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Abstract

Predicting when to initiate speech in real-world
environments remains a fundamental challenge
for conversational agents. We introduce EgoS-
peak, a novel framework for real-time speech
initiation prediction in egocentric streaming
video. By modeling the conversation from the
speaker’s first-person viewpoint, EgoSpeak is
tailored for human-like interactions in which
a conversational agent must continuously ob-
serve its environment and dynamically decide
when to talk.

Our approach bridges the gap between sim-
plified experimental setups and complex nat-
ural conversations by integrating four key ca-
pabilities: (1) first-person perspective, (2)
RGB processing, (3) online processing, and (4)
untrimmed video processing. We also present
YT-Conversation, a diverse collection of in-the-
wild conversational videos from YouTube, as
a resource for large-scale pretraining. Exper-
iments on EasyCom and Ego4D demonstrate
that EgoSpeak outperforms random and silence-
based baselines in real time. Our results also
highlight the importance of multimodal input
and context length in effectively deciding when
to speak. Code and data are available at web-
site.

1 Introduction

Human-like conversational agents have long been
a key objective in artificial intelligence. A critical
aspect of human conversation is not only under-
standing what to say but also when to say it—often
framed as the study of turn-taking (Duncan, 1972).
While most are designed under simplified assump-
tions where turn boundaries are well-defined or
where only audio-based cues are available, real-
world conversations can be highly fluid, with over-
lapping speech, unclear speaker roles, and frequent
interruptions (Skantze, 2017, 2021).

To address these complexities, we introduce
EgoSpeak, a framework that predicts when an agent
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Figure 1: EgoSpeak models speech initiation in real
time from the camera wearer’s (camera icon) egocentric
video stream, mirroring how a real-world agent would
perceive and engage in dynamic, multi-speaker environ-
ments.

should begin speaking based on egocentric stream-
ing video. Concretely, EgoSpeak models speech
initiation from the first-person perspective of the
camera wearer, capturing exactly what the agent
sees at each moment in real time. Unlike a third-
person or fixed camera view, the egocentric per-
spective is especially relevant for real-world con-
versational agents such as social robots that must
decide on the fly whether to speak or remain silent.
By leveraging the camera wearer’s immediate vi-
sual context (e.g., facing another person, noticing
body language or gaze direction), EgoSpeak can
more naturally detect subtle cues that signal an
appropriate moment to start speaking. This is par-
ticularly crucial for a real-world agent that must not
only process inputs in real time, but also respond
autonomously in dynamic, multi-speaker environ-
ments to appear natural and engaging.

EgoSpeak incorporates four key capabilities:
(1) first-person perspective: aligns closely with
real-world interactions for conversational agents,
(2) RGB feature processing: handles scenarios
where audio or non-verbal cues may be unreli-
able, (3) dynamic real-time turn-taking: enables
more natural and fluid conversations, and (4) con-
tinuous untrimmed video stream processing: cap-
tures periods of silence and sporadic interactions.
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Figure 2: Overview of the EgoSpeak framework. At each time step, the model processes an untrimmed egocentric
video and audio stream, classifying them in real time into three categories: background (no speech), other person
speaking, and target speaker (camera wearer) speaking. These probabilities are visualized at the bottom, where the
model anticipates near-future frames and enables proactive speech initiation for conversational agents.

These four collectively enable EgoSpeak to han-
dle the complexities of real-world conversations
more effectively than previous methods (see Ta-
ble 1). Figure 2 provides an overview of our real-
time pipeline, illustrating how EgoSpeak processes
continuous video streams to decide when to speak.
EgoSpeak outputs a continuous speak-probability
that a conversational agent can leverage in real time
(e.g., by triggering speech once the probability sur-
passes a threshold).

We validate EgoSpeak on two distinct datasets:
EasyCom and Ego4D, demonstrating its effective-
ness across various conversational contexts. Addi-
tionally, we introduce the YT-Conversation dataset,
a collection of in-the-wild conversation videos in-
cluding interviews and casual conversations from
YouTube, designed for scalable pretraining.

By addressing the critical challenge of when to
speak in a natural, human-like manner, EgoSpeak
advances the field of conversational AI, offering a
robust solution for dynamic, intermittent conversa-
tions with varying numbers of speakers.

In summary, our key contributions are:

1. EgoSpeak, a novel framework for speech initia-
tion prediction from egocentric streaming video
in real time.

2. YT-Conversation, a large-scale corpus of in-the-
wild conversational videos, suitable for pretrain-
ing multimodal turn-taking models.

3. Experimental results on EasyCom and Ego4D
demonstrate effectiveness in real-world scenar-
ios and provide a comprehensive analysis of the
role of multimodal inputs and context length.

2 Related Works

Turn-taking. Turn-taking research has evolved
from simple audio-based models (Duncan, 1972;
Khouzaimi et al., 2015) to sophisticated multi-
modal approaches (Maier et al., 2017; Lee et al.,
2023; Mizuno et al., 2023; Kurata et al., 2023).
Early offline methods, which process entire clips,
often result in unnatural pauses. This prompted
the development of continuous (online) methods
(Skantze, 2017; Ekstedt and Skantze, 2022; Li
et al., 2022), including recent multimodal mod-
els incorporating non-verbal cues (Onishi et al.,
2023). However, these approaches typically rely
on controlled dyadic conversations, limiting real-
world applicability. EgoSpeak addresses these lim-
itations by adopting a first-person perspective, pro-
cessing both RGB and audio features, and handling
untrimmed video streams, aiming to better align
turn-taking models with the complexities of natural
conversations.

Egocentric RGB Online Untrimmed

Skantze (2017) ✗ ✗ ✓ ✗

Ekstedt and Skantze (2022) ✗ ✗ ✓ ✗

Li et al. (2022) ✗ ✗ ✓ ✗

Yang et al. (2022) ✗ ✗ ✗ ✗

Kurata et al. (2023) ✗ ✓ ✗ ✗

Lee et al. (2023) ✗ ✓ ✗ ✗

Mizuno et al. (2023) ✗ ✗ ✗ ✗

Onishi et al. (2023) ✗ ✗ ✓ ✗

Fatan et al. (2024) ✓ ✓ ✗ ✗

EgoSpeak (Ours) ✓ ✓ ✓ ✓

Table 1: Comparison of EgoSpeak with existing ut-
terance initiation and turn-taking methods. EgoSpeak
uniquely addresses all four key aspects of real-world
conversational dynamics.
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Online Processing. Online systems, which pre-
dict based only on past and present information
continuously, have gained popularity in real-time
applications across various fields from computer
vision to speech (Fan et al., 2018; De Geest et al.,
2016; Kang et al., 2021; Bewley et al., 2016; Rettig
et al., 2019; Miao et al., 2020). EgoSpeak applies
this approach to turn-taking, enabling real-time pre-
diction of speech initiation points in natural conver-
sations without relying on future information. This
capability allows EgoSpeak to adapt to dynamic
conversational scenarios, making it more suitable
for real-world interactions.

3 EgoSpeak Framework

3.1 Framework Overview

EgoSpeak is designed for in-the-wild conversa-
tional agents, building on the challenges discussed
in Section 1, where "in-the-wild" refers to real-
world conditions outside controlled environments
with unpredictable variables and numerous influ-
encing factors.

EgoSpeak is grounded in the intuition that, in
the egocentric video, the camera wearer’s speak-
ing moments naturally serve as cues for speech
initiation. By predicting these moments from the
agent’s perspective, our framework learns natural
turn-taking behavior, identifying when to speak
even after long silences. Moreover, by anticipating
these moments in advance, EgoSpeak effectively
mirrors human turn-taking, deciding when to begin
speaking as a real-world agent would. To achieve
this, we train the model with a cross-entropy ob-
jective, akin to next-token prediction in language
modeling, since it must anticipate speaking before
the camera wearer actually speaks.

3.2 Task Definition

Guided by this intuition, we formulate the problem
of predicting the target speaker’s speech in an ego-
centric streaming video, where the camera wearer
is naturally identified as the target speaker. Given
the real-time nature of the stream, EgoSpeak only
analyzes information available up to the current
moment. This design allows our system to capture
the continuously unfolding context and prepare a
speech onset before a turn-shift occurs in complex,
dynamic conversations.

Formally, let Xt = [x1, . . . , xt] be an online
stream up to timestep t, where each xi can include
multiple modalities xmi including visual frames xvi

[1,0,0] [0,0,1] [1,0,0][0,1,0][0,1,0]

Target Speaker [14.483-15.983]: Let me see them. 
Other speaker [15.983-17.647]: Is there a problem? 
Target Speaker [17.647-18.228]: Who told you to get in this line

Figure 3: Converting Transcript to Per-Frame Labels.
Colors indicate: gray - background, orange - target
speaker speaking, purple - other speaker speaking. La-
bels are one-hot encoded for classification.

or auditory signals xai . We transform each xmi into
a representation zmi via off-the-shelf feature extrac-
tors, concatenating them into zi. Next, we define
a temporal window Zt−L+1,t = [zt−L+1, . . . , zt]
of length L. Given an anticipation length α, the
model performs a three-way classification (back-
ground / target speaker speaking / other speaking)
for the future range t+1 to t+α. This anticipatory
modeling gives the system extra time to prepare
responses, rather than reacting only after a silence
threshold. The final model output is a probability
tensor of shape [α, 3], where the dimensions corre-
spond to the anticipated future timesteps and the
three classes, respectively.

Prediction vs Detection. A naive approach for
determining when to speak is detection which oc-
curs based on silence threshold. However, detec-
tion offers an inadequate response time of only
200ms for listeners. A psycholinguistic study
(Levinson and Torreira, 2015) estimates that ac-
tual response time ranges from 600 to 1500ms, as
humans begin preparing their responses while the
other person is still speaking. Additionally, turn-
shifts often occur as overlapping without any gaps
(Skantze, 2021). The prediction will give conversa-
tional systems more time to generate reactions and
enable human-like conversation.

Frame-level Speech Labeling. Figure 3 illus-
trates how transcript timestamps convert into per-
frame, one-hot encoded labels. As our framework
requires per-frame speech labels which are expen-
sive to annotate, we developed a method to con-
vert transcript annotations from egocentric videos
into per-frame speech classification labels. At each
timestep t, we label the datapoint xt as target
speaker speaking if the camera wearer is speak-
ing, other person speaking if others are speaking,
and no speech otherwise.
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Figure 4: Sample frames from YT-Conversation dataset.
The dataset includes a diverse range of conversational
scenarios from YouTube, such as podcasts, interviews,
and informal dialogues, representing various real-world
conversation formats.

3.3 YT-Conversation: Dataset for Multimodal
Conversation Pretraining

Existing turn-taking resources often stem from con-
trolled laboratory setups or video calls, which are
expensive to annotate and capture only a fraction
of the complexity found in real-world interactions,
limiting scalability. To address this gap, we in-
troduce YT-Conversation, a novel dataset derived
from diverse YouTube content including interviews,
podcasts, and casual dialogues.

While YT-Conversation is not fully egocentric, it
offers realistic face-to-face and multi-person inter-
actions that can effectively transfer to first-person
scenarios in egocentric video understanding (Zhang
et al., 2022; Lin et al., 2022). By leveraging content
from real-world YouTube videos through an auto-
matic pipeline, YT-Conversation aims to provide a
more scalable resource for turn-taking pretraining.

Collecting Conversational Videos. We curated
our dataset from four manually selected YouTube
channels, covering diverse conversational formats
including podcasts, interviews, and face-to-face di-
alogues. Videos were randomly sampled without
further filtering, ensuring scalability. We prepro-
cessed the videos by downsampling to 20 FPS for
video and 16 kHz for audio, and trimmed opening
segments. Our final dataset comprises 414 videos
totaling 41 hours, with durations ranging from 1 to
60 minutes.

Pseudo Per-frame Annotation for Collected
Videos Since manual annotation of each video
frame is labor-intensive, we employ voice activ-
ity detection (VAD) from Pyannote (Plaquet and
Bredin, 2023; Bredin, 2023) to generate pseudo-
labels for speech activity. Specifically, we remove
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Figure 5: Video duration distribution for YT-
Conversation. Our online formulation allows the use of
long video clips, some even exceeding 900 seconds.

any speech segments under 200 ms (or non-speech
gaps under 200 ms) to match our 200 ms resolution.
This approach yields a speech vs. no-speech label
per frame, effectively approximating the ground
truth for large-scale pretraining. Figure 5 shows a
distribution of video durations and illustrates the
diversity of conversation styles in YT-Conversation.
For the validation of pseudo-annotation quality, see
Appendix E.

4 Experimental Setup

4.1 Dataset

We propose to use publicly available egocentric
conversational video datasets for evaluation: Easy-
Com (Donley et al., 2021) and Ego4D (Grauman
et al., 2022).

EasyCom. The EasyCom dataset contains ego-
centric videos of 3-5 participants conversing
around a table in a room for about 30 minutes per
session. It comprises 12 sessions totaling approx-
imately 5 hours and 18 minutes. We use sessions
1-3 for testing and 4-12 for training. The dataset
features human-annotated transcripts with precise
timestamps and mono-channel audio.

Ego4D. We use the Audio-Visual Diarization
benchmark from Ego4D (Grauman et al., 2022),
a large-scale, in-the-wild egocentric video dataset.
This subset contains 5-minute clips from diverse
scenarios, including both indoor and outdoor set-
tings. However, the original test split is mostly
limited to indoor settings. To ensure robust eval-
uation, we randomly split the combined original
train and test sets into 346 training clips and 87 test
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clips.
The EasyCom and Ego4D datasets offer comple-

mentary scenarios for evaluating our framework.
EasyCom provides a controlled setting with contin-
uous conversations among fixed participants, while
Ego4D presents diverse, real-world scenarios with
varying numbers of speakers, environments, and
intermittent speech patterns. This combination
allows us to assess EgoSpeak’s performance in
both relatively structured and unstructured envi-
ronments, testing its ability to predict utterance
initiation across a range of conversational dynam-
ics.

4.2 Baselines & Models
We evaluate our framework using three trained
models with different architectural backbones:
RNN (An et al., 2023), Transformer (Xu et al.,
2021), and State-Space-Model (Gu and Dao, 2023).
Additionally, we implement two static baselines:
a random baseline and a rule-based algorithm us-
ing silence as decision threshold (Bell et al., 2001).
Detailed implementation details including archi-
tectural specifications, hyperparameters, training
objective and feature extraction for the neural mod-
els are provided in Appendix A.

Random Baseline. This baseline randomly as-
signs one of the three possible labels (background,
target speaker speaking, or other speaking) to each
frame with uniform probability.

Silence-based Algorithm. Simulating commer-
cial spoken dialogue agents, this approach trig-
gers speech only after a 600 ms silence interval
following other speakers. Our evaluation likely
overestimates its real-world performance, since we
use ground-truth labels to detect non-target speech
and count the entire subsequent speech segment as
correct once the start is identified (only a single
timestep is penalized when incorrect).

Transformer-based Model. We adopt Long
Short-term TRansformer (LSTR) (Xu et al., 2021)
for temporal modeling. LSTR uses long-term
and short-term memory mechanisms to handle se-
quence data, with an encoder-decoder structure.
The encoder leverages long context windows by
compressing inputs, while the decoder processes
shorter context windows, allowing for flexible tem-
poral modeling.

RNN-based Model. Inspired by An et al. (2023),
we used a simple and effective RNN model contain-

ing one GRU layer. This model was chosen for its
computational efficiency and strong performance.

Mamba-based Model. We implement a Mamba-
based model (Gu and Dao, 2023) similar to the
RNN architecture. Given the recent success of
Mamba across various tasks, we include this model
to explore its potential to predict speech initiation
in egocentric videos while maintaining computa-
tional efficiency.

4.3 Settings

Feature Extraction. We process features at 5
FPS, predicting every 0.2 seconds to align with
typical human response times (Skantze, 2021). For
RGB features, we use a ResNet-50 (He et al.,
2016) model pretrained on Kinetics-400 (Kay
et al., 2017). Audio features are extracted using
wav2vec2 (Baevski et al., 2020). These features
are concatenated to create our multimodal input.
Further details on feature extraction are provided
in Appendix A.3.

Evaluation Protocol. Most existing turn-taking
evaluations rely on offline F1-scores after process-
ing the entire clip (Lee et al., 2023; Kurata et al.,
2023), or on sample-based F1-scores around turn-
taking events using threshold-based detection (Ek-
stedt and Skantze, 2022; Onishi et al., 2023). How-
ever, both approaches fail to capture the contin-
uous, overlapping nature of real-world conversa-
tions, where a decision must be made at every
frame. As Heldner and Edlund (2010) suggested,
overlaps occur frequently in human conversation.
Consequently, we measure performance per frame
to better reflect these natural conversational dynam-
ics.

To address this need, we propose using per-
frame mean average precision (mAP), inspired by
prior work on online tasks (De Geest et al., 2016).
This metric evaluates how well the model antici-
pates the target speaker’s speech up to 10 timesteps
(2 s) into the future. We compute mAP by 1) sort-
ing all frame-level confidence scores in descending
order, 2) iteratively using each score as a threshold,
3) calculating precision and recall at each thresh-
old, and 4) averaging all precision values. This
procedure is repeated for each class and timestep,
then averaged to yield the final mAP.
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Model Modality mAP (%)

0.20s 0.40s 0.60s 0.80s 1.00s 1.20s 1.40s 1.60s 1.80s 2.00s Avg

Transformer

A 72.2 65.2 60.3 56.8 54.4 53.1 52.4 52.0 51.6 51.4 56.9 ± 0.05
V 52.0 51.7 51.6 51.3 51.1 50.9 50.8 50.5 50.3 50.1 51.0 ± 0.08
A+V 73.8 66.9 62.1 58.5 56.3 55.0 54.1 53.7 53.3 53.0 58.7 ± 0.13
A+VP 73.4 66.8 61.8 58.3 56.1 54.8 54.1 53.5 53.2 52.7 58.5 ± 0.26

GRU

A 71.5 65.0 60.1 57.0 55.0 53.8 52.9 52.2 51.5 50.9 57.0 ± 0.30
V 53.0 52.7 52.4 52.0 51.7 51.6 51.2 51.1 50.8 50.6 51.7 ± 0.29
A+V 73.5 68.1 63.7 60.7 59.1 58.1 57.2 56.3 55.4 54.4 60.6 ± 0.17
A+VP 70.8 64.9 60.1 56.9 55.0 53.8 53.0 52.4 51.8 51.4 57.0 ± 0.29

Mamba

A 67.5 62.2 58.4 55.7 54.0 52.9 52.0 51.1 50.2 49.6 55.4 ± 0.62
V 52.2 51.8 51.5 51.1 50.9 50.7 50.5 50.4 50.0 49.7 50.9 ± 0.21
A+V 71.8 65.4 60.5 57.1 55.0 53.9 53.5 53.1 52.3 51.8 57.4 ± 0.26
A+VP 68.9 63.2 59.1 56.0 54.0 52.7 51.8 51.4 50.7 50.1 55.8 ± 0.43

(a) Results on EasyCom

Model Modality mAP (%)

0.20s 0.40s 0.60s 0.80s 1.00s 1.20s 1.40s 1.60s 1.80s 2.00s Avg

Transformer

A 78.8 74.9 71.8 69.7 68.1 67.0 66.3 65.7 65.1 64.7 69.2 ± 0.03
V 58.7 58.5 58.4 58.2 58.1 58.0 57.9 57.8 57.7 57.7 58.0 ± 0.27
A+V 78.1 74.3 71.5 69.4 68.0 67.0 66.3 65.7 65.3 64.9 69.0 ± 0.24
A+VP 78.4 74.5 71.5 69.4 67.9 66.7 65.9 65.4 65.0 64.5 68.9 ± 0.18

GRU

A 78.6 74.8 71.8 69.6 68.1 66.9 66.2 65.6 65.2 64.8 69.2 ± 0.25
V 58.6 58.3 58.1 57.9 57.8 57.8 57.7 57.6 57.5 57.5 57.9 ± 0.61
A+V 76.4 73.0 70.4 68.5 67.1 66.3 65.6 65.2 64.7 64.4 68.2 ± 0.42
A+VP 76.9 73.4 70.6 68.6 67.3 66.3 65.6 65.1 64.7 64.4 68.3 ± 0.18

Mamba

A 77.4 73.6 70.5 68.5 66.9 65.8 65.0 64.3 63.9 63.5 67.9 ± 0.37
V 58.2 58.1 57.9 57.8 57.6 57.5 57.5 57.4 57.4 57.3 57.7 ± 0.28
A+V 76.0 72.5 69.8 67.9 66.6 65.6 64.8 64.2 63.8 63.5 67.5 ± 0.18
A+VP 74.1 70.8 68.1 66.2 64.8 63.9 63.2 62.7 62.3 62.0 65.8 ± 0.23

(b) Results on Ego4D

Table 2: Mean average precision (mAP) scores on (a) EasyCom and (b) Ego4D at time steps 0.20 s to 2.00 s for
Transformer, GRU, and Mamba architectures under Audio (A), Visual (V), and Audio+Visual (A+V) modalities.
Models with P are pretrained on YT-Conversation. Per-timestep values come from a single random seed, while
“Avg” shows mean ± SE over five seeds (see Appendix D for full multi-seed results). Using both A and V yields the
best performance overall.

Dataset Model Target Speaker AP

EasyCom
Transformer (A+V) 52.7
Random 27.2
Silence-based 26.6

Ego4D
Transformer (A+V) 66.8
Random 26.1
Silence-based 27.7

Table 3: Performance comparison between our pre-
dictive Transformer model (A+V) and detection-based
baselines on EasyCom and Ego4D datasets.

5 Results and Analysis

5.1 Quantitative Results

Tables 2 and 3 present comprehensive comparisons
of our models across different modalities, datasets,
and baselines. To ensure the robustness of our
findings, we report performance over five random
seeds with error bars in Appendix D.

Model Performance Across Modalities As
shown in Table 2, the multimodal (A+V) approach
generally outperforms unimodal inputs on Easy-
Com, with the Transformer model achieving 58.7%
mAP (compared to 56.9% for audio-only and
51.0% for visual-only). The GRU model performs
best with A+V (60.6% mAP), while Mamba sees
moderate improvements (57.4% mAP). On Ego4D,
the Transformer with A+V attains 69.0% mAP,
which is roughly on par with its audio-only coun-
terpart. Interestingly, GRU and Mamba actually do
better with audio alone, at 69.0% and 67.9% mAP
respectively.

Pretraining Effects Our YT-Conversation pre-
training results show that overall gains are modest.
However, we do observe a small but consistent
improvement in detecting other person speaking
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Model Modality Avg. mAP

Transformer
A (+F) 57.0 (+8.0)
V (+F) 51.2 (+6.4)
A+V (+F) 58.8 (+9.6)

GRU
A (+ F) 57.1 (+3.9)
V (+ F) 51.2 (+4.2)
A+V (+ F) 61.2 (+0.9)

Mamba
A (+ F) 55.6 (+2.6)
V (+ F) 51.3 (+3.9)
A+V (+ F) 57.6 (+2.7)

Table 4: Impact of optical flow on utterance initiation
prediction for EasyCom dataset. Values show average
mAP, with performance gains from optical flow in paren-
theses. A: Audio, V: Visual, F: Flow. Bold indicates the
best overall performance.

class, which is especially valuable in egocentric
scenarios. In contrast, GRU and Mamba show lit-
tle or no net gain, aligning with prior work that
certain recurrent/state-space models often struggle
with large-scale pretraining (Wang et al., 2023).
We attribute these results to domain mismatch and
the inherently noisier nature of real-world conver-
sational videos. For a per-class breakdown and
further discussion, refer to Appendix C.

Comparison with Baselines Table 3 compares
our best Transformer (A+V) model with both base-
lines on EasyCom and Ego4D. Even though the
silence-based approach benefits from an evaluation
bias, our predictive model still achieves signifi-
cantly higher AP (52.7% vs. 26.6% on EasyCom,
and 66.8% vs. 27.7% on Ego4D). Moreover, the
silence-based method performs similarly to ran-
dom, indicating that requiring a fixed silence in-
terval fails to accommodate the fluid, overlapping
speech found in real-world conversations.

5.2 Motion Inputs Contribute to Turn-Taking
Prediction

Since many non-verbal cues involve motion, we
hypothesized that incorporating optical flow could
improve utterance initiation prediction. To test
this, we extracted optical flow using the Dense-
flow toolkit (Wang et al., 2020) with the TV-L1
algorithm (Zach et al., 2007), following a similar
process to our RGB feature extraction. Optical
flow is a computer vision technique that estimates
object motion between consecutive video frames
by calculating the apparent motion of brightness
patterns. This is useful for tracking movement and
analyzing dynamic scenes.

Table 4 presents the results of our experiment on
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Figure 6: Utterance initiation prediction with varying
transformer memory length. a shorter context window
for short-term memory and a longer context window for
long-term memory generally show better results.

EasyCom. Incorporating optical flow consistently
improved performance across all model types and
input combinations. These results suggest that mo-
tion information provides valuable cues for pre-
dicting utterance initiation, complementing static
visual and audio features to enable more accurate
predictions of speech onset.

5.3 Models Do Not Exploit Short-Term
Information Well

Our framework uses online processing models that
rely on context length to capture historical infor-
mation. Because dialogue context is crucial in
turn-taking (Skantze, 2021), the choice of context
can strongly affect utterance initiation. Figure 6
shows how the Transformer model’s performance
varies with different long-term and short-term win-
dow sizes. While extending the long-term window
helps, increasing the short-term window unexpect-
edly degrades performance. This suggests that al-
though a broader context provides valuable cues,
an overly large short-term window may introduce
noise or irrelevant data, reducing accuracy. These
findings highlight the importance of balancing long-
term and short-term context in untrimmed videos
to optimize turn-taking predictions.

5.4 Runtime Analysis

We evaluated the computational efficiency of our
models by measuring their frames per second
(FPS), parameter counts, and floating-point opera-
tions (GFLOPs) on a single RTX3090 GPU using
the EasyCom dataset, as shown in Table 5. The
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[Target Speaker]
Is it supportive? Okay.

[Other speaker]
Alright. So I'll stop you there.

Figure 7: Qualitative results on EasyCom. The predicted scores are shown in lines and the ground-truth label is
shown in regions. The blue line represents a model with RGB input, the red line represents a model with audio
input, and the purple line represents a model with audio and visual input.

Model FPS Parameters GFLOPs

Transformer 99.8 67.21M 129.48
RNN 13939.5 34.6M 206.52
Mamba 12009.3 83.1M 610.93

Table 5: Runtime analysis of different models on a
single RTX3090 GPU.

RNN-based model achieved the highest throughput
with 13,939.5 FPS, while maintaining a relatively
low parameter count of 34.6M and requiring 206.52
GFLOPs. The Mamba-based model followed with
12,009.3 FPS, though it has the highest parame-
ter count (83.1M) and the largest computational
requirement (610.93 GFLOPs). The Transformer-
based model ran at 99.8 FPS with 67.21M parame-
ters and 129.48 GFLOPs, achieving real-time pro-
cessing but at a lower frame rate than RNN and
Mamba. Overall, these results indicate that all three
architectures are capable of real-time processing.

5.5 Qualitative Results

Figure 7 shows the qualitative results based on
Transformer. Our observations indicate that the
model using only RGB features struggles to ef-
fectively distinguish between speaking and non-
speaking segments, leading to frequent misclassifi-
cations. In contrast, the model utilizing audio input
shows notable improvement in predicting the target
speaker’s speech. However, the audio-only model
often assigns high probabilities to the speech of
other individuals, resulting in less accurate turn-
taking. Notably, the model that integrates both au-
dio and visual inputs demonstrates superior perfor-
mance. This multimodal model effectively distin-

guishes the target speaker from others, accurately
identifying speaking segments while minimizing
false positives from other speakers.

6 Conclusion

We introduced EgoSpeak, a novel framework for
real-time speech initiation prediction from an in-
the-wild, first-person viewpoint. EgoSpeak inte-
grates four key capabilities to better handle com-
plex, dynamic real-world conversations. We also
presented YT-Conversation, a large-scale dataset
of in-the-wild YouTube videos for pretraining.

Empirical results on two egocentric conver-
sational video datasets demonstrate that EgoS-
peak significantly outperforms random and silence-
based baselines in real time. Notably, our anal-
ysis revealed that incorporating optical flow sig-
nificantly improves performance and highlighted
a counterintuitive finding on context length. We
encourage further exploration of large-scale con-
versational datasets, improved multimodal mod-
eling techniques, and integration with large lan-
guage models to generate responses, advancing
turn-taking in real-world settings.

7 Limitations

Our proposed method relies on pre-encoded fea-
tures, which can limit both performance and frames
per second (FPS). A potential solution is to adopt
an end-to-end framework that learns to extract rele-
vant features directly from raw input. For example,
E2E-LOAD (Cao et al., 2023) demonstrates im-
provements in both state-of-the-art performance
and FPS in online action recognition task through
such an approach.
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While our YT-Conversation dataset provides di-
verse pretraining data, it may not fully capture the
nuances of first-person interactions. Future work
could explore methods to augment the dataset with
more egocentric conversational data, potentially
improving model performance in first-person sce-
narios.

Lastly, our current approach does not explic-
itly model speaker-specific behaviors. Future re-
search could incorporate individual speaking pat-
terns and tendencies, by analyzing larger egocen-
tric conversational datasets. By capturing these
speaker-specific nuances, future models may better
anticipate utterance initiation points, particularly in
prolonged conversations with familiar participants.

8 Ethical Statement

Data Collection and Privacy Considerations
Although the YT-Conversation, derived from pub-
licly shared YouTube videos, provides natural con-
versations for training AI models, there is a possi-
bility it may capture the facial features of the par-
ticipants. However, the YT-Conversation dataset
was collected under the principles of informed con-
sent and data anonymization, adhering to the ACM
Code of Ethics 1.6 (Respect privacy).

Informed consent We selected videos that par-
ticipants are likely aware of and have consented to
be recorded and publicly shared, such as podcasts,
interviews, and face-to-face conversations.

Data Anonymization We only released the
YouTube IDs rather than the raw YouTube videos
so that content creators can remove their videos
from YouTube anytime, which will automatically
exclude them from our dataset. Moreover, our tran-
scripts only include the time ranges for the start and
end of the speech, along with the corresponding
video frames without personal information.
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A Implementation Details

A.1 Architecture & Hyperparameters

This section provides detailed information on the
architectures and hyperparameters used for each
model in our experiments. We set the anticipation
length to 10 timesteps for all models, predicting up
to 2 seconds into the future. All experiments were
done with a single RTX3090 GPU within one day.

Transformer-based Model (LSTR) For the
transformer model, we configured 16 attention
heads and 1024-dimensional hidden units in the
transformer blocks. The LSTR encoder processes
long context windows up to 2048 frames, while
the decoder handles shorter context windows up to
32 frames. We trained this model using the Adam
optimizer (Kingma and Ba, 2014) with a weight
decay of 5×10−5. The learning rate was scheduled
to increase linearly from zero to 7× 10−5 during
the first 40% of training iterations, then decrease
to zero following a cosine function. We trained the
transformer model for 50 epochs with a batch size
of 16.

RNN-based Model For the RNN model, we
used 2048-dimensional embeddings and 1024-
dimensional hidden units. This model was trained
for 30 epochs with a batch size of 64. We used the
same optimizer and learning rate schedule as the
transformer model.

Mamba-based Model The Mamba-based model
builds upon the RNN architecture, replacing the
GRU layer with a Mamba block. We set the SSM
state factor to 16, local convolution width to 4, and
block expansion factor to 2. The training settings
were kept consistent with the RNN model.

A.2 Training Objective

For training, we use cross-entropy loss between
predicted confidence scores sT at time T and the
ground-truth label yT ∈ {0, 1, . . . ,K}. K is
the number of classes and skT is the k-th element
of the probability vector sT . For Transformer-
based model, αT is always 1. For RNN-based
and Mamba-based models, αT is used to modulate
the contribution of intermediate time steps during
the computation of the loss. Specifically, αT takes
the value 1 only at a designated step t = L and 0
otherwise.

We also define a temporal window of length L,
which determines the final step contributing to the
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Figure 8: Attention weight of a transformer encoders.
Transformer models focus on mostly local context for
utterance initiation.

objective function:

J(yT , sT ;T ) = −
K∑

k=0

αT δ(k − yT ) log s
k
T ,

A.3 Feature Extraction

RGB Features As mentioned in Section 4.3,
videos are downsampled to 20 FPS and processed
in 4-frame chunks, resulting in a 5 FPS prediction
rate. We use ResNet-50 (He et al., 2016) initialized
with weights from a video action recognition model
(Wang et al., 2016), implemented via MMAction2
(Contributors, 2020). The center frame of each
chunk is sampled for feature extraction. For the
EasyCom dataset, we cropped all clips in each ses-
sion to remain only video frames and merged them
to make one video per session.

Audio Features We use wav2vec2’s (Baevski
et al., 2020) multi-layer convolutional feature en-
coder, as noted in Section 4.3. Every 10 en-
coded audio features are concatenated temporally
to match the 5 FPS RGB features.

B Importance of Recent Frames

Figure 8 shows the distribution of attention weights
across the encoder layers of a transformer model
in the context of predicting utterance initiation in
real-world conversations (Wang et al., 2021). The
attention weights of the test set were averaged with
respect to the layers, multi-heads, and batch and
then normalized. These weights reveal the signifi-
cance assigned to each frame in the sequence dur-
ing prediction. Our analysis shows that the model
focuses predominantly on the recent frames, with
attention weights diminishing notably as the dis-
tance from the current frame increases. This pattern
indicates that recent frames have a greater impact
on the model’s predictions for utterance initiation.
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Dataset Model
Avg
mAP

Per-Class AP (%)

Background Target Speaker Other Speaker

EasyCom Transformer 58.79 43.17 52.74 80.46
TransformerP 59.01 42.94 52.91 81.17

Ego4D Transformer 69.61 73.50 66.78 68.56
TransformerP 68.79 71.80 64.46 70.11

Table 6: Per-class average precision (AP) for the Trans-
former with and without (P) YT-Conversation pretrain-
ing on EasyCom and Ego4D. Although overall gains are
modest, we observe a notable improvement for Other
Speaker detection.

Target Speaking
Backchanneling

Figure 9: Failure case on EasyCom. The orange region
represents the target speaker speaking, and the red re-
gion represents the target speaker’s backchanneling.

C Error Analysis

Pretraining on YT-Conversation We observed
that YT-Conversation pretraining yields modest
overall gains, but a notable improvement for other
person speaking class (+0.7% on EasyCom, +1.5%
on Ego4D). Table 6 lists the per-class average pre-
cision (AP) for the Transformer model with and
without pretraining. Although this benefit can be
crucial in egocentric scenarios—where identifying
others’ speech fosters smoother turn-taking—gains
for Background and Target Speaker remain un-
changed or slightly negative. We attribute this
to domain mismatch (YouTube interviews vs. dy-
namic ego footage) and noisy data from real-world
conversational videos such as visual effects or sub-
titles. Future work might address these limita-
tions by bridging domain gaps—e.g., with domain
adaptation—or introducing video filtering to obtain
higher-quality conversational clips.

Backchannels While our method aims to predict
any utterance initiation point, there is a short and
brief response that occurs when one participant is
speaking and the listener reacts to signify the lis-
tener’s attention, understanding, or emotion rather
than take turns and speak. This behavior is referred

Model Modality EasyCom Ego4D

Transformer

A 56.9 ± 0.12 69.2 ± 0.08
V 51.0 ± 0.18 58.1 ± 0.60
A+V 58.7 ± 0.29 69.6 ± 0.54
A+VP 58.5 ± 0.59 68.8 ± 0.41

GRU

A 57.0 ± 0.68 69.2 ± 0.55
V 51.7 ± 0.65 57.9 ± 1.36
A+V 60.6 ± 0.38 68.2 ± 0.95
A+VP 57.0 ± 0.65 68.3 ± 0.41

Mamba

A 55.4 ± 1.39 67.9 ± 0.83
V 50.9 ± 0.48 57.7 ± 0.64
A+V 57.4 ± 0.58 67.5 ± 0.41
A+VP 55.8 ± 0.97 65.8 ± 0.51

Table 7: Performance comparison of models across five
different seeds on the EasyCom and Ego4D datasets.
Each value represents the average mAP across the seeds,
along with the standard error.

to as “backchannels” (Yngve, 1970; Skantze, 2021).
We observed that prediction scores usually do not
increase before backchanneling. Figure 9 illus-
trates this phenomenon, showing how the model’s
prediction scores do not significantly increase be-
fore a backchanneling event, in contrast to regular
speaking turns.

D Descriptive Statistics of Experimental
Results

We evaluated each model with five random seeds
{0, 10, 20, 29, 42} to measure performance vari-
ance. Table 7 shows the multi-seed mean average
precision (mAP) on EasyCom and Ego4D, while
Tables 8 and 9 provide per-timestep results (mean
± standard error). These tables complement the
main text figures (Tables 2 and 3) by offering a full
breakdown of multi-seed performance at each time
step, ensuring transparency and robustness in our
results.

E YT-Conversation Pseudo Annotation
Quality Validation

To validate the quality of pseudo-annotations in
our YT-Conversation dataset, we conducted a hu-
man evaluation study on 100 segments randomly
sampled from 10 videos, excluding the first five
segments of each (typically non-conversational
teasers). Each segment received a label alignment
score on a 5-point scale: (1) completely misaligned,
with timestamps far off from actual speech; (2)
poor alignment, missing large portions, or label-
ing silence as speech; (3) adequate but potentially
off by 0.5–1 second; (4) good alignment, within
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about 0.5 second of true boundaries; and (5) ex-
cellent alignment, nearly matching human labels.
Across all evaluated segments, the average align-
ment score was 2.147. We want to note that as ASR
models continue to advance (Zusag et al., 2024),
the pseudo-label will be precise as well. We also
use these pseudo-labels only for pretraining, en-
suring the evaluations remain robust with human-
annotated labels.

F Use of AI Assistants

We used Claude 3.5 Sonnet to revise the paper and
code, and GitHub Copilot to write the code.
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Model Modality mAP (%)

0.20s 0.40s 0.60s 0.80s 1.00s

Transformer

A 72.2 ± 0.05 65.2 ± 0.08 60.3 ± 0.09 56.8 ± 0.09 54.4 ± 0.08
V 52.0 ± 0.06 51.7 ± 0.08 51.6 ± 0.06 51.3 ± 0.09 51.1 ± 0.06
A+V 73.8 ± 0.12 66.9 ± 0.16 62.1 ± 0.14 58.5 ± 0.16 56.3 ± 0.15
A+VP 73.4 ± 0.17 66.8 ± 0.18 61.8 ± 0.22 58.3 ± 0.31 56.1 ± 0.30

GRU

A 71.5 ± 0.30 65.0 ± 0.38 60.1 ± 0.29 57.0 ± 0.30 55.0 ± 0.31
V 53.0 ± 0.28 52.7 ± 0.34 52.4 ± 0.25 52.0 ± 0.34 51.7 ± 0.33
A+V 73.5 ± 0.30 68.1 ± 0.20 63.7 ± 0.30 60.7 ± 0.21 59.1 ± 0.25
A+VP 70.8 ± 0.41 64.9 ± 0.26 60.1 ± 0.29 56.9 ± 0.31 55.0 ± 0.31

Mamba

A 67.5 ± 0.88 62.2 ± 0.98 58.4 ± 0.76 55.7 ± 0.71 54.0 ± 0.61
V 52.2 ± 0.18 51.8 ± 0.18 51.5 ± 0.18 51.1 ± 0.19 50.9 ± 0.17
A+V 71.8 ± 0.22 65.4 ± 0.15 60.5 ± 0.17 57.1 ± 0.14 55.0 ± 0.13
A+VP 68.9 ± 0.51 63.2 ± 0.47 59.1 ± 0.43 56.0 ± 0.44 54.0 ± 0.41

(a) 5 Different Seeds Results on EasyCom - Timesteps from 0.20s to 1.00s

Model Modality mAP (%)

1.20s 1.40s 1.60s 1.80s 2.00s

Transformer

A 53.1 ± 0.06 52.4 ± 0.09 52.0 ± 0.08 51.6 ± 0.07 51.4 ± 0.10
V 50.9 ± 0.06 50.8 ± 0.07 50.5 ± 0.11 50.3 ± 0.12 50.1 ± 0.11
A+V 55.0 ± 0.18 54.1 ± 0.14 53.7 ± 0.21 53.3 ± 0.15 53.0 ± 0.15
A+VP 54.8 ± 0.31 54.1 ± 0.31 53.5 ± 0.36 53.2 ± 0.28 52.7 ± 0.31

GRU

A 53.8 ± 0.43 52.9 ± 0.35 52.2 ± 0.43 51.5 ± 0.46 50.9 ± 0.42
V 51.6 ± 0.29 51.2 ± 0.31 51.1 ± 0.31 50.8 ± 0.28 50.6 ± 0.28
A+V 58.1 ± 0.24 57.2 ± 0.15 56.3 ± 0.23 55.4 ± 0.17 54.4 ± 0.15
A+VP 53.8 ± 0.37 53.0 ± 0.40 52.4 ± 0.44 51.8 ± 0.34 51.4 ± 0.40

Mamba

A 52.9 ± 0.50 52.0 ± 0.47 51.1 ± 0.43 50.2 ± 0.50 49.6 ± 0.47
V 50.7 ± 0.23 50.5 ± 0.26 50.4 ± 0.34 50.0 ± 0.31 49.7 ± 0.30
A+V 53.9 ± 0.36 53.5 ± 0.43 53.1 ± 0.46 52.3 ± 0.52 51.8 ± 0.43
A+VP 52.7 ± 0.41 51.8 ± 0.51 51.4 ± 0.46 50.7 ± 0.44 50.1 ± 0.50

(b) 5 Different Seeds Results on EasyCom - Timesteps from 1.20s to 2.00s

Table 8: Per-frame performance over 5 different random seeds on EasyCom.
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Model Modality mAP (%)

0.20s 0.40s 0.60s 0.80s 1.00s

Transformer

A 78.8 ± 0.06 74.9 ± 0.05 71.8 ± 0.04 69.7 ± 0.05 68.1 ± 0.02
V 58.7 ± 0.25 58.5 ± 0.25 58.4 ± 0.25 58.2 ± 0.24 58.1 ± 0.24
A+V 78.1 ± 0.20 74.3 ± 0.23 71.5 ± 0.24 69.4 ± 0.26 68.0 ± 0.27
A+VP 78.4 ± 0.21 74.5 ± 0.17 71.5 ± 0.18 69.4 ± 0.20 67.9 ± 0.19

GRU

A 78.6 ± 0.27 74.8 ± 0.30 71.8 ± 0.27 69.6 ± 0.27 68.1 ± 0.28
V 58.6 ± 0.59 58.3 ± 0.58 58.1 ± 0.58 57.9 ± 0.59 57.8 ± 0.61
A+V 76.4 ± 0.41 73.0 ± 0.42 70.4 ± 0.40 68.5 ± 0.39 67.1 ± 0.40
A+VP 76.9 ± 0.18 73.4 ± 0.15 70.6 ± 0.15 68.6 ± 0.17 67.3 ± 0.19

Mamba

A 77.4 ± 0.53 73.6 ± 0.44 70.5 ± 0.35 68.5 ± 0.35 66.9 ± 0.35
V 58.2 ± 0.29 58.1 ± 0.28 57.9 ± 0.29 57.8 ± 0.30 57.6 ± 0.29
A+V 76.0 ± 0.23 72.5 ± 0.22 69.8 ± 0.20 67.9 ± 0.18 66.6 ± 0.16
A+VP 74.1 ± 0.38 70.8 ± 0.34 68.1 ± 0.34 66.2 ± 0.30 64.8 ± 0.33

(a) 5 Different Seeds Results on Ego4D - Time Steps from 0.20s to 1.00s

Model Modality mAP (%)

1.20s 1.40s 1.60s 1.80s 2.00s

Transformer

A 67.0 ± 0.03 66.3 ± 0.03 65.7 ± 0.04 65.1 ± 0.04 64.7 ± 0.04
V 58.0 ± 0.26 57.9 ± 0.25 57.8 ± 0.26 57.7 ± 0.24 57.7 ± 0.25
A+V 67.0 ± 0.26 66.3 ± 0.25 65.7 ± 0.25 65.3 ± 0.26 64.9 ± 0.27
A+VP 66.7 ± 0.20 65.9 ± 0.20 65.4 ± 0.21 65.0 ± 0.21 64.5 ± 0.18

GRU

A 66.9 ± 0.24 66.2 ± 0.25 65.6 ± 0.25 65.2 ± 0.23 64.8 ± 0.26
V 57.8 ± 0.60 57.7 ± 0.61 57.6 ± 0.62 57.5 ± 0.64 57.5 ± 0.65
A+V 66.3 ± 0.39 65.6 ± 0.45 65.2 ± 0.50 64.7 ± 0.47 64.4 ± 0.44
A+VP 66.3 ± 0.21 65.6 ± 0.21 65.1 ± 0.24 64.7 ± 0.22 64.4 ± 0.28

Mamba

A 65.8 ± 0.35 65.0 ± 0.35 64.3 ± 0.33 63.9 ± 0.36 63.5 ± 0.37
V 57.5 ± 0.27 57.5 ± 0.28 57.4 ± 0.29 57.4 ± 0.29 57.3 ± 0.28
A+V 65.6 ± 0.17 64.8 ± 0.17 64.2 ± 0.19 63.8 ± 0.22 63.5 ± 0.22
A+VP 63.9 ± 0.27 63.2 ± 0.19 62.7 ± 0.18 62.3 ± 0.09 62.0 ± 0.11

(b) 5 Different Seeds Results on Ego4D - Time Steps from 1.20s to 2.00s

Table 9: Per-frame performance over 5 different random seeds on Ego4D.
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