FUNNELRAG: A Coarse-to-Fine Progressive Retrieval Paradigm for RAG

Xinping Zhao', Yan Zhong?, Zetian Sun', Xinshuo Hu!,
Zhenyu Liu', Dongfang Li', Baotian Hu'®, Min Zhang'
'Harbin Institute of Technology (Shenzhen), ?Peking University
{zhaoxinping, 235151141, 225051034, 190110924}@stu.hit.edu.cn,
zhongyan @stu.pku.edu.cn, {1lidongfang, hubaotian, zhangmin2021}@hit.edu.cn

Abstract

Retrieval-Augmented Generation (RAG) pre-
vails in Large Language Models. It mainly
consists of retrieval and generation. The re-
trieval modules (a.k.a. retrievers) aim to find
useful information used to facilitate the gen-
eration modules (a.k.a. generators). As such,
generators’ performance largely depends on
the effectiveness and efficiency of retrievers.
However, the widely used retrieval paradigm
remains flat. It treats retrieval procedures as a
one-off deal with constant granularity. Despite
effectiveness, we argue that they suffer from
two limitations: (1) flat retrieval exerts a sig-
nificant burden on one retriever; (2) constant
granularity limits the ceiling of retrieval per-
formance. In this work, we propose a progres-
sive retrieval paradigm with coarse-to-fine gran-
ularity for RAG, termed FUNNELRAG, so as
to balance effectiveness and efficiency. Specifi-
cally, FUNNELRAG establishes a progressive
retrieval pipeline by collaborating coarse-to-
fine granularity, large-to-small quantity, and
low-to-high capacity, which can relieve the bur-
den on one retriever and also promote the ceil-
ing of retrieval performance. Extensive exper-
iments manifest that FUNNELRAG achieves
comparable retrieval performance while the
time overhead is reduced by nearly 40 percent.

1 Introduction

Retrieval-Augmented Generation (RAG) has been
shown highly effective in enhancing Large Lan-
guage Models (LLMs) (Gao et al., 2023; Shi et al.,
2023) and has been widely adopted in the indus-
try, such as Microsoft’s GraphRAG (Edge et al.,
2024), Google’s REALM (Guu et al., 2020), and
Meta’s RA-DIT (Lin et al., 2024). Its effective-
ness mainly comes from retrieving external non-
parametric knowledge into LLMs to remedy their
incomplete, incorrect, or outdated internal paramet-
ric knowledge (Karpukhin et al., 2020; Min et al.,

®Corresponding author.

(a) — Optional
[

Early °rt
nnnnnnnn p —1 millions \Several Several—ga" | Hundreds
ranking|

/ Retrieval
Retrieved L
—T 100><~4—T information _ —100x~4 L100><~100

Post-
1Kx3M inedl Millions \ Hundreds [P Dozens" Tnd Several
Clustering / 1Kx~100 |28 T4 00x~42 j
. -
(b) 4Kx0.6M 4Kx~25—2 1Kx~5-23T qoox~g— Televed
large == small coarse == fine Chunki 9 simple == complex

LLLLL
Candidates G000 O o Granuaity () Hp £a
e R R NS

Document
Set

Retrievers

Figure 1: Comparison between (a) the flat retrieval
and (b) the progressive retrieval paradigm, where & is
the segmentation operation. FUNNELRAG performs
progressive retrieval from large to small quantity, from
coarse to fine granularity, and with simple to complex
retrievers, which balances effectiveness and efficiency.

2019). The de facto RAG framework usually seg-
ments documents into short retrieval units, such
as 100-word passages (Jiang et al., 2024), result-
ing in a massive corpus with tens of millions of
candidate units. Then, the retriever is tasked to
find the “needle” (i.e., the golden retrieval units)
from the “haystack” (i.e., the enormous candidate
corpus) (Lee et al., 2024; Kamradt, 2023). Finally,
the retrieved units serve as the input context to the
generator to facilitate generation. Its working flow
is shown in Figure 1(a). Wikipedia dump is used
as the non-parametric knowledge source (Lewis
et al., 2020), where each document is segmented
into 100-word chunks, resulting in a total of 21M
short passages. Then, the retriever needs to seek
through a vast number of 21M candidates to get
several potentially valuable passages, such as four.
Despite effectiveness, the existing retrieval
paradigms still suffer from two major limitations:

* Flat Retrieval. Most RAG frameworks approach
the retrieval stage as a one-off deal, where the
retriever is requested to take tens of millions of
candidates as input and to find the golden re-
trieval units at a sitting. However, these practices
inflict a heavy burden on one retriever, which
makes the retrieval stage less effective and effi-
cient, since it is very tough and computationally

3029

Findings of the Association for Computational Linguistics:
NAACL 2025, pages 3029-3046
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Retrieval Paradigm Retrieval Unit Time to Chunk Corpus Size Unit Size
Flat Retrieval Passage — Passage (Optional) Early Chunking 21M 100
Progressive Retrieval =~ Clustered Document— Document — Passage ~ Later Chunking 600K 4K

Table 1: Key feature comparison between the prevailing flat retrieval and the proposed progressive retrieval.

complex to find golden units immediately from
such an enormous candidate pool (e.g., 21M).

* Constant Granularity. Some RAG frameworks
draw inspiration from recommender systems
(Wang et al., 2020; Covington et al., 2016; Gr-
bovic and Cheng, 2018), following a multi-stage
cascade architecture, where candidates are ex-
tracted through retrieval and reranking, as shown
in Figure 1(a). However, these practices directly
introduce recommender systems’ experience into
RAG and neglect the characteristics of RAG.
Each entry in recommender systems is usually
inseparable, while entries in RAG are usually
separable. Unfortunately, existing RAG methods
commonly treat entries as constant-grained re-
trieval units, ultimately restricting performance.

The above issues inflict a heavy burden on one re-
triever and neglect the subdivisible characteristic of
entries in RAG. In this work, we propose a progres-
sive retrieval paradigm with coarse-to-fine granu-
larity for RAG, termed FUNNELR AG. Specifically,
it progressively reduces the scale of candidate en-
tries, refines the granularity of retrieval units, and
increases the level of retrievers’ capacity, whose
working flow is shown in Figure 1(b). Particularly,
there are two important designs in FUNNELRAG:

* Progressive Retrieval. Different from flat re-
trieval, we progressively reduce the scale of can-
didates (e.g., millions (0.6M) — hundreds (100)
— dozens (42)) and increase the level of retriev-
ers’ capacity (e.g., sparse retrievers (SR)— dense
retrievers (DR)—small language models (SLM)),
to make a better balance of effectiveness and
efficiency. This design enables load balancing
and improves retrieval accuracy by using mixed-
capacity retrievers. To improve the retrieval ac-
curacy of the entire pipeline, we train SLM with
retrieval-augmented fine-tuning to gain retrieval
capacity. Then, we further distill the aggregated
retrieval signals from SLM to DR so that DR
could align with language models’ preferences.

* Coarse-to-Fine Granularity. To complement
mixed-capacity retrievers with each other, it is

necessary to segment coarse-grained units into
fine-grained ones, as the high-capacity retriev-
ers (e.g., DR) perform relatively poor than low-
capacity ones (e.g., SR) for coarse-grained units
(Chen et al., 2024). As such, we first construct
coarse-grained units with approximate 4K to-
kens by clustering multiple related documents
before retrieval, which can considerably reduce
the corpus size (e.g., 21M—0.6M). Then, coarse-
grained units are segmented into document-level
units (e.g., 4K— 1K) before pre-ranking. Finally,
we segment document-level units into passage-
level units (e.g., 1IK—100) before post-ranking.
These three groups of varied granularity units are
sequentially fed into SR, DR, and SLM to locate
the golden units with high accuracy and low cost.

These two novel designs jointly contribute to
the considerable improvement of retrieval accu-
racy and efficiency in open-domain question an-
swering (QA), such as Natural Question (NQ)
(Kwiatkowski et al., 2019) and Trivia QA (TQA)
(Joshi et al., 2017). Table 1 shows the key dif-
ferences between the progressive retrieval and the
flat one. FUNNELRAG features (1) Coarse-to-fine
granularity which balances load and accuracy; (2)
Later chunking which perceives the contextual in-
formation of retrieval units well'; (3) Compressed
corpus (30x smaller from 21M to 600K) which
reduces the burden on the retrieval stage; and (4)
Long retrieval unit which improves answer recall
to the full extent. More details can be found in §3.

The main contributions of this work are summa-
rized as three-folds: (1) This work highlights the
issues commonly encountered in real-world RAG
systems while overlooked in the existing studies,
i.e., the flat retrieval and constant granularity issues.
(2) This work proposes FUNNELRAG, a coarse-to-
fine progressive retrieval paradigm for RAG, sat-
isfying the three properties of being time-saving,
fine-grained, and contextual-integrity. (3) Exten-
sive experiments demonstrate that FUNNELRAG

'Flat retrieval reranks passages that are not contextual
integrity. However, our progressive retrieval perceives con-
textual information well in the post-ranking stage, since these
passages are derived from documents with contextual integrity.

3030

100 60 90 12
EZ3 Fin = Fing EZA Fine = Fine
E= Coarse = Coar E= Coarse =Om Coarse
= ® o 400\3 =5 - K s;\j
g El 7= £ 3 Si7= =
& ElZ= g = 4 3
§ 60 E /5 20 E gso HVE 5
i %= /=I,= s Sho= &
40 = ﬁ: ’E o 2 75 el 0 2
E gi HIE HUETH
]] =] ’ —
20 H PH PH P 20 PUEZERAE R SRS
100 80 60 40 20 100 80 60 40 20

Top Percentile (%)

(a) NQ dataset.

Top Percentile (%)

(b) TQA dataset.

Figure 2: AR w.r.t. coarse- and fine-grained retrieval.
The bar denotes AR, while the line denotes the percent-
age of performance degradation compared to the cutoff
position of 100%. The X-axis represents the percentage
of units retrieved. Under the same percentile, the num-
ber of tokens retrieved by ‘Fine” and ‘Coarse’ is equal.

can considerably reduce time overhead while the
retrieval performance is comparable or even better
in comparison with existing retrieval paradigms.

2 Preliminaries

2.1 General Retrieval Paradigm for RAG

In retrieval-augmented generation, we are given a
query g and a document set D = {dy, dz, ..., d|p| },
where each document will be usually segmented
into passage-level units, which results in a fine-
grained corpus P = {p1,p2,...,pp|} consisting
of millions of short retrieval units. The de facto
retrieval paradigm comprises two stages: retrieval
and reranking. The retrieval stage mostly employs
a dense retriever, such as the Dense Passage Re-
triever (Karpukhin et al., 2020), which projects
each passage p € P to an embedding E(p) and
projects the query ¢ to an embedding E(q)?. Then,
the top-k relevant passages for query ¢ are retrieved
based on the query-passage embedding similar-
ity, which is often computed by the dot product
E(q)TE(p). After that, the reranking stage em-
ploys a higher capacity reranker (such as RankGPT
(Sun et al., 2023)) to filter out irrelevant passages.
In the last, the top-n passages are fed into the con-
text of the generator to facilitate its generation.

2.2 Experiment for Assumption Validation

As stated in Section 1, we emphasize the signifi-
cance of (i) reducing the scale of candidates, (ii)
refining the granularity of units, and (iii) increas-
ing the level of retrievers’ capacity, throughout the

“Note that the embedding encoder E(-) used for encoding

queries and passages may not be the same, refer to (Karpukhin
et al., 2020). For simplicity, we do make no distinction here.

%

Answer Recall
=
ImprovPercent (%)

)

Top Percentile (%)

(a) NQ dataset.

3
=4
o
P
=3

Answer Recall
%
S
i

S &
ImprovPercent (%

gel
4

=
Iy

0 60 50 40 30 20 10
Top Percentile (%)

(b) TQA dataset.

Figure 3: Answer Recall w.r.t. high- and low-capacity re-
trievers. The line denotes the percentage of performance
improvement compared to the low-capacity retriever.

retrieval paradigm. Here, we conduct empirical
studies to verify claims (ii) and (iii), as it is obvious
that claim (i) will lead to better retrieval accuracy’
(Sawarkar et al., 2024). We aim to evaluate whether
these two claims can contribute to better retrieval
performance, so as to validate that the progres-
sive retrieval paradigm can balance effectiveness
and efficiency well. To empirically verify these
claims, we construct two synthetic datasets for
NQ and TQA. Specifically, for each query in NQ
and TQA, we retrieve the top-10 relevant clustered
documents from the coarse-grained corpus* us-
ing BM25 (Robertson and Zaragoza, 2009), where
each one has approximate 4K tokens. Then, we seg-
ment each clustered document into document-level
units with about 1K tokens, striking the coarse-fine
contrast. On the other hand, we adopt bge-reranker-
v2-m3 (Chen et al., 2024) and BM25 to make a
contrast between high- and low-capacity retrievers:

¢ Coarse-Fine Contrast. To simulate this sce-
nario, we fix the retriever as bge-reranker-v2-m3
and use it to rerank coarse-grained (i.e., clustered
documents) and fine-grained units (i.e., docu-
ments), respectively. We report the answer re-
call (AR) performance on the NQ and TQAS,
which are presented in Figures 2(a) and 2(b), re-
spectively. From the results, the answer recall
with fine-grained retrieval substantially outper-

3 Assuming a fixed number of golden units that exists in
candidates, increasing the scale of candidates reduces the
signal-to-noise ratio, inevitable degrading retrieval accuracy.

#Referring to Section 3.1.1 and Algorithm 1 for more tech-
nical details about how the clustered documents formulated.

3> Answer Recall (AR) measures the recall of the answer
string in all the retrieved units. We employ it as the retrieval
metric, referring to Appendix B.3 for more technical details.

3031

forms that with coarse-grained one. Additionally,
the performance degradation with fine-grained
retrieval is significantly slower than that with
coarse-grained one. For example, on the NQ
dataset, fine-grained retrieval only drops 2.25%
of its original performance, while coarse-grained
retrieval drops 37.93%, when the cutoff position
is top 20%. Given the above, it is necessary
and valuable to segment coarse-grained units
into fine-grained units along progressive retrieval
stages in order for better retrieval performance.

» High-Low Contrast. To simulate this scenario,
we fix the granularity of retrieval units as fine-
grained ones and employ bge-reranker-v2-m3
and BM25 to rerank them, respectively. The ex-
perimental results are presented in Figure 3(a)
and 3(b), respectively. From the results, we
observe that the answer recall with the high-
capacity retriever is consistently higher than that
with the low-capacity one. In particular, the gain
brought by the high-capacity retriever generally
increases as the cutoff position decreases. For
example, on the NQ dataset, the retrieval per-
formance improvement of ‘High’ over ‘Low’ is
5.45% and 0.60% in terms of cutoff@10% and
cutoff@20%. These observations indicate that
using high-capacity retrievers in later stages can
retain the golden retrieval units to a large extent.

3 Methodology

The overall framework of FUNNELRAG is shown
in Figure 4. We first introduce three progressive
retrieval stages from coarse to fine (§3.1) and then
describe how to distill aggregated signals from the
succeeding retriever to the preceding one (§3.2).

3.1 Coarse-to-Fine Progressive Retrieval

To better balance effectiveness and efficiency, we
propose a progressive retrieval paradigm, which
enables load balancing and improves retrieval ac-
curacy by collaborating mixed-capacity retrievers,
refining retrieval granularity, and reducing candi-
date scale. It can be formulated into three stages:
(1) Retrieval, which usually uses relatively simple
bi-encoder models to retrieve coarse-grained units;
(2) Pre-ranking, which adopts cross-encoder mod-
els to rank the previously retrieved units; and (3)
Post-ranking, which employs relatively complex
list-wise models to rank these fine-grained units.
We provide an intuitive example in Appendix C.5.

3.1.1 Retrieval Stage

This stage plays a role in improving answer re-
call (AR) to the full extent, without considering
the granularity of the retrieval unit. Toward this
end, we propose to convert the document set D
into long retrieval (coarse-grained) units, which
is proven to be effective in improving AR (Jiang
et al., 2024). Specifically, we cluster documents in
D based on their relationships, i.e., hyperlinks em-
bedded within each document, and finally results
in a coarse-grained corpus C = {c1, ¢z, ..., ¢c| }-

The clustering algorithm is presented in Ap-
pendix D in Algorithm 1, where we draw inspi-
ration from (Jiang et al., 2024) but make several
major modifications. Specially, we sort documents
by their local cluster coefficient from high to low
in Line 1, so that documents with highly relevant
will be clustered first. Furthermore, we measure
the closeness centrality between document d and
its related clusters R and sort them from high to
low in Line 10, so that the most related cluster will
be merged first. Each cluster ¢ in C is a list of docu-
ments related to each other. We set the max cluster
size S as 4K tokens because the experimental re-
sults (§4.4) demonstrate that overlength retrieval
units do not bring much benefits to answer recall.

Currently, it is challenging and underperform-
ing for dense retrievers to handle long context,
even with the SOTA dense retrievers, e.g, BGE-
M3 (Chen et al., 2024). In LongRAG (Jiang et al.,
2024), they handle long context by maximizing the
scores of all chunks within each long retrieval unit,
where they segment each long unit into 512-token
chunks. However, this practice has no essential
difference with direct retrieval of short units and
is computation-consuming. As the goal of this
stage is to improve AR regardless of granularity,
we use sparse retrievers to handle long context,
which shows more effective than dense retrievers
in long-doc retrieval (Chen et al., 2024). With-
out loss of generality, we adopt the representative
sparse retriever in this work, i.e., BM25 (Robert-
son and Zaragoza, 2009), whose computational
cost is far below dense retrievers. Lastly, we use
BM25 to retrieve the top-K relevant long units
Cp = {c,ch,...,ck-}. We set K as a proper value
(e.g., 80) to achieve relatively high AR and reduce
the computational burden of the succeeding stages.

3.1.2 Pre-ranking Stage

This stage plays a role in finding the “needle” (i.e.,
the document containing the answer string) from

3032

2RI

Flat Retrieval || mMs

Rerank (Optional)

Fine-grained corpus

Query:
------ when did
computer
become
widespread in
homes and —_
schools?

Initial corpus

Document ®o
Clustering @~

>

Coarse-grained | ciuster
corpus

Coarse-grained
corpus

Clustered
documents

Using medium-
‘ size models

Segmentation

@ Using relatively complex models :> :>
------ 1960s ¥

Using relatively
simple models

Using relatively

complex models
Local-to-Global

; Distillation

”
------ = =Y

Prog resswe
Retrieval

!

""" Later Chunking

Figure 4: The overall system framework of FUNNELRAG. The upper layer illustrates the working flow of the flat
retrieval paradigm, while the bottom layer illustrates the working flow of our progressive retrieval paradigm.

the “needle case” (i.e., the retrieved clusters) rather
than the “haystack” (millions in most cases). The
corpus size is the key difference between the exist-
ing retrieval paradigm and ours, where the corpus
size of ours is hundreds, making it easy to find the
“needle”. Formally, we first segment each cluster
¢ in C; into document-level units d. And then, we
utilize a cross-encoder model, denoted as f(-), to
measure their pre-ranking scores to the query g¢:

SP¢ = f(q,d). (1)

Given pre-ranking scores, we retrieve top-N docu-
ments closest to the query Dy, = {d}",dy’, ..., d}\} }.
Figure 2 shows the performance comparison be-
tween fine-grained and coarse-grained units. The
results indicate that the finer retrieval units can sig-
nificantly reduce the loss of retrieval performance.

3.1.3 Post-ranking Stage

This stage plays a role in identifying fine-grained
units that align with language models’ preferences.
We segment each document into passage-level units
p in this relatively late stage. Referring to (Ji-
naAl, 2024), we term this technique as “Later
Chunking”, which retrieves long units in the pre-
vious stages to preserve contextual semantics well
and then segments long units into fine-grained
units in the later stages for better retrieval appli-
cations After chunking, we obtain M passages
{pl, p2, . pf‘c/[} Then, a practical question natu-
rally arises: How do efficiently post-rank these fine-
grained units to align with language models’ prefer-
ences? A straightforward way is to serve LLMs as
agents to post-rank passages with their preferences,
e.g., RankGPT (Sun et al., 2023) and RankVicuna
(Pradeep et al., 2023). Nevertheless, directly using
LLMs as rankers inevitably inflicts a significant
computational burden on the post-ranking stage,
making it very difficult to deploy in production.

Instead of heuristically instructing LLMs to
post-rank, our post-ranker builds upon FiD
(Fusion-in-Decoder) (Izacard and Grave, 2021b),
a retrieval-augmented encoder-decoder language
model. Specifically, each passage p is paired with
the query g to be processed separately by the T5
(Raffel et al., 2020) encoder. Subsequently, the
encoded representations are concatenated along the
sequence dimension. Lastly, the T5 (Raffel et al.,
2020) decoder attends to all of the parts simultane-
ously:

FiD(q, Py) = Dec(H, . .. |H @)

.} M)
where H, ,; = Enc(q @ p’); @ and | are the
concatenation operator. By independently pro-
cessing each (¢, p’) pair, the encoder computes
self-attention within one passage at a time. As
such, the computational cost scales linearly with
the number of passages, making the post-ranking
stage highly efficient. Furthermore, the decoder’s
cross-attention scores have shown to be remarkably
effective in estimating the relative importance of
the retrieval-augmented passage from the language
models’ preferences (Izacard and Grave, 2021a; Yu
et al., 2023; Izacard et al., 2023; Shi et al., 2024).
Given that, we average FiD cross-attention scores
corresponding to each (g, p/) pair from the first
decoder token® over all the layers, all the heads, as
well as all the representative tokens within g & p/:

In
S = lh i 2 Z Z A0l)

1=0 j=0 k=0

where [n, Lh, and I denote the number of the lay-
ers, heads, and representative tokens, respectively;
Qi jr[k] Tepresents the score of the first decoder

®Here, we take the score of the first token, as it leads

to satisfactory performance in general. More analysis about
attention aggregation schema can be found in Appendix C.1.

3033

token in terms of the i-th layer, j-th head, and
k-th representative token; r[k] lookups the index
of k-th representative token. We select Ir tokens
with the highest scores to serve as representative
ones’. The cross-attention mechanism is provided
in Appendix A.1. Before estimating the relative
importance score, we train FiD to predict the an-
swer with retrieval-augmented passages, so that
FiD can learn to look for cues, referring to Ap-
pendix A.3 for more details. After that, we ob-
tain the post-ranking score and treat these passages
with scores ranked in the top-H as oracle passages
Py = {p{,pg, ...,pf{}. The oracle passages Py
will be fed into generators to facilitate generation.

3.2 Distillation with Aggregated Signals

Ideally, we would like the retrieval units containing
oracle passages to be ranked at the forefront by the
preceding retriever, so that the succeeding one can
reach out to oracle passages. To this end, we pro-
pose to distill retrieval knowledge from the succeed-
ing to the preceding, termed local-to-global (L2G)
distillation®. While distilling, an issue emerges: the
granularity of retrieval units between sequentially
neighboring stages is different, hindering distilla-
tion. Given that, we propose aggregating retrieval
scores from local to global. By doing so, we can
fill the granularity gap between two neighboring
stages. Formally, we aggregate retrieval scores as:

t
Sgos —pre — o X max {Spost} +
ped

o post
(1 —a)x n;eean {spesty

“

where a € [0,1] controls the strength of ‘max’
and ‘mean’ parts. When o = 1, the score focuses
on the most important passage in the document;
when o = 0, the score focuses on the average
importance level of all passages in the document.
We annotate documents with Top-K aggregated
scores as positive. Inspired by (Yu et al., 2023), we
annotate the ones D" that hit the ground truth as
positive to make the training process more robust:

DT =DM U Top-K D,
Sgostﬂpre (5)

D™ =D,\D",

"Note that we do not consider query tokens in ¢ when
selecting representative tokens, refer to the ablation study in
Appendix C.2 for more details. More technical details about
representative token selection can be found in Appendix A.2.

81n this work, we only distill retrieval knowledge from the
post-ranking to pre-ranking stage, as we use sparse retrieval
(BM25 (Robertson and Zaragoza, 2009)) in the retrieval stage.

where the remaining documents (i.e., D;,\D™)
serves as negative ones. Following ANCE (Xiong
et al., 2021), we adopt the pairwise Bayesian Per-
sonalized Ranking (BPR) loss (Rendle et al., 2009),
enforcing the match score between the query and
positive documents to be higher than negative ones:

=22 2

q dteDtd-eD—

—log o (SPI°—SP"€), (6)

where o (-) denotes the sigmoid function; S5 and
SP"¢ denote f(q,d") and f(q,d™), respectively.

4 Experiment

In this section, we conduct extensive experiments
on two QA benchmark datasets to answer the fol-
lowing Research Questions (RQs): RQ1: How
does progressive retrieval perform w.r.t. Answer
Recall when compared to flat one? RQ2: What
are the benefits of performing FUNNELRAG in
Question Answering? RQ3: How do different set-
tings influence the effectiveness of progressive re-
trieval? RQ4: How does the retrieval performance
of FUNNELRAG vary with different attention ag-
gregation schemes? (Appendix C.1) RQ5: Does
ablating query tokens benefit the retrieval perfor-
mance when selecting representative tokens? (Ap-
pendix C.2) RQ6: Does FUNNELRAG contributes
to a higher contextual integrity? (Appendix C.3)

4.1 Experimental Settings

Datasets. We experiment on two QA datasets:
i.e., Natural Question (NQ) (Kwiatkowski et al.,
2019) and Trivia QA (TQA) (Joshi et al., 2017).
Appendix B.1 provides the statistics of the datasets.

Metrics. Following (Lewis et al., 2020) and
(Jiang et al., 2024), we employ Answer Recall (AR)
and Exact Match (EM) to measure the performance
of retrieval and generation, respectively. Besides,
we use time cost as the metric of retrieval efficiency.

Retrievers. In progressive retrieval, we adopt
BM25 (Robertson and Zaragoza, 2009) for re-
trieval, employ bge-reranker-v2-m3 (Chen et al.,
2024) as our pre-ranker, and leverage FiD (Izacard
and Grave, 2021b) to perform post-ranking. As for
flat retrieval, we use bge-large-en-v1.5 (Xiao et al.,
2023), the SOTA embedding model, to retrieve
passages, and use bge-reranker-v2-m3 to rerank.

Generators. We choose two representative open-
source LLMs: Llama3-8B-Instruct (Dubey et al.,
2024) and Qwen2-7B-Instruct (Yang et al., 2024),

3034

Retrieval Stages i
Datasets Retrieval Paradigm 8 Tlm?rCOSt AnswerRecall
Retrieval ~ Pre/Re-ranking Post-ranking M (AR)
. 2IM —4p N/A N/A 4.90 (4.90+N/A+N/A) 72.91
Flat Retrieval
21M — 400p 400p — 4p N/A 5.25 (4.90+0.35+N/A) 75.90
NQ 600K — 4c N/A N/A 0.00 (0.00+N/A+N/A) 71.69
Progressive Retrieval 600K — 20c 20c —"% 44 N/A 0.49 (0.00+0.49+N/A) 74.57
600K — 80c 80c =%, 84 8d 2% 4p 2.97 (0.00+2.20+0.77) 75.43
. 2IM —4p N/A N/A 5.02 (5.02+N/A+N/A) 75.22
Flat Retrieval
21M — 400p 400p — 4p N/A 5.41 (5.02+0.39+N/A) 81.29
TQA 600K — 4c N/A N/A 0.00 (0.00+N/A+N/A) 78.94
Progressive Retrieval 600K — 20c 20c 22004 44 N/A 0.60 (0.00+0.60+N/A) 80.00
600K — 80c 80c 2%, 124 12d =%, 4p 3.47 (0.00+2.52+0.95) 80.69

Table 2: Retrieval performance comparison w.r.t. time cost and answer recall on NQ and TQA datasets, where
‘c’, ‘d’, and ‘p’ denote clustered documents, documents, and passages, respectively. The value on the arrow (—)
indicates the number of fine-grained candidates after segmenting coarse-grained ones. The number of time cost is in
seconds. We provide detailed hardware and software configurations for experiments on time cost in Appendix B.5.

for our QA evaluation’. More details related to

experimental settings can be found in Appendix B.

4.2 Retrieval Performance (RQ1)

Table 2, 11, 12, and 13 shows the retrieval re-
sults on NQ and TQA datasets. As BM25’s re-
trieval speed is breakneck, we mark its time cost
as 0.00. From the results, we mainly have the fol-
lowing observations: (1) By adjusting the collab-
oration between large-to-small quantities, coarse-
to-fine granularity, and simple-to-complex retriev-
ers, progressive retrieval can find a gain-cost bal-
ance point. Specifically, the time cost of progres-
sive retrieval is considerably lower than that of
the flat one (reduced by about 40%), while the
AR is comparable to (or even better than) the flat
one. The main reason for this results is that pro-
gressive retrieval combines the advantage of dif-
ferent retrievers but circumvents their disadvan-
tage!’. (2) By retrieving in a funnel manner (e.g.,
600K Retrieval 80c Pre-ranking 8d Post-ranking 4p)’ pro-
gressive retrieval enables load balancing. It as-
signs simple but computationally demanding tasks
to low-capacity retrievers, e.g., retrieving 80 clus-
tered documents from 600K candidates. With al-
most no loss of golden units, the number of candi-
dates dropped 7500x, largely increasing the signal-
to-noise ratio. On the other hand, it assigns hard

"We use Llama3-8B and Qwen2-7B to represent Llama3-
8B-Instruct and Qwen2-7B-Instruct, respectively, for brevity.
10progressive retrieval combines simple retrievers’ fast
speed with complex ones’ high precision, while it avoids sim-
ple retrievers’ low precision and complex ones’ slow speed.

Generators @K NQ - TQA -
Flat Progressive Flat Progressive
@1 43.88 51.27 (16.84%) | 67.54 70.77 (4.78%)
Llama3-8B @2 46.18 51.50 (11.52%) | 66.84 67.66 (1.23%)
@3 49.31 49.06 (-0.51%) | 66.10 67.89 (2.71%)
@4 51.44 48.86 (-5.02%) | 67.10 68.47 (2.04%)
@] 48.86 53.43 (9.35%) | 72.01 72.39 (0.53%)
@2 53.32 54.27 (1.78%) | 73.69 73.17 (-0.71%)
Qwen2-7B
@3 54.63 55.07 (0.81%) | 74.60 73.73 (-1.17%)
@4 | 5546 55.48(0.04%) | 74.97 7437 (-0.80%)
Average Performance | 50.39 5237 (3.93%) | 7036 71.06 (0.99%)

Table 3: Generation performance in terms of different
retrieval paradigms. The bold indicates the best results.

but computationally undemanding tasks to high-
capacity retrievers, e.g., retrieving 4p passages
from 8d document candidates. We provide more re-
trieval performance comparisons in Appendix C.4.

4.3 Generation Performance (RQ2)

Table 3 shows the generation performance w.rt.
flat and progressive retrieval. From the results, we
observe performance with progressive retrieval out-
performs that with flat one in 13 out of 18 cases,
indicating the superiority of supplementing LLMs
with FUNNELR AG. Specifically, when the cutoff
position is small, progressive retrieval considerably
outperforms flat one, such as the improvement of
16.87% and 9.35% on the NQ dataset in terms of
@1 with Llama3-8B and Qwen2-7B, respectively.
When the cutoff position is high, progressive re-
trieval still outperforms flat one in half of cases,
even if the AR of progressive one is slightly lower
than flat one. The reason is that passages retrieved

3035

NQ dataset TQA dataset

TQA dataset

-=- 5=4K
S5=8K

=1K -=- §=4K
=2 S=8K

- a=075

PRTIEN -=- a=0.50
> h = a=025

10 20 50 100 200 5 10 20 50 100 200
Cutoff Position Cutoff Position

(a) AR w.rt. different granularity.

(b) Impact of #rep tokens (in Top-4).

Cutoff Position

(c) Effect of local-to-global distillation.

Figure 5: Model performance w.r.z. (a) different granularity of clustered documents, (b) different number of
representative tokens, and (c) L2G distillation. #Rep tokens is the abbr of “the number of representative tokens”.

NQ dataset

4 16 24 32 [

8 2 2 4 8 6 2
#Rep Tokens Ir #Rep Tokens Ir

(a) Impact of #rep tokens (in Top-1).

32 2 4 8 16 24 »

(b) Impact of #rep tokens (in Top-2).

(c) Impact of #rep tokens (in Top-3).

Figure 6: AR comparison (in Top-1, Top-2, and Top-3) of FUNNELRAG w.r.t. different numbers of rep tokens.

by FUNNELRAG have higher contextual integrity,
refer to Appendix C.3 for more details. Besides,
we find Llama3-8B’s performance may deterio-
rate when provided with more passages, whereas
Qwen2-7B does not. The main reason may be the
difference in their ability to handle long contexts.

4.4 Study of FUNNELRAG (RQ3)

In this section, we move on to studying different
settings in the proposed FUNNELRAG framework:

(1) AR w.r.t. different granularity: As shown
in Figure 5(a), we experiment to evaluate the an-
swer recall w.rt. different granularity of clustered
documents, where we tune the max cluster size S
within the range of {1K, 2K, 4K, 8K}. It can be
observed that setting S as 8K does not bring much
performance benefits compared to 4K. In contrast,
setting .S as a small value (e.g., 1K) considerably
degrades the performance. In view of this, we set
the max cluster size S as 4K tokens in this work.

(2) Impact of representative tokens: As shown
in Figure 5(b) and 6, we experiment to investi-
gate #rep tokens [r, where we search [r in the
range of {2, 4, 8, 16, 24, 32}. We also aggre-
gate FiD cross-attention scores across all tokens
with/without query ones. We observe that the per-
formance of aggregating rep tokens significantly
outperforms that of aggregating all ones. On the
other hand, it gets a peak value when selecting a
few rep tokens, such as 4 in most cases. The results
fully validate the necessity of selecting rep tokens.
More related details can be seen in Appendix C.2.

(3) Effect of local-to-global distillation: As
shown in Figure 5(c), we experiment to explore
the effect of local-to-global distillation, we tune
« in the range of {0.25, 0.5, 0.75}. From the re-
sults, we observe that a higher value « (e.g., 0.75)
usually leads to better performance and relatively
high improvement on the top-ranked position (e.g.,
Top-1). The improvement is relatively trivial when
« is small (e.g., 0.25). When the cutoff position
is large (e.g., Top-4), different values of « bring
similar performance improvements. In conclusion,
we suggest tuning « within the range of [0.5, 1.0).

5 Related Works

Information Retrieval (IR). IR models contain
two categories: (1) Sparse retrieval, which com-
putes relevance scores via lexical similarity (Salton
and Buckley, 1988); (2) Dense retrieval, which
captures semantic similarity within dense space
(Izacard et al., 2022; Hu et al., 2025). To further
improve retrieval performance, the re-ranking mod-
ule is proposed to accurately re-estimate relevance
scores using an enhanced model (Zhuang et al.,
2023; Nogueira et al., 2020; Hwang et al., 2024).
Recently, LLMs have shown remarkable capabil-
ity in re-ranking without further fine-tuning (Liang
et al., 2023; Sun et al., 2023; Pradeep et al., 2023).
Despite effectiveness, we argue that they have not
fully disclosed coarse-to-fine granularity evolution.

Retrieval-Augmented Generation. Retrieving
knowledge from external sources to supplement

3036

LLMs’ generation has been proven effective (Lewis
et al., 2020; Guu et al., 2020; Mialon et al.,
2023; Izacard et al., 2023; Zhao et al., 2024) in
knowledge-intensive tasks (Petroni et al., 2021).
Specifically, RAG incorporates retrieval modules
to provide external non-parametric knowledge into
generation modules to remedy their incomplete,
incorrect, or outdated internal parametric knowl-
edge (Karpukhin et al., 2020; Min et al., 2019).
Previous works jointly train the retrieval and gener-
ation modules (Borgeaud et al., 2022; Lewis et al.,
2020; Guu et al., 2020). With the rise of LLMs
(OpenAl, 2023), most works directly serve them
as generation modules without tuning due to their
strong emergent abilities (Xu et al., 2024; Jeong
et al., 2024; Cheng et al., 2024). Inspired by RAG’s
strong practicality, a wide range of domains have
developed specific RAG frameworks to perform
their tasks, including computer vision (Rao et al.,
2023; Sharifymoghaddam et al., 2024; Zhang et al.,
2024; Shen et al., 2024), knowledge graph (Yu
et al., 2022; Edge et al., 2024), and speech (Xue
et al., 2024; Wang et al., 2024). Albeit studied for
ages, the balance between the effectiveness and
efficiency of different retrievers is less explored.

6 Conclusion

In this paper, we propose a coarse-to-fine progres-
sive retrieval paradigm for RAG, FUNNELRAG, to
enable load balancing and improve retrieval perfor-
mance. The FUNNELRAG framework efficiently
retrieves useful passages by seamlessly collabo-
rating different granularity (clustered document
— passage), quantity (21M — 8d), and capacity
(BM25 — FiD). Applying our framework reduces
time cost by nearly 40%, while the retrieval accu-
racy is comparable. In conclusion, our work sheds
light on collaboration between complex and simple
retrieval modules, and extensive experiments fully
demonstrate its feasibility as well as usefulness.

Limitations

Despite our innovations and improvements, we
must acknowledge certain limitations in our work:

e Heuristic Metric. The answer recall (AR),
which is the main retrieval metric adopted in the
experiments, might overestimate the usefulness
of the retrieved information because it mechan-
ically measures whether the retrieved informa-
tion contains the answer string, even if the re-
trieved information does not convey accurate se-

mantics. Evaluating metrics for RAG remains an
open field that still needs further investigation.

e Hand-crafted Labor. Although our method is
able to balance effectiveness and efficiency well,
some hand-crafted labors are required to fulfill
this goal. Specifically, to enable load balanc-
ing and improve retrieval accuracy, some hyper-
parameters needed to be tuned, such as the max
cluster size S, and the data flow between each
stage required to carefully collaborate, such as
the quantity of the retrieved units in each stage.

* Compatibility Issue. It is worth mentioning
that FUNNELRAG is a model-agnostic frame-
work and can flexibly adapt to different retriev-
ers. Therefore, the performance of FUNNEL-
RAG may be influenced by the characteristics
of the retrievers. On the other hand, users can
customize the retrievers to accommodate their
specific scenarios. This work experiment on re-
cently released retrievers and the results fully
demonstrate the superiority of FUNNELRAG.

Acknowledgments

This work is jointly supported by grants: Na-
tional Natural Science Foundation of China (No.
62376067), and Guangdong Basic and Applied Ba-
sic Research Foundation (2023A1515110078). We
sincerely thank all anonymous reviewers for their
detailed and careful reviews and valuable sugges-
tions, which have significantly improved our work.

References

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.
Qwen technical report. CoRR, abs/2309.16609.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George
van den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, Diego de Las Casas, Aurelia
Guy, Jacob Menick, Roman Ring, Tom Hennigan,
Saffron Huang, Loren Maggiore, Chris Jones, Albin
Cassirer, Andy Brock, Michela Paganini, Geoffrey

3037

https://doi.org/10.48550/ARXIV.2309.16609

Irving, Oriol Vinyals, Simon Osindero, Karen Si-
monyan, Jack W. Rae, Erich Elsen, and Laurent Sifre.
2022. Improving language models by retrieving from
trillions of tokens. In International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Bal-
timore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 2206-2240.
PMLR.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024. BGE m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
CoRR, abs/2402.03216.

Xin Cheng, Xun Wang, Xingxing Zhang, Tao Ge, Si-
Qing Chen, Furu Wei, Huishuai Zhang, and Dongyan
Zhao. 2024. xrag: Extreme context compression
for retrieval-augmented generation with one token.
CoRR, abs/2405.13792.

Paul Covington, Jay Adams, and Emre Sargin. 2016.
Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM Conference on Rec-
ommender Systems, Boston, MA, USA, September
15-19, 2016, pages 191-198. ACM.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le.
2020. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Boyi Deng, Wenjie Wang, Fengbin Zhu, Qifan Wang,
and Fuli Feng. 2024. Cram: Credibility-aware atten-
tion modification in 1lms for combating misinforma-
tion in RAG. CoRR, abs/2406.11497.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,

Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph RAG approach to query-focused summariza-
tion. CoRR, abs/2404.16130.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2022. Tevatron: An efficient and flexible toolkit for
dense retrieval. CoRR, abs/2203.05765.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2023. Retrieval-
augmented generation for large language models: A
survey. CoRR, abs/2312.10997.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh
Raje, Venkatesan Chakaravarthy, Yogish Sabharwal,
and Ashish Verma. 2020. Power-bert: Accelerating
bert inference via progressive word-vector elimina-
tion. In International Conference on Machine Learn-
ing, pages 3690-3699. PMLR.

Mihajlo Grbovic and Haibin Cheng. 2018. Real-time
personalization using embeddings for search ranking
at airbnb. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, KDD 2018, London, UK, August 19-23,
2018, pages 311-320. ACM.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. REALM: retrieval-
augmented language model pre-training. CoRR,
abs/2002.08909.

Xinshuo Hu, Zifei Shan, Xinping Zhao, Zetian Sun,
Zhenyu Liu, Dongfang Li, Shaolin Ye, Xinyuan
Wei, Qian Chen, Baotian Hu, Haofen Wang, Jun
Yu, and Min Zhang. 2025. Kalm-embedding: Supe-
rior training data brings a stronger embedding model.
Preprint, arXiv:2501.01028.

Taeho Hwang, Soyeong Jeong, Sukmin Cho, Seungy-
oon Han, and Jong C. Park. 2024. DSLR: document
refinement with sentence-level re-ranking and recon-
struction to enhance retrieval-augmented generation.
CoRR, abs/2407.03627.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022. Unsupervised dense in-
formation retrieval with contrastive learning. Trans.
Mach. Learn. Res., 2022.

3038

https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://doi.org/10.48550/ARXIV.2402.03216
https://doi.org/10.48550/ARXIV.2402.03216
https://doi.org/10.48550/ARXIV.2402.03216
https://doi.org/10.48550/ARXIV.2405.13792
https://doi.org/10.48550/ARXIV.2405.13792
https://doi.org/10.1145/2959100.2959190
https://proceedings.neurips.cc/paper/2020/hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html
https://doi.org/10.48550/ARXIV.2406.11497
https://doi.org/10.48550/ARXIV.2406.11497
https://doi.org/10.48550/ARXIV.2406.11497
https://arxiv.org/pdf/2407.21783
https://doi.org/10.48550/ARXIV.2404.16130
https://doi.org/10.48550/ARXIV.2404.16130
https://doi.org/10.48550/ARXIV.2404.16130
https://doi.org/10.48550/ARXIV.2203.05765
https://doi.org/10.48550/ARXIV.2203.05765
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://doi.org/10.48550/ARXIV.2312.10997
https://proceedings.mlr.press/v119/goyal20a/goyal20a.pdf
https://proceedings.mlr.press/v119/goyal20a/goyal20a.pdf
https://proceedings.mlr.press/v119/goyal20a/goyal20a.pdf
https://doi.org/10.1145/3219819.3219885
https://doi.org/10.1145/3219819.3219885
https://doi.org/10.1145/3219819.3219885
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2501.01028
https://arxiv.org/abs/2501.01028
https://doi.org/10.48550/ARXIV.2407.03627
https://doi.org/10.48550/ARXIV.2407.03627
https://doi.org/10.48550/ARXIV.2407.03627
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0

Gautier Izacard and Edouard Grave. 2021a. Distilling
knowledge from reader to retriever for question an-
swering. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net.

Gautier Izacard and Edouard Grave. 2021b. Leveraging
passage retrieval with generative models for open do-
main question answering. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
EACL 2021, Online, April 19 - 23, 2021, pages 874—
880. Association for Computational Linguistics.

Gautier Izacard, Patrick S. H. Lewis, Maria Lomeli,
Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2023. Atlas: Few-shot learning
with retrieval augmented language models. J. Mach.
Learn. Res., 24:251:1-251:43.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong Park. 2024. Adaptive-rag: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), NAACL 2024, Mexico City, Mexico, June
16-21, 2024, pages 7036-7050. Association for Com-
putational Linguistics.

Ziyan Jiang, Xueguang Ma, and Wenhu Chen. 2024.
Longrag: Enhancing retrieval-augmented generation
with long-context llms. CoRR, abs/2406.15319.

JinaAl. 2024. Late chunking in long-context embedding
models.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, pages 1601-1611. Association for
Computational Linguistics.

Greg Kamradt. 2023. Needle in a haystack - pressure
testing 1lms.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Dangi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769—6781. Associa-
tion for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob

Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering

research. Trans. Assoc. Comput. Linguistics, 7:452—
466.

Jinhyuk Lee, Anthony Chen, Zhuyun Dai, Dheeru Dua,
Devendra Singh Sachan, Michael Boratko, Yi Luan,
Sébastien M. R. Arnold, Vincent Perot, Siddharth
Dalmia, Hexiang Hu, Xudong Lin, Panupong Pasu-
pat, Aida Amini, Jeremy R. Cole, Sebastian Riedel,
Iftekhar Naim, Ming-Wei Chang, and Kelvin Guu.
2024. Can long-context language models subsume
retrieval, rag, sql, and more? CoRR, abs/2406.13121.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open do-
main question answering. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 6086—6096.
Association for Computational Linguistics.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih,
Tim Rocktischel, Sebastian Riedel, and Douwe
Kiela. 2020. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak,
Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang,
Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert
Yiiksekgoniil, Mirac Suzgun, Nathan Kim, Neel
Guha, Niladri S. Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2023. Holistic eval-
uation of language models. Trans. Mach. Learn. Res.,
2023.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia
Shi, Maria Lomeli, Richard James, Pedro Rodriguez,
Jacob Kahn, Gergely Szilvasy, Mike Lewis, Luke
Zettlemoyer, and Wen-tau Yih. 2024. RA-DIT:
retrieval-augmented dual instruction tuning. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

Xing Han Lu. 2024. Bm25s: Orders of magnitude faster
lexical search via eager sparse scoring. Preprint,
arXiv:2407.03618.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ramakanth Pasunuru, Roberta

3039

https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://doi.org/10.18653/V1/2021.EACL-MAIN.74
https://doi.org/10.18653/V1/2021.EACL-MAIN.74
https://doi.org/10.18653/V1/2021.EACL-MAIN.74
https://jmlr.org/papers/v24/23-0037.html
https://jmlr.org/papers/v24/23-0037.html
https://doi.org/10.18653/V1/2024.NAACL-LONG.389
https://doi.org/10.18653/V1/2024.NAACL-LONG.389
https://doi.org/10.18653/V1/2024.NAACL-LONG.389
https://doi.org/10.48550/ARXIV.2406.15319
https://doi.org/10.48550/ARXIV.2406.15319
https://jina.ai/news/late-chunking-in-long-context-embedding-models/
https://jina.ai/news/late-chunking-in-long-context-embedding-models/
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/P17-1147
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.48550/ARXIV.2406.13121
https://doi.org/10.48550/ARXIV.2406.13121
https://doi.org/10.18653/V1/P19-1612
https://doi.org/10.18653/V1/P19-1612
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://openreview.net/forum?id=iO4LZibEqW
https://openreview.net/forum?id=iO4LZibEqW
https://openreview.net/forum?id=22OTbutug9
https://openreview.net/forum?id=22OTbutug9
https://arxiv.org/abs/2407.03618
https://arxiv.org/abs/2407.03618

Raileanu, Baptiste Roziere, Timo Schick, Jane
Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann
LeCun, and Thomas Scialom. 2023. Augmented lan-
guage models: a survey. Trans. Mach. Learn. Res.,
2023.

Sewon Min, Dangi Chen, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Knowledge guided text re-
trieval and reading for open domain question answer-
ing. CoRR, abs/1911.03868.

Rodrigo Frassetto Nogueira, Zhiying Jiang, Ronak
Pradeep, and Jimmy Lin. 2020. Document ranking
with a pretrained sequence-to-sequence model. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, Online Event, 16-20 Novem-
ber 2020, volume EMNLP 2020 of Findings of ACL,
pages 708-718. Association for Computational Lin-
guistics.

OpenAl. 2023. CoRR,

abs/2303.08774.

GPT-4 technical report.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
S. H. Lewis, Majid Yazdani, Nicola De Cao, James
Thorne, Yacine Jernite, Vladimir Karpukhin, Jean
Maillard, Vassilis Plachouras, Tim Rocktidschel, and
Sebastian Riedel. 2021. KILT: a benchmark for
knowledge intensive language tasks. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 2523-2544. Associa-
tion for Computational Linguistics.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy
Lin. 2023. Rankvicuna: Zero-shot listwise document
reranking with open-source large language models.
CoRR, abs/2309.15088.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. In OpenAl.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Jun Rao, Liang Ding, Shuhan Qi, Meng Fang, Yang
Liu, Li Shen, and Dacheng Tao. 2023. Dynamic
contrastive distillation for image-text retrieval. IEEE
Trans. Multim., 25:8383-8395.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner,
and Lars Schmidt-Thieme. 2009. BPR: bayesian
personalized ranking from implicit feedback. In UAI
2009, Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, Montreal, QC,
Canada, June 18-21, 2009, pages 452-461. AUAI
Press.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Found. Trends Inf. Retr., 3(4):333-389.

Gerard Salton and Chris Buckley. 1988. Term-
weighting approaches in automatic text retrieval. Inf.
Process. Manag., 24(5):513-523.

Kunal Sawarkar, Abhilasha Mangal, and Shivam Raj
Solanki. 2024. Blended RAG: improving RAG
(retriever-augmented generation) accuracy with se-
mantic search and hybrid query-based retrievers.
CoRR, abs/2404.07220.

Claude E. Shannon. 2001. A mathematical theory of
communication. ACM SIGMOBILE Mob. Comput.
Commun. Rev., 5(1):3-55.

Sahel Sharifymoghaddam, Shivani Upadhyay, Wenhu
Chen, and Jimmy Lin. 2024. Unirag: Universal re-
trieval augmentation for multi-modal large language
models. CoRR, abs/2405.10311.

Haozhan Shen, Kangjia Zhao, Tiancheng Zhao,
Ruochen Xu, Zilun Zhang, Mingwei Zhu, and
Jianwei Yin. 2024. Zoomeye: Enhancing mul-
timodal 1lms with human-like zooming capabili-
ties through tree-based image exploration. CoRR,
abs/2411.16044.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen-tau Yih. 2023. REPLUG: retrieval-augmented
black-box language models. CoRR, abs/2301.12652.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Richard James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. 2024. REPLUG: retrieval-
augmented black-box language models. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), NAACL 2024, Mexico City, Mexico,
June 16-21, 2024, pages 8371-8384. Association for
Computational Linguistics.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaigiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is chatgpt good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 14918-14937. Association for Computational
Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-

3040

https://openreview.net/forum?id=jh7wH2AzKK
https://openreview.net/forum?id=jh7wH2AzKK
https://arxiv.org/abs/1911.03868
https://arxiv.org/abs/1911.03868
https://arxiv.org/abs/1911.03868
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.63
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.63
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.18653/V1/2021.NAACL-MAIN.200
https://doi.org/10.18653/V1/2021.NAACL-MAIN.200
https://doi.org/10.48550/ARXIV.2309.15088
https://doi.org/10.48550/ARXIV.2309.15088
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1109/TMM.2023.3236837
https://doi.org/10.1109/TMM.2023.3236837
https://www.auai.org/uai2009/papers/UAI2009_0139_48141db02b9f0b02bc7158819ebfa2c7.pdf
https://www.auai.org/uai2009/papers/UAI2009_0139_48141db02b9f0b02bc7158819ebfa2c7.pdf
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.48550/ARXIV.2404.07220
https://doi.org/10.48550/ARXIV.2404.07220
https://doi.org/10.48550/ARXIV.2404.07220
https://doi.org/10.1145/584091.584093
https://doi.org/10.1145/584091.584093
https://doi.org/10.48550/ARXIV.2405.10311
https://doi.org/10.48550/ARXIV.2405.10311
https://doi.org/10.48550/ARXIV.2405.10311
https://doi.org/10.48550/ARXIV.2411.16044
https://doi.org/10.48550/ARXIV.2411.16044
https://doi.org/10.48550/ARXIV.2411.16044
https://doi.org/10.48550/ARXIV.2301.12652
https://doi.org/10.48550/ARXIV.2301.12652
https://doi.org/10.18653/V1/2024.NAACL-LONG.463
https://doi.org/10.18653/V1/2024.NAACL-LONG.463
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.923
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.923
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.923

bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—6008.

Mingqiu Wang, Izhak Shafran, Hagen Soltau, Wei Han,
Yuan Cao, Dian Yu, and Laurent El Shafey. 2024.
Retrieval augmented end-to-end spoken dialog mod-
els. In IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2024, Seoul,
Republic of Korea, April 14-19, 2024, pages 12056—
12060. IEEE.

Zhe Wang, Liqin Zhao, Biye Jiang, Guorui Zhou, Xi-
aoqiang Zhu, and Kun Gai. 2020. COLD: towards
the next generation of pre-ranking system. CoRR,
abs/2007.16122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, EMNLP 2020 - Demos, Online, November
16-20, 2020, pages 38—45. Association for Computa-
tional Linguistics.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. CoRR,
abs/2309.07597.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Zhipeng Xu, Zhenghao Liu, Yibin Liu, Chenyan Xiong,
Yukun Yan, Shuo Wang, Shi Yu, Zhiyuan Liu,
and Ge Yu. 2024. Activerag: Revealing the trea-
sures of knowledge via active learning. CoRR,
abs/2402.13547.

Jinlong Xue, Yayue Deng, Yingming Gao, and Ya Li.
2024. Retrieval augmented generation in prompt-
based text-to-speech synthesis with context-aware
contrastive language-audio pretraining. CoRR,
abs/2406.03714.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zhihao Fan. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Donghan Yu, Chenguang Zhu, Yuwei Fang, Wenhao
Yu, Shuohang Wang, Yichong Xu, Xiang Ren, Yim-
ing Yang, and Michael Zeng. 2022. Kg-fid: Infus-
ing knowledge graph in fusion-in-decoder for open-
domain question answering. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 4961—
4974. Association for Computational Linguistics.

Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu.
2023. Augmentation-adapted retriever improves gen-
eralization of language models as generic plug-in.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2023, Toronto, Canada, July
9-14, 2023, pages 2421-2436. Association for Com-
putational Linguistics.

Zilun Zhang, Haozhan Shen, Tiancheng Zhao, Yuhao
Wang, Bin Chen, Yuxiang Cai, Yongheng Shang,
and Jianwei Yin. 2024. Enhancing ultra high resolu-
tion remote sensing imagery analysis with imagerag.
CoRR, abs/2411.07688.

Xinping Zhao, Dongfang Li, Yan Zhong, Boren Hu,
Yibin Chen, Baotian Hu, and Min Zhang. 2024.
SEER: self-aligned evidence extraction for retrieval-
augmented generation. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2024, Miami, FL, USA,
November 12-16, 2024, pages 3027-3041. Associa-
tion for Computational Linguistics.

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui,
Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang, and
Michael Bendersky. 2023. Rankt5: Fine-tuning TS
for text ranking with ranking losses. In Proceedings
of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR 2023, Taipei, Taiwan, July 23-27, 2023, pages
2308-2313. ACM.

3041

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1109/ICASSP48485.2024.10447448
https://doi.org/10.1109/ICASSP48485.2024.10447448
https://arxiv.org/abs/2007.16122
https://arxiv.org/abs/2007.16122
https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.6
https://doi.org/10.18653/V1/2020.EMNLP-DEMOS.6
https://doi.org/10.48550/ARXIV.2309.07597
https://doi.org/10.48550/ARXIV.2309.07597
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.48550/ARXIV.2402.13547
https://doi.org/10.48550/ARXIV.2402.13547
https://doi.org/10.48550/ARXIV.2406.03714
https://doi.org/10.48550/ARXIV.2406.03714
https://doi.org/10.48550/ARXIV.2406.03714
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://doi.org/10.18653/V1/2022.ACL-LONG.340
https://doi.org/10.18653/V1/2022.ACL-LONG.340
https://doi.org/10.18653/V1/2022.ACL-LONG.340
https://doi.org/10.18653/V1/2023.ACL-LONG.136
https://doi.org/10.18653/V1/2023.ACL-LONG.136
https://doi.org/10.48550/ARXIV.2411.07688
https://doi.org/10.48550/ARXIV.2411.07688
https://aclanthology.org/2024.emnlp-main.178
https://aclanthology.org/2024.emnlp-main.178
https://doi.org/10.1145/3539618.3592047
https://doi.org/10.1145/3539618.3592047

A More Details Related to Methods

A.1 Cross-Attention

Our model is built upon FiD (Izacard and Grave,
2021b), whose architecture is a sequence-to-
sequence model that consists of an encoder and a
decoder. The encoder encodes each query-passage
pair separately. The output representations of the
encoder are concatenated (Equ (2)) along the se-
quence dimension to form a global representation
H = |M H pf- Then, the decoder autore-
gressively attends to this representation, which al-
ternates self-attention, cross-attention, and feed-
forward modules. In the decoder, only the cross-
attention module explicitly takes the global rep-
resentation H of the encoder as the input. Let X
denotes the output of the previous self-attention
layer of the decoder, the cross-attention operation
consists of the following steps. First, three linear
transformations are applied to produce queries Q,
keys K, and values V, which can be formulated as:

Q=XW? K=HWX v=HW". (7

Then, the cross-attention scores are computed using
the dot product between queries QQ and keys K.
Taking the query at position 4, Q;, and the key
at position j, K, for example, the cross-attention
score and its normalized one can be computed as:

exp(a; ;)

L~ QK)
O[’L,] Q’L 79 Zk eXp(OéiJg)

Qi j = ®)
A new representation is derived from a sum of the
values, weighted by the normalized cross-attention

scores, going through a final linear transformation:

0, = W¢ Z a;;V;.)
J

We omit the layer and head indices for brevity in
the above formula, refer to (Vaswani et al., 2017)
for more details on the structure of Transformers.

A.2 Representative Token Selection

Enlightened by the token redundancy in hidden
states (Dai et al., 2020; Goyal et al., 2020), we
select several representative tokens per layer and
head, to estimate the relative importance of each
passage more accurately. Specifically, we select [r
tokens that have the highest cross-attention scores
from the passage to represent it. For the i-th layer
and j-th head, we select the representative tokens

Dataset #Train #Dev #Test
NQ (Kwiatkowski et al., 2019) 79.1k 8.7k 3.6k
TQA (Joshi et al., 2017) 78.7k 8.8k 11.3k

Table 4: Statistics of the datasets.

according to their cross-attention scores and ob-
tain an index list r that contains the index of Ir
representative tokens. Then, we can average FiD
cross-attention scores over representative tokens by
looking up the index list r, referring to Equ (3).

A.3 Training Procedure of FiD

Following (Izacard and Grave, 2021b), we train
FiD to generate the answer to the given query with
the retrieved passages. Specifically, we adopt T5-
large as the backbone of FiD, a generative encoder-
decoder pretrained model. Then, each retrieved
passage is concatenated with the query and pro-
cessed separately by the TS encoder. After that,
the TS5 decoder attends to the concatenation of the
encoded representations of all retrieved passages.
Finally, we train FiD to generate the answer via lan-
guage modeling objective (Radford et al., 2018).

B More Details Related to Experiments

B.1 Datasets

We experiment on NQ (Kwiatkowski et al., 2019)
and TQA (Joshi et al., 2017) datasets. Following
(Lee et al., 2019), we discard answers with more
than 5 tokens, as answers with many tokens often
resemble extractive snippets instead of canonical
ones. Table 4 shows the statistics of the datasets.

B.2 LLMs for QA

* Llama3-8B-Instruct'' is the developed version
of Llama2 (Touvron et al., 2023). Compared to
Llama?2, its training data volume has increased by
seven times, showing higher reasoning and multi-
lingual capabilities. For question answering, we
use the Llama3-8B-Instruct, which is specifically
optimized for the instruction-following ability.

« Qwen2-7B-Instruct'? is the developed version
of Qwen (Bai et al., 2023). Except for Chinese
and English, its training data has also added
high-quality data related to 27 languages and
it achieves significant improvement in code and

llht’cps: //github.com/meta-1lama/llama3
2https://github.com/QwenLM/Quen2

3042

https://github.com/meta-llama/llama3
https://github.com/QwenLM/Qwen2

[Instruction]
[Completion]
Royal Swedish Academy of Sciences

[answer]:

Retrieval-Augmented Question Answering Prompt

Given the [‘context’, ‘question’], answer the question based on the context.
[context]: Nobel Prize in Physics The Nobel Prize in Physics () is a yearly award given by the

[question]: Who got the first nobel prize in physics?

Table 5: The prompt for retrieval-augmented QA. For intuition, we select a real example from the NQ dataset.

math capabilities. We also use the instruction-
following version for the same reason aforesaid.

B.3 Answer Recall

We measure retrieval performance with Answer Re-
call (AR) which is the recall of the answer string in
all retrieved passages. It can be defined as follows:

1
o
where @K means retrieving Top-K relevant pas-
sages for each query, Q denotes the whole query
set, [(-) is an indicator function evaluating to 1
iff the answer string a is included in the retrieved
passages, @ denotes the concatenation operation.

B.4 Prompts

We provide the prompt that is used for retrieval-
augmented question answering (§4.3) in Table 5.

B.5 Hardware and Software Configurations

Hardware Configurations. The experiments are
conducted on a Linux server equipped with an
AMD EPYC 7742 64-Core Processor, 1000GB
RAM, and 2 NVIDIA A100-SXM4-40GB GPUs.

Software Configurations. We run retrieval and
generation experiments on the above hardware. We
conduct experiments with the FlagEmbedding'?
and huggingface transformers toolkit (Wolf et al.,
2020). For dense retrieval, we leverage the open-
source retrieval toolkit Tevatron (Gao et al., 2022).
On the other hand, we adopt BM25S (Lu, 2024) for
sparse retrieval. Besides, we adopt T5-large'* as
the backbone of FiD (§3.1.3). The detailed setting
of the software environment is provided in Table 6.

13https ://github.com/FlagOpen/FlagEmbedding
“https://huggingface.co/google-t5/t5-1arge

Configuration Value
Tevatron V2
bm25s 0.1.10
faiss-cpu 1.8.0.post1
FlagEmbedding 1.2.11
transformers 4.44.2

Table 6: Detailed settings of the software environment.

C More In-depth Studies

C.1 Study of Attention Aggregation Schema
(RQ4)

Table 7 shows the results with different aggrega-
tion schemes. Particularly, we consider (1) taking
the average over all the layers, all the heads, and
all the representative tokens; (2) taking the max
over the layers instead of the average; (3) taking
the max over the heads instead of the average; (4)
taking the max over input tokens instead of the av-
erage; (5) taking the mean over the last 6 layers
instead of all the layers. In all of the above variants,
we do not consider query tokens when aggregat-
ing. We observe that: (1) Aggregation schemes
with representative tokens selection (i.e., (i), (iv),
and (v)) outperform those without representative
tokens selection by a large margin, which indicates
the necessity of selecting representative tokens. (2)
Comparing (i) and (iv), we find that setting #rep to-
kens to a small value (e.g., 1) will hurt the retrieval
performance, which suggests setting #rep tokens
to moderate values (e.g., 4). (3) Comparing (i) and
(v), only considering part of the decoder layers may
bring a little performance degradation. The main
reason is that certain clues captured by the other
layers have been neglected. (4) Comparing (ii) and
(iii), taking the max over the heads generally per-

3043

https://github.com/FlagOpen/FlagEmbedding
https://huggingface.co/google-t5/t5-large

Method NQ TQA
@l @2 @3 @4 Avg @1 @2 @3 @4 Avg
(i) mean; j ko, ,r[k] 63.74 7136 73.88 7543 71.10 | 7457 7831 79.83 80.69 78.35
(ii) mean;,xmax; o s, j,k 57.06 68.01 7191 73.85 67.71 | 66.98 7544 78.02 79.56 75.00
(iii) mean; ymax; o,q,j,k 57.65 68.14 71.86 73.77 67.86 | 68.32 7570 78.12 79.47 75.40
(iv) mean; jmax,ao,i,j,k 63.32 70.69 73.52 75.12 70.66 | 74.10 78.11 79.70 80.59 78.13
(V) mean_g<i<—1,j,kQ0,i,5ck] | 63.68 71.16 73.82 7551 71.04 | 74.64 7826 79.93 80.89 78.43

Table 7: Performance comparison of attention aggregation schemes on NQ and TQA datasets, where the index ¢
corresponds to layers of the decoder, j corresponds to heads, and k corresponds to input tokens of a given passage.

Datasets @K ‘ w/ query w/o query | %Improv.

@1 56.79 57.65 1.51%
NQ @2 67.51 67.84 0.49%
@3 71.80 71.88 0.11%
@4 73.55 73.63 0.11%
@1 65.33 68.71 5.17%
TQA @2 74.67 75.86 1.59%
@3 77.49 78.27 1.01%
@4 78.94 79.42 0.61%

Table 8: AR comparison with and without query tokens.

Dataset Flat Retrieval

NQ
TQA

Progressive Retrieval

1.330
1.760

1.259
1.494

Table 9: Contextual integrity measurement on passages.
The lower the value, the better the contextual integrity.

forms better than that over the layers. The main
reason is taking the max over the heads may find
the influential head that plays a key role in identify-
ing clues (Deng et al., 2024), while taking the max
over the layers will miss some key clues captured
by the other layers. In conclusion, we suggest set-
ting #rep tokens to moderate values, using all the
layers, and trying to identify the influential heads.

C.2 Ablation of Query Tokens (RQ5)

In Table 8, we conduct experiments to verify the
effectiveness of ablating query tokens when esti-
mating the relative importance of each passage. Av-
eraging the FiD cross-attention score of all tokens
in ¢ ® p/ mentions “w/ query” and averaging that
of all tokens in p/ mentions “w/o query”. Here,
we do not consider selecting representative tokens
so that we can verify the effectiveness of ablating
query tokens straightforwardly. The results show
that ablating query tokens consistently improves an-
swer recall across different cutoff positions. Specif-

ically, We find that the marginal benefit appears as
the cutoff position increases. For example, on the
TQA dataset, w/o query achieves 5.17% improve-
ment over w/ query at the Top-1 position, while
it is 0.61% at the Top-4 position. It can be con-
cluded that ablating query tokens can significantly
improve answer recall in the top-ranked positions,
however, the gain decreases as the number of pas-
sages retrieved increases. The main reason is that
as the number of passages retrieved increases, it
becomes more essential than ablating query tokens.

C.3 Contextual Integrity Analysis (RQ6)

Generally, a higher contextual integrity is in favor
of most downstream tasks. To measure contextual
integrity, we compute information entropy (Shan-
non, 2001) on passages’ source in terms of Top-4
passages for each query, where we use the title of
passages as the identifier. Table 9 shows the mea-
surement results w.z¢. flat and progressive retrieval.
From the results, we find that progressive retrieval
achieves lower information entropy (i.e., higher
contextual integrity) than flat one. Specifically, the
improvement of progressive retrieval over flat one
is 5.34% and 15.11% in terms of NQ and TQA
datasets, respectively. The results fully verify that
the proposed FUNNELRAG can largely enhance
the contextual integrity just as we discussed in §1.

C.4 Retrieval Performance Comparison

Table 11-13 shows the retrieval performance on NQ
and TQA datasets in terms of the cutoff position
of 1, 2, and 3. The results show similar trends as
Table 2. Specifically, progressive retrieval usually
achieves better performance while using less time
cost. For example, on the NQ dataset, progressive
retrieval uses the time cost of 2.97s and obtains
the AR of 63.73, in terms of Top-1, while flat one
takes 5.25s and only achieves the AR of 56.09.
The results verify the superiority of progressive
retrieval in balancing effectiveness and efficiency.

3044

Question: Who won the fifth season of America’s Got Talent?

Answer: [“Soul singer Michael Grimm”, “Michael Grimm”]

(1) Retrieval Stage (clustered documents): (..., Miss Kansas USA, America’s Got Talent (season 9), Hurricane (Nick
Fradiani album), ...); (..., Preacher Lawson, America’s Got Talent, Jodi Miller, ...); (..., Kite line, Michael Grimm (album),
America’s Got Talent (season 5), Michael Grimm (musician), Connor Doran, ...); (America’s Got Talent (season 4),

Kevin Skinner, The Spiritual Harmonizers, ...)

(2) Pre-ranking Stage (documents): America’s Got Talent (season 5); Michael Grimm (musician); America’s Got
Talent (season 12); America’s Got Talent (season 13); America’s Got Talent; Got Talent; America’s Got Talent (season 9)

(3) Post-ranking Stage (passages): America’s Got Talent (season 5); Michael Grimm (musician); America’s Got

Talent; America’s Got Talent (season 5).

Table 10: An example of FUNNELRAG’s data flow from NQ dataset, where the retrieved information that contains
the answer string is marked in green. Note that we only present the title of the retrieved information for brevity.

C.5 Case Study

Table 10 shows a data-flow example of FUNNEL-
RAG from the NQ dataset. It consists of three
stages: Retrieval, Pre-ranking, and Post-ranking.
From the retrieval to the post-ranking stage, the
granularity evolves from coarse-grained clustered
documents to fine-grained passages. Besides,
the number of candidates decreases step by step

(e'g" 600K Retrieval 80c Pre-ranking 8d Post-ranking 4p)
More importantly, we find that the proportion of
candidates that contains the answer string gradu-
ally increases, which indicates that the signal-to-
noise ratio is greatly improved through progressive
retrieval. Furthermore, with more advanced mod-
els, the pre-ranking and the post-ranking stage can
perceive clues in the question, i.e., “the fifth sea-
son”. Though the model becomes more complex,
the number of candidates is limited, so the com-
putational cost is small. As a result, “America’s
Got Talent (season 5)” has been ranked first. The
above analyses fully verify the effectiveness and
reasonability of the proposed retrieval paradigm
for RAG, i.e., FUNNELRAG, whose main design
ideas are large-to-small quantities, coarse-to-fine
granularity, as well as simple-to-complex models.

D Document Clustering Algorithm

Algorithm 1 shows the document clustering algo-
rithm used in the retrieval stage (§3.1.1). Simply
put, documents that are highly relevant will be clus-
tered together, where each cluster is a list of docu-
ments related to each other. And, the clustered doc-
uments serve as the coarse-grained retrieval units.

Algorithm 1 Document Clustering Algorithm

Input: D (documents), S (max cluster size),
adj[d] (related documents for each d)

Output: C (set of clusters)

1: Sort D by their local cluster coefficient;

2: Initialize an empty set of clusters C < (J;

3: for each document d in D do

4 Add {d} to C;

5: end for

6: for each document d in D do

7 Remove {d} from C;

8 R < FIND_RELATED_CLUSTER(d,C);

9: Create a new cluster cpeyw = {d};

10: Sort R by their closeness centrality to d;

11: for each cluster ¢ in R do

12: if |Cnew| + || < S then

13: Cnew < Cpew U C;

14: Remove ¢ from C;

15: end if

16: end for

17: Add cpew to C;

18: end for

19: return C;

20:

21: function FIND_RELATED_CLUSTER(d, C)
22: Initialize the set of related clusters R < (;
23: for each related document d’ in adj[d] do
24: for each cluster cin C do

25: if d’ € cthen

26: R+ RU {C};

27: end if

28: end for

29: end for

30: return The set of related clusters R ;

31: end function

3045

. . Retrieval Stages Time Cost Answer Recall
Datasets Retrieval Paradigm

Retrieval ~ Pre/Re-ranking Post-ranking M (AR)
. 2IM— 1p N/A N/A 4.90 (4.90+N/A+N/A) 51.16

Flat Retrieval
21M — 400p 400p — 1p N/A 5.25 (4.90+0.35+N/A) 56.09
NQ 600K — lc N/A N/A 0.00 (0.00+N/A+N/A) 52.74
Progressive Retrieval 600K — 20c 20c =% 1 N/A 0.49 (0.00+0.49+N/A) 63.46
600K — 80c 80c %% 8d4 84 2% 1p 2.97 (0.00+2.20+0.77) 63.74
. 2IM— 1p N/A N/A 5.02 (5.02+N/A+N/A) 60.29

Flat Retrieval
21M — 400p 400p — 1p N/A 5.41 (5.02+0.39+N/A) 71.37
TQA 600K — lc N/A N/A 0.00 (0.00+N/A+N/A) 66.48
Progressive Retrieval 600K —20c 20c ~2% 14 N/A 0.60 (0.00+0.60+N/A) 72.59
600K — 80c 80c =2, 124 12d =% 1p 3.47 (0.00+2.52+0.95) 74.57

Table 11: Retrieval performance comparison (in Top-1) w.r.z. time cost and answer recall on NQ and TQA datasets.

. . Retrieval Stages Time Cost Answer Recall
Datasets Retrieval Paradigm

Retrieval ~ Pre/Re-ranking Post-ranking (M (AR)
. 21M — 2p N/A N/A 4.90 (4.90+N/A+N/A) 64.21

Flat Retrieval
21M — 400p 400p —2p N/A 5.25 (4.90+0.35+N/A) 67.34
NQ 600K —2c N/A N/A 0.00 (0.00+N/A+N/A) 63.57
Progressive Retrieval 600K — 20c 20c 2B Hd N/A 0.49 (0.00+0.49+N/A) 70.17
600K — 80c 80c =%, 84 8d 2% 2p 2.97 (0.00+2.20+0.77) 71.36
. 21M — 2p N/A N/A 5.02 (5.02+N/A+N/A) 68.98

Flat Retrieval
21M — 400p 400p —2p N/A 5.41 (5.02+0.39+N/A) 77.29
TQA 600K — 2¢ N/A N/A 0.00 (0.00+N/A+N/A) 73.58
Progressive Retrieval 600K —20c 20c 2% 24 N/A 0.60 (0.00+0.60+N/A) 77.13
600K — 80c 80c =2, 124 12d =% 2p 3.47 (0.004+2.52+0.95) 7831

Table 12: Retrieval performance comparison (in Top-2) w.r.t. time cost and answer recall on NQ and TQA datasets.

Datasets Retrieval Paradigm Retrieval Stages Time Cost Answer Recall
Retrieval ~ Pre/Re-ranking Post-ranking (T) (AR)
Flat Retrieval 2IM—3p N/A N/A 4.90 (4.90+N/A+N/A) 69.64
21IM — 400p 400p — 3p N/A 5.25 (4.90+0.35+N/A) 72.83
NQ 600K — 3¢ N/A N/A 0.00 (0.00+N/A+N/A) 68.98
Progressive Retrieval 600K — 20c 20c =12 3d N/A 0.49 (0.00+0.49+N/A) 72.71
600K — 80c 80c =%, 84 8d 2% 3p 2,97 (0.00+2.20+0.77) 73.88
Flat Retrieval 21M — 3p N/A N/A 5.02 (5.02+N/A+N/A) 73.11
21M — 400p 400p —3p N/A 5.41 (5.02+0.39+N/A) 79.88
TQA 600K — 3c N/A N/A 0.00 (0.00+N/A+N/A) 76.96
Progressive Retrieval 600K — 20c 20c 20034 N/A 0.60 (0.00+0.60+N/A) 79.04
600K — 80c 80c 2% 124 12d =P 3p 3.47 (0.00+2.52+0.95) 79.83

Table 13: Retrieval performance comparison (in Top-3) w.r.z. time cost and answer recall on NQ and TQA datasets.

3046

