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Abstract

Reinforcement learning from human Feedback
(RLHF) is crucial for aligning large language
models (LLMs) with human values. However,
it has been noted that reward models in RLHF
often exhibit unintended biases, such as an
overemphasis on response length based on the
erroneous assumption that longer responses are
universally preferred. This “length bias” can
lead to excessively verbose responses that com-
promise the quality of LLMs alignment. Pre-
vious efforts to mitigate length bias in reward
models have inadvertently decreased their ac-
curacy by neglecting the legitimate influence
of response length on human preferences. In
this work, we argue that response length is a
context-specific factor in human evaluations,
with different queries naturally eliciting vary-
ing preferences for response length. We pro-
pose an adaptive approach to modeling length
preference that dynamically adjusts the influ-
ence of response length in reward evaluations
according to the context of the query. Exper-
imental results demonstrate that our adaptive
approach effectively balances the mitigation
of undesired length hacking and alignment ac-
curacy, reducing unnecessary verbosity while
improving overall response quality.

1 Introduction

“Excess and deficiency are equally at fault.”
— Confucius

Reinforcement Learning from Human Feedback
(RLHF)(Ouyang et al., 2022; Bai et al., 2022) has
played a pivotal role in the impressive advance-
ments of state-of-the-art large language models
(LLMs)(Achiam et al., 2023; Team et al., 2023;
Anthropic, 2023). The standard RLHF pipeline
involves two main stages: first, a reward model
(RM) is trained on data that captures human prefer-
ences for responses to specific prompts, and second,
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the language model is optimized to generate re-
sponses that maximize the learned reward through
reinforcement learning (Ziegler et al., 2019). A
key determinant of RLHF’s success is that the RM
must genuinely reflect human preferences (Zhuang
and Hadfield-Menell, 2020). However, achieving
an automatic proxy that perfectly replicates human
judgment is challenging in practice (Gao et al.,
2023). Reward models often face challenges in
generalizing to out-of-distribution data (Eisenstein
et al., 2023), which can cause the policy model
to maximize the reward score without fully align-
ing with human intent—an issue known as “reward
hacking” (Skalse et al., 2022).

Verbosity, one of the most common reward hack-
ing problems, occurs when LLMs generate exces-
sively long responses to exploit human raters’ pref-
erence for detailed content. This length hacking
issue has been identified in both explicit (Sing-
hal et al.) and implicit (Park et al., 2024) reward
modeling methods. To address this, approaches
have been developed to reduce the correlation be-
tween response length and reward scores by ad-
justing data processing (Liu et al., 2024) or model
design (Dubois et al., 2024; Shen et al., 2023; Chen
et al.). However, while these approaches success-
fully weaken the association between length and
reward scores, they unintentionally reduce the over-
all accuracy of RMs.

We attribute this drop in accuracy to treating
length uniformly across all queries. We argue
that response length should be treated as a context-
dependent factor in human evaluations, as different
queries naturally demand varying lengths. For in-
stance, in open-ended questions like "Explain to me
like I’'m five," users typically prefer longer, more
detailed responses, where length strongly corre-
lates with user intent (referred to as length-sensitive
queries). Conversely, conciseness is favored in
more specific queries like "What gives non-pepper
things like garlic their spice?" as users prefer di-

3091

Findings of the Association for Computational Linguistics:
NAACL 2025, pages 3091-3098
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics



rect and to-the-point answers (referred to as length-
neutral queries). Existing debiasing approaches
tend to suppress the influence of length across both
query types uniformly, failing to adapt to the nat-
ural variations in length preference. This indis-
criminate suppression leads to a decline in align-
ment performance, particularly for length-sensitive
queries where length plays a legitimate role in user
satisfaction. We present a detailed illustration in
A.l.

To address this issue, we propose an approach
that implements Adaptive Length Bias Mitiga-
tion (ALBM) in reward models. Specifically,
ALBM first decouples length bias from the origi-
nal reward, and then reintegrates the length reward
with the quality reward based on the nature of the
query. Experiments show that ALBM outperforms
existing debiasing techniques by improving align-
ment accuracy without inducing verbosity-related
reward hacking. Additionally, in the reinforcement
learning phase, we observe that the policy model su-
pervised by our debiased RM can generate higher-
quality responses compared with vanilla RM.

2 Preliminary

We focus on the widely adopted RLHF pipeline,
which consists of three main stages: (1) supervised
fine-tuning (SFT); (2) reward modeling; and (3)
reinforcement learning optimization. Our primary
attention is on the latter two phases.

Reward modeling. Following Touvron et al.
(2023), the RM is initialized from an SFT model,
appending a randomly initialized linear layer at
the end to project the feature representation into a
scalar reward value. The RM is trained to minimize
the Bradley—Terry loss (Bradley and Terry, 1952)
on pair-wise comparisons of model responses:

Lrm = — Eflog o (ro(x, yw) — 19(z,u1))]
=—E[logo (gy © fo(®, yw) — gy © fo(z,u1))]

Here, 79(x,y) represents the scalar reward for a
given prompt = and response y. y,, and y; denote
the chosen and rejected responses, respectively.
o(+) refers to the sigmoid function. The trainable
parameters 6 consist of the foundational language
model f4 and the linear head g, such that the re-
ward is computed as: ry(z,y) = gy © fo(z,y).
Reinforcement learning optimization. We uti-
lize the proximal policy optimization (PPO) algo-
rithm for reinforcement learning optimization. In
this process, the RM serves as a proxy for human
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Figure 1: Overview of ALBM. The overall reward is
decomposed into length and quality components, then
reintegrated according to prompt analysis to obtain the
final reward score.

feedback on the responses generated by the pol-
icy during training. The policy parameters w are
fine-tuned by maximizing the following objective:

nluz;,X E(.’I:«,y)'vaw [T‘e(L y)} — B Dk (ﬂ'w(y ‘ I) H 7TSFT(y | $))

Here, the SFT policy 75T is used to initialize pol-
icy my. Dy, represents the prompt-response pairs
sampled from m,,. The parameter 5 controls the
strength of the KL-penalty term to prevent the pol-
icy m,, from drifting too far from the SFT model.

3 Method

ALBM consists of two key components to account
for length bias in preference modeling adaptively.
First, we decouple the original reward into two dis-
tinct parts: a length reward and a quality reward,
the latter capturing human preferences independent
of length bias, as discussed in prior work (Chen
etal.). By isolating the influence of response length
from the overall reward, we prevent the model
from exploiting length to artificially boost reward
scores, thereby avoiding length-based reward hack-
ing. Next, based on an analysis of the input prompt,
we adaptively recombine the length reward with
the quality reward to derive the final reward score.
This adaptive integration allows the model to con-
sider context-dependent preferences for response
length, resulting in improved performance. Fig-
ure 1 provides an overview of ALBM.

3.1 Reward Decomposition

Inspired by the Product of Experts (PoE) frame-
work (Singhal et al.), we adopt a disentanglement
strategy to isolate the influence of response length.
To reduce computational overhead and maximize
the utility of the pre-trained language model, we
introduce two distinct final linear layers as different
"experts" to separate the learning of true human in-
tent from length bias, similar to Chen et al.. To be
specific, we append two separate linear heads to the
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shared backbone fy4: a quality reward head (g, ),
which focuses on learning quality-related prefer-
ences independent of length, and a length reward
head (g, ), which captures preferences influenced
by length bias. Each reward head computes its re-
spective reward score for a given prompt-response
pair and contributes to the overall reward loss:

Lop = — E [log(c(gy, © fo(2, yw) — gu, © fo(z,m)))]
—Eflog(a(gy; © fo(m,yw) — gy, © fo(@, u1)))]

To ensure that each head specializes in its desig-
nated role, we introduce both explicit and implicit
constraints. For the explicit constraint, we design a
loss function that enhances the correlation between
the length reward and the response length while
minimizing the correlation between the quality re-
ward and the response length. Specifically, we use
the following loss function:

EEL = ‘IO (gdlq o f¢(x,y),L(y))‘
— p (g, © fo(z,y), L(y))

Here, L(y) represents the number of tokens in the
response y, and p(X, Y") denotes the Pearson corre-
lation between X and Y, computed over the global
minibatch. To further strengthen the disentangle-
ment, we impose an implicit constraint by enforc-
ing orthogonality between the projection weights
of the two heads as follows:

L= ‘Wd’qwgz‘

Wy,» Wy, represent the linear projection weights
for the quality and length rewards, respectively.

3.2 Adatively Utilization of Length Preferance

We dynamically adjust the influence of length bias
in our reward modeling by introducing an addi-
tional head, g,,,, which analyzes the input prompt
x. This prompt analyzer learns to predict how much
the response length should influence the overall re-
ward based on the prompt’s content. By capturing
this relationship, g, guides the appropriate weight-
ing of the length reward when computing the total
reward: g,s,0 f (. )+ (90,0 fo () 09,0 fo ().
As aresult, the primary ranking loss used to train
the RM becomes as follows:

Ly = —E [log (o (gy, © fo(z, yu)
+(gy, © fo(2)) © gy, © fo(2,yw))
— Gy, © fo(T,y1)
—(gu, © f()) 0 gy, © fo(,31))]

Table 1: Performance comparison of RMs trained with
different methods. ACC: Accuracy. CORR: Spearman
correlation between reward scores and response length.
LN-FR: Failure rate on length-neutral data. LS-FR:
Failure rate on length-sensitive data.

Methods ACC(T) CORR LN-FR(}]) LS-FR(])
Vanilla  0.6223  0.5105 0.6416 0.1945
Bal 0.5906 -0.1067  0.3721 0.4431
Odin 0.5792  -0.0670  0.3905 0.4508
ALBM  0.6318 -0.0209  0.4655 0.3049

We conduct training with gy, .9y, and gy, to min-
imize the final loss:

L tinal = Lr + AorLor + A Ler + AL
where Apr, AL, A1 are regularization coefficients.

4 Experiments

4.1 Experimental Setup

Our experiments are primarily conducted on the
WebGPT dataset (Nakano et al.,, 2021) using
Vicuna-7B (Zheng et al., 2023) as the founda-
tion model. For a fine-grained analysis, the data
is further divided into a length-sensitive subset
and a length-neutral subset, based on the length
relationship between the chosen and rejected re-
sponses. Moreover, for out-of-distribution general-
ization analysis, we evaluate our approach on the
Stack (Lambert et al., 2023) and RM-static (Bai
et al., 2022) datasets. To assess performance across
different base models, we conduct experiments on
Vicuna-13B and LLAMA3-8B (Al@Meta, 2024).
We compare our approach with two typical base-
lines for mitigating length hacking: a data inter-
vention method (Bal, Singhal et al.) and a model
intervention method (Odin, Chen et al.). More de-
tailed descriptions can be found in A.3.

4.2 Performance of Reward Modeling

Table 1 compares the performance of RMs trained
with different methods. The vanilla RM exhibits
a strong correlation between reward scores and re-
sponse length, performing poorly on length-neutral
data. Existing debiasing methods, such as Bal and
Odin, effectively reduce this correlation, improv-
ing performance on length-neutral data. However,
they tend to overcorrect, excessively suppressing
length bias, leading to poor performance on length-
sensitive data and a decline in alignment accuracy.
In contrast, our ALBM approach strikes a better
balance by reducing the length-score correlation
while preserving an appropriate level of length bias.
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Figure 2: Adaptive Length Bias Utilization Analysis.
Compared to existing approaches, Length Effect of
ALBM aligns more closely with trends in humans.

This leads to performance improvements on length-
neutral data, with only minimal degradation on
length-sensitive data, resulting in a substantial over-
all enhancement in alignment accuracy compared
to the baselines. The generalization analysis across
different datasets and models is provided in A.4. In
addition to better performance, the approach adds
minimal computational overhead, with the forward
pass time increasing by just 0.75% compared to a
standard reward model.

4.3 Adaptive Utilization of Length Bias

To validate the adaptive utilization of length bias
in our approach, we conducted an analysis using
randomly sampled data from various categories
within the SHP dataset (Ethayarajh et al., 2022).
We introduced the Length Effect metric to quan-
tify the model’s reliance on response length during
preference judgments:

Length Effect = |Acc(l-c, s-r) — Acc(s-c,1-1)]

This metric captures the asymmetry of length
bias—if the RM favors longer responses, increas-
ing the length of the chosen response (lengthened
chosen, I-c) while shortening the rejected response
(shortened rejected, s-r) will lead to higher accu-
racy, and the reverse will reduce accuracy. The
more significant this discrepancy, the stronger the
Length Effect, indicating that the model’s judg-
ments are more influenced by response length. For
each category, we also computed the correlation
between human ratings and response length as a
reference. As shown in Figure 2, the vanilla RM
consistently exhibits a higher Length Effect across
categories, whereas the debiasing baseline Odin
shows a lower Length Effect. In contrast, ALBM
adaptively utilizes length bias across different cat-
egories, aligning more closely with human prefer-
ences.

Table 2: Average length of generated response.

Model SFT Vanilla Bal Odin ALBM
Length 198 261 125 206 228

Table 3: Win rates of various models against the vanilla
model. Evaluated by GPT-4o.

All Length-Sensitive Data | Length-Neutral Data
Model | Win Tie Lose | Win Tie Lose Win Tie Lose
SFT | 0.16 034 050|012 036 052 020 032 048
Bal 025 030 045|020 024 0.56 030 036 034
Odin | 028 041 031 | 026 034 040 030 048 022
ALBM | 0.37 0.35 0.28 | 0.40 030 030 034 04 026

4.4 TImpact on Downstream RL Optimization

We further evaluated the proposed approach by
assessing the performance of the aligned policies
after RL training. To ensure a fair comparison, we
selected checkpoints at the same training step in the
convergence stage for each approach. As shown in
Table 2, the policy trained with vanilla RM gener-
ates longer responses than the SFT model, indicat-
ing its susceptibility to length bias. All debiasing
methods effectively reduce the length of generated
responses. Notably, the data-intervention method
(Bal) achieves the most significant reduction, even
generating responses shorter than the SFT model.
While the model-intervention methods (Odin and
ALBM) also reduce response length relative to the
vanilla model, they still yield slightly longer re-
sponses than the SFT model.

To evaluate the quality of the generated re-
sponses, we compared the win rates of models
trained with different debiased RMs against the
model trained with the vanilla RM. As shown in
Table 3, the vanilla model, after alignment RL
training, outperforms the SFT model, confirm-
ing the effectiveness of RLHF. However, both
debiasing baselines exhibit lower win rates than
the vanilla model. For example, Odin underper-
forms on length-sensitive data but surpasses the
vanilla model on length-neutral data. In con-
trast, ALBM surpasses the vanilla model on both
length-sensitive and length-neutral data, leading
to a higher overall win rate. These above results
demonstrate that our approach not only effectively
mitigates excessive verbosity but also enhances the
overall quality of generated responses.

5 Conclusion

In this study, we investigated the challenges as-
sociated with existing methods of training reward
models in RLHF, particularly focusing on the issue
of over-emphasizing or excessively suppressing re-
sponse length. To tackle this issue, we proposed
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an adaptive approach, ALBM, that dynamically ad-
justs the impact of length bias based on the query
nature. ALBM strikes a balance between enhanc-
ing alignment performance and mitigating unde-
sired length hacking by decoupling the length re-
ward from the quality reward and then reintegrating
them in a context-dependent manner. Experimen-
tal results demonstrate the effectiveness of our ap-
proach. By reflecting on the role of length bias, our
paper highlights the complexity of genuine human
preferences. Future research should more com-
prehensively account for real-world scenarios, as
“Excess and deficiency are equally at fault”.

6 Limitations

In this study, our experiments were conducted on a
limited set of datasets. While our approach demon-
strated strong performance on datasets where
length hacking was observed, we found in prelim-
inary experiments that this phenomenon does not
universally manifest across all models and datasets,
which restricts the generalizability of our approach.
The tendency for models to exhibit length hack-
ing appears to depend on specific combinations of
training data, methodology, and model architecture.
This suggests the need for further research to sys-
tematically investigate which models, datasets, and
training strategies are more susceptible to length
hacking. Gaining a deeper understanding of the
conditions that intensify length hacking could lead
to developing more targeted interventions in future
work.
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A Appendix
A.1 Background Illustration

To demonstrate the limitations of existing ap-
proaches, we compared a state-of-the-art debias-
ing method (Odin) with traditional reward train-
ing on the WebGPT dataset, as shown in Fig-
ure 3. It is observed that the vanilla reward model
trained using the traditional method consistently
scores longer responses higher across both length-
sensitive and length-neutral queries. In contrast,
the debiased model nearly eliminates the influence
of response length on reward scores completely,
with reward scores remaining almost constant as
response length increases. Both methods, however,
show discrepancies with genuine human prefer-
ences under specific conditions. We attribute this
discrepancy to prior methods learning an inappro-
priate role for response length from human prefer-
ences.

A.2 Related Work

Length hacking is a well-documented form of re-
ward hacking where preference models exhibit a
bias toward longer responses, even when quality
is comparable, leading models to generate unnec-
essarily verbose outputs. This issue occurs across
different RLHF pipelines, whether explicit RMs or
implicit RMs are used. In implicit RM pipelines,
such as those employing the Direct Preference Op-
timization (DPO) algorithm (Rafailov et al., 2024),
existing works have attempted to mitigate length
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hacking by including response length in the loss
function (Park et al., 2024; Hong et al., 2024; Meng
et al., 2024; Lu et al., 2024) or penalizing the re-
ward value based on response length when label-
ing on-policy samples (Dong et al., 2024). For
explicit RM pipelines, which typically combine
reward modeling and PPO training, interventions
have been explored at both the PPO optimization
and reward modeling stages. PPO interventions in-
clude increasing KL regularization, omitting long
outputs beyond a certain length threshold, reward
scaling, and adding a length penalty to the reward
model (Chen et al.; Singhal et al.); however, exper-
imental results show that while these methods can
reduce extreme dependence on length during op-
timization, they often depress the effectiveness of
PPO training. Consequently, recent methods focus
more on interventions in reward modeling, which
can be divided into data interventions, such as bal-
ancing data by length and reward data augmenta-
tion (Liu et al., 2024), and model interventions,
like introducing a two-branch structure to decouple
length bias from human intent (Chen et al.; Shen
et al., 2023). These existing methods often treat
length entirely as a disturbance factor, attempting
to strip the length influence from preference mod-
eling, but experimental results indicate that this ap-
proach can decrease reward model accuracy. Saito
et al. suggest that human preferences inherently
include a length bias; thus, both over-reliance on
length (as in vanilla RMs) and over-suppression of
length bias (as in existing intervention methods)
are unreasonable in preference learning. Based on
this understanding, our work explores how to rea-
sonably utilize length bias in preference modeling.

A.3 Detailed Experimental Settings

Dataset. We conduct our experiments primar-
ily on WebGPT (Nakano et al., 2021), a human-
annotated open-domain question-answering pref-
erence dataset containing 19.6K examples. To
evaluate the generalization performance of our
method across different datasets, we also test on
Stack (Lambert et al., 2023) and RM-static! for the
out-of-domain evaluation experiments. The Stack
dataset comprises technical StackExchange ques-
tions, providing human preference data in the cod-
ing domain. RM-static is a substantial subset of the
Anthropic Helpful and Harmless (HH) dataset (Bai
et al., 2022), offering human preference data in

"https://huggingface.co/datasets/Dahoas/rm-static

multi-turn dialogue scenarios. To perform a more
fine-grained analysis of the RM’s performance,
we split the dataset by human length preference.
Specifically, data where the chosen response is
shorter than the rejected one—contradicting the
observed tendency for humans to prefer longer re-
sponses (Saito et al.)—is categorized as length-
neutral. The remaining data, where longer re-
sponses are favored, is classified as length-sensitive,
as it may reflect a preference for longer content.
Models. We use Vicuna-7B-v1.5% as the base
model m,, which is fine-tuned from LLAMA
2 (Touvron et al., 2023) on user-shared conversa-
tions collected from ShareGPT. To assess the gener-
alization of our method across different base mod-
els, we also test Vicuna-13B-v1.5% and LLAMA3-
SFT*. LLAMA3-SFT is trained from LLAMA-3-
8B (Al@Meta, 2024) on a mixture of public in-
struction datasets.

Baselines. We compare our approach with two typ-
ical baselines for mitigating length hacking: a data
intervention method (Bal) and a model interven-
tion method (Odin). For Bal, following (Singhal
et al.), we balance the dataset to ensure that the dis-
tribution of pairwise response length differences is
symmetric in bins of 10 tokens. Odin (Chen et al.)
decomposes the reward into quality and length com-
ponents, discarding the length reward head during
reinforcement learning to prevent length-based re-
ward hacking.

Implementation details. All experiments are im-
plemented with DeepSpeed-Chat (Yao et al., 2023),
running on NVIDIA A800 80GB GPUs. For the
reward model training, the learning rate is set to
le-5. To enable fair comparisons under consistent
hyperparameter settings, we normalize the reward
scores output by all methods during training. For
PPO training, the policy 7, is initialized from the
same SFT model as the reward model. The pol-
icy model uses a learning rate of 1.4e-6, while the
value model uses a learning rate of 1le-6. The KL
penalty coefficient 3 is set to 0.007.

A.4 Generalization Analysis

We also conducted a generalization analysis of our
proposed method. In Table 4, we evaluate the
performance of reward models trained with differ-
ent methods across diverse datasets. Our method
consistently outperforms existing debiasing base-

Zhttps://huggingface.co/lmsys/vicuna-7b-v1.5
3https://huggingface.co/lmsys/vicuna-13b-v1.5
*https://huggingface.co/RLHFlow/LLaMA3-SFT
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Table 4: Generation analysis on out-of-distribution

datasets.
RM-STATIC STACK
Methods | ACC() CORR | ACC(t) CORR
Vanilla 0.6340 0.6571 | 0.6073 0.3604
Bal 0.6326 0.3194 | 0.5420 -0.0469
Odin 0.6306 0.2339 | 0.5440 0.1048
ALBM 0.6513 0.3226 | 0.5906 0.2018

Table 5: Generation analysis on different base models.

LLAMA-3-8b VICUNA-13b
Methods | ACC(f) CORR | ACC(1) CORR
Vanilla | 0.6451 0.4439 | 0.6328 0.2736
Bal 0.6095 0.1197 | 0.5762 -0.0423
Odin 0.6021 -0.1276 | 0.5873  0.2331
Ours 0.6327 0.2632 | 0.6294 0.2205

lines by significantly improving alignment accu-
racy while effectively reducing the correlation be-
tween scores and response length.

We further validate the generalizability of our
method across different base models in Table 5. We
test on LLAMA-3-8b, which has a similar param-
eter size but a different architecture compared to
Vicuna-7b and Vicuna-13b, which shares the same
architecture but differs in scale. Despite varying
degrees of vanilla length bias and accuracy across
these models, our method consistently outperforms
baseline debiasing methods, reducing reward score-
length correlation and delivering substantial accu-
racy gains.
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