing top-1, 2, 5, and 10 documents.

As shown by Figure 6, adding five documents
yields the best results in most settings, except for
StarCoder2 on RepoEval which best uses 8 docu-
ments. Despite the drastic variance in length limits
of StarCoder2 (16k) and DeepseekCoder (4k), the
sweet spot is consistently 5 documents. While
adding a few documents brings helpful contexts,
adding more low-ranked documents may introduce
noise and deteriorate generation due to the imper-
fections of retrieval systems (Wang et al., 2023a).

F Does RACG Help Stronger Models?

We have shown that RACG with open retrieval im-
proves a relatively weaker model, StarCoder2 (§4).
To see if this improvement of RACG with open
retrieval generalizes to stronger models, we exper-
iment with a series of top-performing proprietary
models: GPT-40, Claude-3-haiku and sonnet, and
Gemini-1.5-flash and pro.

Basic programming: HumanEval RACG can
consistently improve the performance of GPT-4
and Claude-3-sonnet when leveraging all sources
of documents. However, for weaker models such
as Claude-3-haiku and Gemini-1.5-flash, RACG
only helps when aggregating multiple sources yet

falls short when grounding on one source (even
the canonical solution source). Interestingly, the
stronger Claude-3-sonnet performs worse than the
weaker Claude-3-haiku, but can benefit from all
retrieval sources and outperform haiku with doc-
uments from the canonical programming source,
suggesting its potentially better RAG ability. While
the stronger Claude effectively benefits from ex-
tra contexts, the stronger Gemini-1.5-pro behaves
similarly to its weaker counterpart and cannot do
RACG effectively with non-canonical sources.

Open domain: ODEX All models experience
limited improvements by leveraging library doc-
umentation to complex the ODEX task, with the
only exception that GPT-40 improves 4.6 points
by incorporating programming solutions into the
context.

As results degrade in most cases, we conduct
a manual analysis to examine when most mod-
els fail. We find that most models tend to copy
functions in the context, sometimes even overwrit-
ing the function being queried, thus failing all the
test cases specific to the queried function. Further,
possibly affected by the plethora of programs in
context, models tend to generate over-complicated
programs which, however, do not often pass the
test cases.

3212

Question
| Split string 'Words, words, words.' using a regex '(\\W+)'

Solution
| re.split('(\\W+)', 'Words, words, words.)

Context (helpful)
Write a function to put spaces between words starting
with capital letters in a given string by using regex.
importre
def capital_words_spaces(str1):

return re.sub(r"(\w)([A-Z])", r"\1\2", str1)

Model Prediction
import re
def £_2195340():
""split string 'Words, words, words." using a regex
(\W+)""
text = 'Words, words, words.'
return re.split(r'(\W+)', text)

Question

| Find intersection data between series “s1° and series "s2°

Solution
| pd.Series(list(set(s1).intersection(set(s2))))

Context (distracting)
skimage.segmentation.join_segmentations(s1, s2)
[source]

Return the join of the two input segmentations. The join J
of S1 and S2 is defined as the segmentation in which two
voxels are in the same segment if and only if they are in
the same segment in both S1 and S2. Parameters

class Intersection(expr1, expr2, **extra)
set_extremes(e1, e2)[source]

Model Prediction
from skimage.segmentation import join_segmentations
def f_18079563(s1, s2):

""Find intersection data between series 's1" and series
§"

return join_segmentations(s1, s2)

Figure 5: RACG helps with relevant contexts (left) and hurts with distracting contexts (right).

e StarCoder2 e DeepseekCoder

80 40

i i
% * '//_4 % 20
8 8 — — T
Q [«
20 10 40

HumanEval

70

60

50

pass@1

ODEX RepoEval
30

2 4 6 8 10 2 4
Top-k

Top-k

6 8 10 2 4 6 8 10
Top-k

Figure 6: Comparing RACG performance with various numbers of documents.

In general, most models can be easily distracted
or disturbed by additional contexts (Wang et al.,
2023a), and fail to conduct the designated code
generation task, indicating much room for improve-
ment for RACG.

Repository level: RepoEval While GPT-40 can
solve the RepoEval task with a reasonable success
rate, all Claude models are challenged by the task
and achieve less than 10% pass@1 for most scenar-
i0s. We find Claude models mostly respond with
explanations of the incomplete input code, instead
of the to-be-completed code even with proper in-
structions, possibly caused by some properties of
the unknown training data. Gemini-1.5-flash also
barely solves the task and often generates textual
explanations; however its stronger pro variant gets
about 10-25 point improvements, demonstrating its
stronger repository-level code completion abilities.

3213

Method | Baseline | Program Tutorial Docs SO GitHub | All
GPT-40 ‘ 75.6 ‘ 94.5 90.2 90.9 915 84.8 ‘ 95.1
Claude-3-haiku 74.4 77.4 77.4 713 67.7 73.2 82.9
Claude-3-sonnet 65.9 78.7 66.5 68.9 70.7 73.8 80.5
Gemini-1.5-flash 72.0 91.5 75.0 70.1 689 68.9 95.1
Gemini-1.5-pro 82.9 95.7 79.9 774 799 80.5 86.6
Table 11: RACG on HumanEval with strong code LMs.
Method | Baseline | Program Tutorial Docs SO GitHub | All
GPT-40 ‘ 44.6 ‘ 49.2 442 47.6 40.3 394 ‘ 39.6
Claude-3-haiku 48.5 42.6 39.2 44.6 337 40.5 35.1
Claude-3-sonnet 41.0 37.6 353 38.0 342 42.4 38.0
Gemini-1.5-flash 50.6 48.3 46.7 462 419 449 43.1
Gemini-1.5-pro 57.2 54.4 45.6 51.0 46.5 39.6 46.0

Table 12: RACG on ODEX with strong code LMs.

Method | Baseline Local | Program Tutorial Docs SO GitHub | All L+E
GPT-40 ‘ 324 62.2 ‘ 354 28.7 27.8 29.0 282 ‘ 303 542
Claude-3-haiku 9.1 0.5 0.5 0.5 0.5 0.5 0.2 0.2 0.5
Claude-3-sonnet 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Gemini-1.5-flash 1.3 16.9 4.0 2.1 32 2.1 32 27 118
Gemini-1.5-pro 10.5 39.1 15.1 134 158 153 11.8 123 33.0

Table 13: RACG on RepoEval with strong code LMs.

3214

