DSQG-Syn: Synthesizing High-quality Data for Text-to-SQL Parsing by
Domain Specific Question Generation

Shaoming Duan'?*, Youxuan Wu!*, Chuanyi Liu™, Yuhao Zhang'#,
Zirui Wang!, Peiyi Han''?, Shengyuan Yu!, Liang Yan ', Yingwei Liang 3,
"Harbin Institute of Technology, Shenzhen, *Pengcheng Laboratory,
*Guangdong Power Grid Co, Ltd, *“Mindflow.ai,

SInspur Cloud Information Technology Co., Ltd

Correspondence: liuchuanyi@hit.edu.cn,hanpeiyi @hit.edu.cn

Abstract

Synthetic data has recently proven effective
in enhancing the accuracy of Text-to-SQL
parsers. However, existing methods generate
SQL queries first by randomly sampling ta-
bles and columns based on probability and then
synthesize natural language questions (NLQs).
This approach often produces a large number
of NLQ-SQL pairs that are irrelevant to the
target domain and inconsistent in query intent,
significantly diminishing the fine-tuning effec-
tiveness of LLMs. In this paper, we introduce
DSQG-Syn, a novel text-to-SQL data synthesis
framework that based on domain-specific ques-
tion generation. Specifically, we design a ques-
tion generation method that creates domain-
relevant questions based on predefined ques-
tion types, ensuring coverage of major SQL
operations. Guided by these questions, we syn-
thesize NLQ-SQL pairs that are both domain-
relevant and intent-consistent. To further en-
hance data quality, we filter out noisy sam-
ples from the generated pairs. When popular
open-source LLMs are fine-tuned on our high-
quality synthesized dataset, they achieve signif-
icant accuracy improvements, surpassing the
performance of closed-source LLM-based ap-
proaches. Moreover, we demonstrate that our
method outperforms existing state-of-the-art
(SOTA) data synthesis techniques.

1 Introduction

Text-to-SQL parsing (Li et al., 2024; Katsogiannis-
Meimarakis and Koutrika, 2023) involves con-
verting natural language questions (NLQs) into
SQL queries, enabling non-experts to interact with
databases through natural language. The grow-
ing availability of open-source LLMs (Bi et al.,
2024; Yang et al., 2024a; Roziere et al., 2023) has

* These authors contributed equally to this work.
T Corresponding authors

SyntheSiS method in (Hu et al.,2023) ‘ Domain irrelevant and meaningless ‘

Question: What is the sum of the difference betweefi the height ID in the height
information and the Elite ID in the player information multiplied by the height of
the player for players from Sweden?

SQL: SELECT SUM((T1.height id - T2.ELITEID) * T2.height) FROM
height_info AS T1 JOIN PlayerInfo AS T2 ON T2.height = T1.height id WHERE
T2.nation = 'Sweden’

Our DSQG-Syn

Question: Show the player with the most points in Playoffs season 2000-2001 V

SQL: SELECT PlayerName FROM PlayerInfo p JOIN SeasonStatus s ON
p.ELITEID = s.ELITEID WHERE s.SEASON = '2000-2001' AND s.GAMETYPE
= 'Playoffs' ORDER BY s.P DESC LIMIT 1

Figure 1: Synthetic examples from (Hu et al., 2023) and
DSQG-Syn.

garnered significant attention, as these models ex-
hibit capabilities comparable to their closed-source
counterparts across various natural language pro-
cessing (NLP) tasks. Building on these advance-
ments, we assess the performance of various open-
source LLMs on the Text-to-SQL task to determine
their feasibility as practical alternatives. However,
our results reveal a considerable performance gap
between open-source and closed-source models.
Specifically, the widely adopted open-source model
DeepSeek-Coder 33B achieves an accuracy rate
that is 20% lower than that of GPT-40 on the BIRD
benchmark (Li et al., 2024), as shown in Table 4
and 5.

Enhancing the text-to-SQL capabilities of open-
source LLMs through supervised fine-tuning (SFT)
remains challenging due to the high cost of ac-
quiring text-to-SQL data, which relies heavily on
manual expert annotations. To address this issue,
there is growing interest in leveraging synthetic
data to improve downstream performance. Recent
approaches (Hu et al., 2023; Zhang et al., 2024;
Yang et al., 2024b; Awasthi et al., 2022; Wang et al.,
2021) typically follow a two-stage process: first,
they randomly generate SQL queries containing
various operations based on probabilistic sampling;

2971

Findings of the Association for Computational Linguistics:
NAACL 2025, pages 2971-2989
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

mailto:email@domain

next, a SQL-to-text generator is used to compose
corresponding NLQs. However, we find that these
methods often produce many domain-irrelevant and
nonsensical NLQs, as illustrated in Figure 1. While
the SQL queries themselves are executable, the use
of randomly synthesized SQL—-characterized by
independent probabilistic column sampling and ar-
bitrary table joins—results in illogical outputs that
diminish the quality of NLQs. An alternative re-
versed pipeline, proposed in (Yang et al., 2021),
employs an entity-to-question model to generate
NLQs first, followed by a text-to-SQL parser to
generate the corresponding SQL queries. While
this method ensures that the generated NLQs re-
main relevant to the domain, it struggles to main-
tain intent consistency between the SQL queries
and their NLQ counterparts due to the inherent
limitations of the text-to-SQL parser’s accuracy.
The performance of LLMs fine-tuned on datasets
containing large numbers of NLQ-SQL pairs with
domain irrelevance and intent inconsistency can
degrade significantly.

To address these challenges, we propose a novel
NLQ-SQL pair synthesis framework, DSQG-syn,
guided by domain-specific question generation. To
ensure comprehensive NLQ coverage, we define
nine question types encompassing major SQL op-
erations. Domain-relevant NLQs are generated
by prompting with the database schema, domain-
specific keywords, and predefined question types.
To maintain domain relevance and query intent
consistency between NLQs and their correspond-
ing SQL queries, we introduce a question-guided
NLQ-SQL synthesis method begins by retrieving
the relevant tables and columns through schema
linking. For each NLQ, we generate multiple SQL
skeletons, synthesize SQL queries using the identi-
fied schema and skeleton, and regenerate the NLQ
from the SQL query to ensure alignment between
NLQ intent and SQL logic. To further improve
data quality, we introduce a semantic similarity-
based optimization method to filter out irrelevant
NLQ-SQL pairs. Extensive experiments on three
real-world datasets evaluate the effectiveness of our
framework, with LLMs fine-tuned on DSQG-Syn
data achieving superior performance compared to
SOTA methods.

The main contributions of this paper are as fol-
lows:

1. We propose a novel data synthesis framework
for Text-to-SQL parsing that generates data di-

rectly from database schemas without relying
on pre-existing NLQ-SQL pairs. In contrast
to previous methods, our framework first syn-
thesizes NLQs and subsequently constructs
corresponding SQL-NLQ pairs. We believe
this approach offers a new reference point for
the practical application of Text-to-SQL data
synthesis in real-world scenarios.

2. We propose a question generation method that
creates domain-specific questions from struc-
tured databases based on nine predefined ques-
tion types, covering all SQL operations.

3. We introduce a question-guided NLQ-SQL
pair synthesis method that ensures the domain
relevance of NLQs in the synthesized data and
maintains intent consistency between NLQs
and their corresponding SQL queries.

4. We conduct extensive experiments on four
real-world datasets to validate the effective-
ness of our approach. The results show that
LLMs fine-tuned on data synthesized by our
method outperform those fine-tuned with ex-
isting state-of-the-art (SOTA) methods.

2 Related Work

Early efforts in NLQ-SQL synthesis for text-to-
SQL parsing (Yu et al., 2018, 2019; Wang et al.,
2020b,a) relied on hand-crafted templates that often
depended on predefined rules or grammars. These
approaches required significant human effort and
were difficult to scale. To automate the synthe-
sis process, recent studies (Hu et al., 2023; Zhang
et al., 2024; Yang et al., 2024b; Awasthi et al., 2022;
Wang et al., 2021; Wu et al., 2021; Zhong et al.,
2020) introduced SQL-to-NL pipelines. These
methods first extract SQL templates from exist-
ing data, generate SQL queries using the templates,
and then employ SQL-to-NL models to generate
natural language questions. For instance, (Hu et al.,
2023) employs template synthesis strategies with
strong typing constraints, key relationship preser-
vation, and schema-distance-weighted column sam-
pling to enhance the quality of synthetic data. Sci-
enceBenchmark (Zhang et al., 2024) proposed a
four-step pipeline for complex data synthesis in spe-
cific domains: SQL queries, questions, and SQL
abstract syntax trees are sampled from seed data,
SQL queries are then generated, followed by the
generation of natural language questions through a
SQL-to-NL system, and finally, the questions are

2972

Keywords:
Diseases, Anatomical Entities, Cancer Tissue,
Biomarker, FDA, Lung Cancer, Gene Symbol, ...

1. Join: Questions that joining two or more tables
2. Except: Questions that involve the set difference
between two sets of data

Database Schema
Database Schema and Content

\ Database Content
N

1
|
1
—

| Schema Linking SQL Skeleton ! SQL
: Generation |
! 71— [T.SQL —
! Schema SQL|Skeleton :
1

1
: X SQL —>
: SQL Generation :
| » SQL —
|
1
1
1
1

NLQ-SQL Filter
NLQ'
NLQX : NLQ'

NLQ’: How many distinct FDA biomarkers are associated
with the NCIT term 'ERBB2'?

NLQ'

NLQ'

Step-3 : NLQ Semantic Optimization

Figure 2: The overview of our DSQG-Syn framework, which comprises three steps: (i) Domain specific question
generation, responsible for generating domain-relevant questions from database schema and content, (ii) Question-
guided SQL-NLQ synthesis, which synthesis SQL-NLQ pairs according to the generated questions, and (iii) NLQ
semantic optimization, which filter out samples that do not match the original question.

verified. While these methods automate the synthe-
sis process and reduce manual effort, the generated
data often contains a substantial number of domain-
irrelevant and nonsensical NLQ-SQL pairs.

To improve domain relevance, (Yang et al., 2021)
proposed an NL-to-SQL parser-based pipeline.
This approach first generates natural language ques-
tions based on the database schema, followed by
generating corresponding SQL queries. However,
the effectiveness of this method is limited by the ac-
curacy of the NL-to-SQL parser, which may result
in inconsistencies between the intent of the NLQ
and the corresponding SQL query.

In contrast to the above approaches, our DSQG-
Syn framework eliminates the need for pre-existing
NLQ-SQL pairs as seed data. It directly gener-
ates domain-specific questions from the database
schema, retrieves relevant schema components
based on the generated questions to construct po-
tential SQL queries, subsequently generates natu-
ral language questions from the SQL queries, and
finally optimizes the questions. This approach en-
sures both the domain relevance of the NLQs and
the query intent consistency between the NLQ and
SQL pairs.

3 Methodology

DSQG-Syn is composed of three steps, as illus-
trated in Figure 2. The output of the first step is a set
of domain specific questions Q = {q1, q2, .-, N },
where N is the number of nature language ques-
tions (NLQ). These questions are not only rele-
vant to the domain but also aim to encompass as
many potential query variations as possible within
the field. In the second step, SQL-NLQ pairs are
synthesized based on the generated questions. Un-
like previous approaches, we avoid directly syn-
thesizing SQL from the question, which would be
constrained by the accuracy of the Text-to-SQL
model. Instead, we first select the relevant schema
and generate an SQL skeleton for each question.
Then, using the selected schema and skeleton, we
generate the corresponding SQL queries and syn-
thesize the natural language questions for each
SQL query. This results in a new set of questions,
Q = {qll, qIQ, ey q}w}, where M represents the
number of questions, with M > N. The third
step focuses on optimizing the NLQs. Questions
with significant semantic differences between ()
and Q' are filtered out using a semantic similarity
comparison method.

2973

3.1 Domain Specific Question Generation

The aim of this section is to generate domain-
specific, comprehensive natural language questions
(NLQs). A common approach is to prompt LLMs
using the database schema and content directly.
However, this approach presents challenges in con-
trolling the scope and granularity of the generated
questions, often leading to a high number of ran-
dom or irrelevant outputs.

To address this issue, we first extract domain-
specific keywords from the database schema and
content. These keywords serve as constraints, en-
suring that the synthesized questions remain rele-
vant to the domain. Additionally, to guarantee com-
prehensive coverage of SQL operations, we define
nine distinct question types, aligned with the SQL
operations specified in (Eyal et al., 2023), as out-
lined in Table 1. It is important to note that a single
question can belong to multiple question types. For
instance, the question "What are the gene symbols
and expression scores for genes associated with
anatomical entities described as ’gray matter’?"
may involve both the Join and Filter types.

To ensure that the synthesized questions encom-
pass all tables within the database, we propose a
question generation method that systematically tra-
verses the entire database schema. This approach
constructs a connected subgraph based on the pri-
mary and foreign key relationships, where each
edge represents a primary-foreign key pair, and
each node represents a table. Starting from a ran-
domly selected leaf node, we iteratively select k
connected tables, with k determined by the number
of allowed joins in the SQL query. The detailed
question generation process is outlined in Algo-
rithm 1. The prompt is constructed using domain-
specific keywords, question types, and the selected
database schema, leading to the synthesis of the
natural language question (). In this algorithm,
the combination of nine predefined question types
and the schema traversal method ensures that all
relevant questions involving the database are syn-
thesized.

3.2 Question-guided NLQ-SQL Synthesis

The objective of this section is to synthesize NLQ-
SQL pairs that maintain consistent intent based
on (). A straightforward approach to generating
NLQ-SQL pairs is to use the NLQ @ as input for
Text-to-SQL models (Yang et al., 2021) to pro-
duce the corresponding SQL query. However, this

Algorithm 1 Question Generation Algorithm

Input: Question type 7, database schema .S,
database content C'
Output: Question set)

1: Constrcut a set of connected subgraph G =
{G1,Gs,...,G,} from S based on primary
and foreign keys
Q10
for each GG; in G do

for each node g in G; do
gr. < Select k£ connected tables with g
from G;
Dy < Promptrc(g)
Q < Promptoa(gi, Dy, T, C)
end for
end for
10: return ()

L ® 3R

approach does not guarantee the accuracy of the
generated SQL query. An alternative method in-
volves generating SQL queries based on probabilis-
tic schema selection, followed by generating NLQs
from the SQL. While this ensures consistency be-
tween NLQ-SQL pairs, it often results in a large
number of domain-independent SQL queries and
overly mechanical NLQs.

To address these limitations, we propose a
question-guided NLQ-SQL synthesis method. This
method neither generates SQL queries directly
from NLQs nor selects database schema randomly
to produce arbitrary SQL queries followed by
NLQs. Instead, it constrains SQL query genera-
tion based on the NLQ. Given a generated question,
we first utilize schema linking techniques to select
the relevant tables and columns. For each question
g; € @), we generate several potential SQL skele-
tons. Finally, for each SQL skeleton, we synthesize
corresponding SQL queries based on the selected
schema, and subsequently generate a refined NLQ
Q' from the SQL queries.

Schema Linking. Unlike the probabilistic
schema selection approach used for SQL synthe-
sis in (Hu et al., 2023), we employ schema link-
ing to select the minimal schema relevant to the
question. For each question ¢; € (), and fol-
lowing the approach of MAC-SQL (Wang et al.,
2023), the selected schema s; is determined as
s;i < Promptsr(q;,S), where Promptsy, de-
notes the schema linking prompt, and S represents
the database schema.

SQL Skeleton Generation. As illustrated in

2974

Question SQL s
Types Operations Description
BrowseType Sean Questions that involve scanning all rows in a table with optional filtering
p (e.g., identifying all relevant biomarker tests or clinical trials).
. Questions that require grouping data and performing aggregation
SummarizeType Aggregate (e.g., counting the number of tests or trials for each group).
RefineType Filter Questions that require filtering out rows that don’t match a specific criterion
P (e.g., selecting only approved tests or trials related to a particular cancer type).
ArrangeType Sort Questions that involve sorting results based on one or more attributes
gelyp (e.g., sorting tests by approval status or sorting trials by enrollment size).
Questions that select the top-K rows based on certain criteria
SelectTopType TopSort (e.g., selecting the top clinical trials with the highest success rate).
Questions that require joining two or more tables
LinkType Join (e.g., linking clinical trial data with biomarker information to analyze correlations
between test results and trial outcomes).
ExcludeType Except Questions that involve computing the difference between two sets of data
yp P (e.g., identifying tests or trials that meet one set of criteria but not another).
OverlapType Intersect Questions that involve computing the intersection of two sets of data
pLyp (e.g., identifying common biomarkers or trials that appear in multiple datasets).
CombineType Union Questions that require computing the union of two sets of data

(e.g., merging datasets from different sources to provide a comprehensive overview).

Table 1: Description of question types

How many articles are associated with biomarkers
related to risk?

SELECT COUNT (ba.pmid) FROM biomarker_article ba
SQL JOIN biomarker b ON ba.biomarker_internal_id = b.id
WHERE b.biomarker_description LIKE ’%risk%’
SELECT COUNT(col_1) FROM table_1

JOIN table_2

WHERE col_2 LIKE value_1

Question

SQL
Skeleton

Table 2: A example of question, SQL, and SQL skeleton

Figure 3, we observe that the accuracy of generat-
ing SQL skeletons is significantly higher than that
of generating SQL queries. In this work, we define
a SQL skeleton as a SQL query without the associ-
ated schema, as shown in Table 2. For each ques-
tion, we synthesize multiple distinct SQL skeletons
by constructing prompts based on the question and
the selected database schemas. This process is
formalized as ss; «— Promptssa(gi, i), where
Promptgsg represents the prompt used for SQL
skeleton generation.

SQL Generation. For each NLQ, after obtain-
ing the relevant schema and SQL skeleton, we
proceed to generate SQL queries, represented as
sql; < Promptsa(qi, si, $8;), where Promptsa
denotes the prompt for SQL generation. It is impor-
tant to note that each SQL skeleton is used to gener-
ate multiple SQL queries. In contrast to randomly
synthesized SQL queries, our approach ensures that
the synthesized SQL queries are closely aligned
with the domain-specific NLQ, as they incorporate
the necessary database schema and SQL skeleton.
This ensures that the resulting SQL queries capture
all the knowledge required for establishing the cor-
rect matching relationship between the NLQ and

the database schema.

SQL-NLQ Synthesis. For each generated SQL
query, we synthesize the corresponding NLQ, de-
noted as ¢ + Promptsgranro(sqli), where
Promptsqgranrg represents the prompt for NLQ
generation. At this stage, the natural language
question and SQL query are consistent in intent,
recorded as Q' = {qi,q;,qé, ...,q;n}, where m
represents the number of NLQ-SQL pairs, with
m > n.

3.3 NLQ Semantic Optimization

After NLQ-SQL synthesis, some domain-irrelevant
NLQs may still remain. To further improve the
quality of the NLQ-SQL pairs, it is essential to
filter out pairs that are semantically inconsistent
with domain-specific questions.

NLQ-SQL Filter. To mitigate the impact of
domain-irrelevant NLQ-SQL pairs on LLM fine-
tuning, we propose an NLQ filtering method based
on semantic similarity. Given that multiple NLQs
can convey the same meaning through different ex-
pressions, conventional similarity evaluations may
introduce errors. To address this, we employ a
multi-vector retrieval method based on the M3-
Embedding model (Chen et al., 2024) to calculate
the semantic similarity between q; (the generated
NLQ) and g; (the domain-relevant question). We
rank the candidate NLQs by their retrieval scores
and retain the top K NLQ-SQL pairs in Q/.

2975

#Syn
Dataset #DBs #Tabs #Cols #NL y
atase abs #Cols Qs NLOs
Train 1 25 106 100 1065
OncoMX pev 1 25 106 99 -
Train 1 19 82 100 1306
CORDIS — hoo 19 8 100
Bird Train 69 522 3608 9428
1 Dev 11 75 798 1534

Table 3: Statistics of Datasets

4 Experiments

4.1 Experiment Setup

Datasets. As shown in Table 3, we evaluate our
proposed approach using three real-world datasets.
OncoMX (Zhang et al., 2024) provides information
on cancer biomarkers, gene expression in healthy
anatomical entities, differential gene expression be-
tween healthy and cancerous samples, and cancer-
related mutations. CORDIS (Zhang et al., 2024)
originates from the Community Research and De-
velopment Information Service, the European Com-
mission’s primary repository of results from EU-
funded research and innovation projects. This
dataset contains detailed hierarchical information
on funding frameworks and the network of indus-
trial and academic institutions, encoded in spe-
cialized EU terminology. BIRD (Li et al., 2024)
is a large-scale cross-domain dataset encompass-
ing 37 professional fields, including areas such as
blockchain, healthcare, education, and hockey.The
detailed statistics of these datasets are provided in
Table 3.

Baselines. To evaluate the performance of our
data synthesis method, we use two SOTA SQL-
to-NL based methods ScienceBenchmark (Zhang
etal., 2024) and (Hu et al., 2023) as baselines. For a
fair comparison, all methods, including our DSQG-
Syn, utilize GPT-3.5 as the underlying LLM.

Models. We selected eight open-source LLMs
for SQL generation experiments: DeepSeek-Coder
6.7B/33B (Guo et al., 2024), DeepSeek-Coder-V2
16B (Zhu et al., 2024), Code LLaMA 7B/13B/34B
(Grattafiori et al., 2023), and StarCoder 7B/15B (Li
et al., 2023). These models were first fine-tuned on
synthetic data and then evaluated on the validation
set.

Metrics. Following (Hu et al., 2023), we use
execution accuracy (EX) as the metric to evaluate
the quality of the synthetic data by measuring the
performance of LLMs fine-tuned on it.

4.2 Main Results

Our DSQG-Syn consistently outperforms the base-
line methods across almost all scenarios. In con-
trast, the data synthesized by the baseline methods
not only fails to improve the performance of LLMs
but also significantly reduces their accuracy in
some cases. For example, on the OncoMX dataset,
compared to the original LLMs without fine-tuning,
LLMs fine-tuned on the synthetic data generated by
ScienceBenchmark (Zhang et al., 2024) exhibit an
accuracy drop of 13% to 31%. Similarly, the syn-
thesis method proposed in (Hu et al., 2023) leads
to a reduction in accuracy by 4% to 20%. This
degradation occurs because the baseline methods
rely on random sampling of schemas, resulting in
numerous SQL-NLQ pairs that are irrelevant to the
domain and misaligned with the intended query
semantics, which severely impacts model perfor-
mance. In contrast, our method enhances model
performance, achieving up to a 13% improvement
on the OncoMX dataset. These results demonstrate
the effectiveness of our approach, which constrains
SQL-NLQ generation by first synthesizing domain-
relevant questions. This not only ensures consis-
tency with query intent but also highlights the great
potential of our framework.

We also evaluated the effectiveness of synthetic
data for data augmentation. As shown in Table
4, combining synthetic data with real data yields
better model performance compared to using syn-
thetic data alone, for both our method and the base-
line approach. However, a key difference is that
while our method further enhances model perfor-
mance, the baseline approach shows minimal im-
provement, with results falling between no fine-
tuning and fine-tuning using only synthetic data.
These findings demonstrate that the data synthe-
sized by our method is robust and well-suited for
data augmentation, while the data generated by the
baseline approach negates the beneficial effects of
real data on LLMs.

Table 5 presents a comparison between the best-
performing models of different methods and closed-
source models (GPT-3.5 and GPT-40). The experi-
mental results demonstrate that the models fine-
tuned with the synthetic data generated by our
method outperform the closed-source models on
the OncoMX and CORDIS datasets. On the BIRD
dataset, our method achieves results comparable to
those of the closed-source models, while the base-
line methods consistently yield lower performance

2976

DeepSeek-

dataset Methods DeepSeek-Coder-v1 Coder-v2 CodeLLaMA StarCoder
6.7B 338 16B 7B 3B 348 7B 5B
No-finetuning 3737 4646 404 2424 2727 3232 2828 2626
(Hu 6‘3;2023) 33.33 3434 3434 9.00 1919 19.19 8.08 32.32
(H“se‘ al, 2023) 59 99 3636 35.35 2727 3034 2020 606 36.36
-Syn+Real
OncoMx (Zhang CS‘;III 2029 507 1515 27.27 ILI1 404 707 303 808
(Zhang etal., 2024) 39 39 3636 39.39 2525 2121 2121 606 44.44
-Syn+Real
Ours 50.51 4242 4141 303 3131 3838 3131 3838
Ours+Real 51.52 4444 4242 3030 3030 3636 3434 39.39
No-finetuning 44.00 51.00 48.00 2600 2500 3600 24.00 29.00
(Hu et_§11>;;12023) 14.00 2200 31.00 2000 2200 23.00 2000 27.00
(Huetal, 2023) =5 g9 19.00 22.00 19.00 17.00 21.00 21.00 24.00
-Syn+Real
CORpIs (“hang esfyarll 202407 00 300 26.00 600 500 700 900 800
(Zhang etal., 2024)) 19.00 14.00 1400 1500 12.00 14.00 20.00
-Syn+Real
Ours 46.00 4400 40.00 29.00 29.00 36.00 39.00 39.00
Ours+Real 50.00 41.00 37.00 3200 2900 3400 3800 39.00
No-finetuning 22.10 2640 2555 991 926 1571 1571 2288
(Hu et_g;nzom) 16.56 2301 17.67 1063 1330 1519 13.82 19.04
(Huetal, 2023) = 5, 1¢ 2849 21.77 1591 1943 26.66 1936 25.88
-Syn+Real
BIRD (Zhang estyar]l 2029 59,99 2373 2047 1675 1819 1904 1832 2223
(“hang et 23, 3029 48,63 3136 2334 2132 2562 2634 2208 2157
-Syn+Real
Ours 32.59 19.69 2327 1832 18.06 2027 1832 21.77
Ours+Real 45.11 29.66 24.38 2275 2562 2308 2262 27.05

Table 4: Main results (%) of various open-source LLMs on methods.

than the closed-source models.

4.3 Question Generation Study

We investigated the impact of synthesizing vary-
ing numbers of NLQs for each target table on data
quality during the domain-specific question gen-
eration phase, as shown in Table 6. Specifically,
we generated between 3 and 15 questions per ta-
ble. The experimental results indicate that the best
performance is achieved when nine questions are
synthesized for each table—a result that aligns
closely with the number of question types we de-
fined. This finding suggests that generating one
domain-specific question for each predefined ques-
tion type can effectively enhance the quality of the
synthesized data.

4.4 NLQ-SQL Pairs Generation Study

SQL Generation VS SQL Skeleton Generation.
We evaluated the accuracy of generating SQL di-
rectly from domain-specific questions versus gener-
ating SQL skeletons during the NLQ-SQL synthe-

@
S

~
o

67%

o
o

w
o

48%
43%

Accuracy (%)
~ w s
5 8 8

=
5

SQL Gen (GPT-3.5) SQL Gen (GPT-4.0)

Model Variants

SQL Skeleton Gen (GPT-3.5)

Figure 3: SQL generation VS SQL skeleton Generation

sis stage. To eliminate the influence of randomness
in the domain question generation phase, we used
the original 100 questions from the OncoMX and
CORDIS datasets as the initial domain questions.
As shown in Figure 3, the accuracy of generat-
ing SQL skeletons significantly surpasses that of

2977

Method/Model OncoMX CORDIS BIRD # of SQL Skeleton OncoMX CORDIS
GPT-3.5-turbo 43.43 44.00 37.22 1 0.3939 0.45
GPT-4o 48.48 45.00 46.09 3 0.4545 0.39
(Hu et al., 2023) 5 0.404 0.49
Syn 3434 27.00 23.01 10 0.3939 0.43
(Hu et al., 2023)
-Syn+Real 36.36 24.00 2849 Table 7: The impact of varying the number of SQL
skeleton on data quality
(Zhang estyarll 2029 9727 2600 2999
(Zhang et al., 2024) # of SQL Skeleton Recall
_Syn+Real 39.39 22.00 48.63 1 051
Ours 50.51 4600 32.59 3 0.67
Ours+Real 51.52 5000 45.11 5 0.67
10 0.64

Table 5: Comparison results (%) between open-source
LLMs and closed-source LLMs

#of NLQs OncoMX CORDIS
3 0.4747 0.44
5 0.4040 0.45
9 0.5151 0.46
15 0.4242 0.44

Table 6: The impact of varying the number of NLQs for
each target table on data quality.

GPT-3.5 and GPT-40 in domain-specific SQL gen-
eration, demonstrating that our method effectively
enhances the domain relevance of SQL through
SQL skeleton synthesis.

Number of SQL Skeleton. We examined the im-
pact of generating varying numbers of SQL skele-
tons for each domain-specific question on the qual-
ity of synthetic data during the NLQ-SQL synthe-
sis phase. For each domain question, we generated
between 1 and 10 SQL skeletons. As shown in
Table 7, the best performance was achieved when
three SQL skeletons were generated per question.
Beyond this number, data quality declined, sug-
gesting that a limited number of SQL skeletons is
sufficient to fully capture the relationships between
the schemas associated with each domain question.
This is because, when three SQL skeletons were
generated for each question, the generation accu-
racy converges. As shown in Table 8, when the
number of SQL skeletons exceeds 3, the recall of
SQL skeleton generation does not increase.

SQL2NLQ Evaluation. We evaluated the ac-
curacy of SQL2NLQ using the OncoMX dataset.
Specifically, we leveraged the gold-standard SQL
queries from the validation set to generate natural
language questions (NLQs). For a fair assessment,

Table 8: The recall for varying the number of SQL
skeleton on the OncoMX dataset.

we evaluated the generated questions through both
GPT-40 and human experts to determine if they
accurately capture the intent of the corresponding
SQL queries. As shown in Table 9, the evalua-
tion results from both human experts and GPT-40
demonstrate that our SQL2NLQ method effectively
translates SQL queries into natural language ques-
tions.

4.5 NLQ Semantic Optimization

We investigated the impact of retaining differ-
ent numbers of NLQ-SQL pairs for each domain-
specific NLQ during semantic optimization on the
experimental results. To eliminate the influence
of question generation, we used the original 100
questions on the OncoMX and CORDIS datasets
as the initial domain-specific questions and resyn-
thesized the data starting from Step 2 in Figure 2.
As shown in Table 10, the model’s performance
improves steadily with an increasing number of
retained samples, achieving the best results when
five samples are retained for each original question.

Domain Relevance Evaluation. For domain
relevance verification of the NLQ-SQL pairs, we
randomly sampled 100 examples from the synthetic
OncoMX dataset and manually verified the domain
relevance accuracy using both human evaluators
and GPT-40. As shown in Table 11, the experimen-
tal results demonstrate that the data synthesized
by our method maintains high domain relevance.
This is attributed to the semantic optimization per-
formed in the third step of our method, which filters
out questions that are not relevant to the domain.

2978

GPT-40
0.84

Dataset
OncoMX

Personal
0.87

Table 9: Evaluation results for SQL2NLQ.

#of SQL-NLQ OncoMX CORDIS

1 0.3636 0.41
3 0.3939 0.45
5 0.4040 0.48
10 0.3636 0.46

Table 10: The impact of varying the number of NLQ-
SQL pairs retained for each domain-specific NLQ dur-
ing NLQ Semantic Optimization

4.6 Abalation Study

We conducted an ablation study to evaluate the con-
tribution of each technique in our proposed frame-
work. Specifically, we removed each technique
individually and regenerated the synthetic data us-
ing the framework on the OncoMX and CORDIS
datasets. As shown in Table 12, removing any sin-
gle technique results in a decline in performance,
indicating that each of the three proposed synthesis
strategies plays a crucial role in generating high-
quality synthetic data.

4.7 Limitations

Although DSQG-Syn has shown promising re-
sults and substantial progress across various as-
pects, there are several limitations and areas that
require further improvement. First, due to con-
straints in computational resources and time, we
fine-tuned the model using CodeLLaMA 34B
as the largest available option. This leaves
the effectiveness of our data synthesis approach
on even larger models uncertain. Second, our
evaluation primarily focused on the text-to-SQL
task. However, the broader potential of our do-
main question generation-based synthesis frame-
work—particularly for tasks like Python code gen-
eration—remains unexplored and warrants further
investigation. Third, our approach involves signifi-
cant computational costs. Table 13 presents the av-
erage time and corresponding computational costs
for both the DSQG-Syn method and the compari-
son methods to generate a sample on the CORDIS
dataset. While our method falls between the two
comparison methods in terms of time cost, it incurs
the highest financial cost, which constitutes a limi-
tation of our approach. In future work, we plan to
explore migrating our method to an open-source

Dataset GPT4o0
OncoMX 0.84

Personal
0.83

Table 11: Evaluation scores of domain relevance on the
OncoMX dataset.

Method OncoMX CORDIS
Overall pipeline 0.5051 0.46

w/o Keywords Generation 0.3939 044

w/o Question Types 0.3737 045

w/o NLQ Semantic Optimization 0.3434 0.41

Table 12: Ablation study on the three proposed synthesis
techniques.

model to alleviate these costs.

Method Mean Time (s) Cost ($)
(Zhang et al., 2024) 16 0.001
(Hu et al., 2023) 1 0.002
Ours 7 0.003

Table 13: Mean response time and average cost per
NLQ-SQL pair generation

5 Conclusion

In this paper, we propose a novel data synthe-
sis framework, DSQG-Syn, to explore the use of
synthetic data in text-to-SQL parsing. By com-
bining domain-specific question generation with
a question-guided NLQ-SQL synthesis method,
DSQG-Syn produces NLQ-SQL pairs that are both
domain-relevant and intent-consistent. Extensive
experiments demonstrate that DSQG-Syn outper-
forms existing SOTA methods, significantly bridg-
ing the performance gap between open-source and
closed-source models.

References

Abhijeet Awasthi, Ashutosh Sathe, and Sunita Sarawagi.
2022. Diverse parallel data synthesis for cross-
database adaptation of text-to-sql parsers. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 11548—
11562.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, et al. 2024. Deepseek 1lm: Scal-
ing open-source language models with longtermism.
CoRR.

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun
Luo, Defu Lian, and Zheng Liu. 2024. M3-
embedding: Multi-linguality, multi-functionality,

2979

https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137

multi-granularity text embeddings through self-
knowledge distillation. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
2318-2335, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

Ben Eyal, Moran Mahabi, Ophir Haroche, Amir Bachar,
and Michael Elhadad. 2023. Semantic decomposi-
tion of question and sql for text-to-sql parsing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 13629-13645.

Wenhan Xiong Grattafiori, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin,
Nicolas Usunier, Thomas Scialom, and Gabriel Syn-
naeve. 2023. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When
the large language model meets programming—the
rise of code intelligence. arXiv e-prints, pages arXiv—
2401.

Yiqun Hu, Yiyun Zhao, Jiarong Jiang, Wuwei Lan,
Henghui Zhu, Anuj Chauhan, Alexander Hanbo Li,
Lin Pan, Jun Wang, Chung-Wei Hang, et al. 2023.
Importance of synthesizing high-quality data for text-
to-sql parsing. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 1327-
1343.

George Katsogiannis-Meimarakis and Georgia Koutrika.
2023. A survey on deep learning approaches for text-
to-sql. The VLDB Journal, 32(4):905-936.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Bailin Wang, Wenpeng Yin, Xi Victoria Lin, and Caim-
ing Xiong. 2021. Learning to synthesize data for
semantic parsing. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2760-2766.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun
Li. 2023. Mac-sql: Multi-agent collaboration for
text-to-sql. arXiv preprint arXiv:2312.11242.

Lijie Wang, Ao Zhang, Kun Wu, Ke Sun, Zhenghua
Li, Hua Wu, Min Zhang, and Haifeng Wang. 2020a.
Dusql: A large-scale and pragmatic chinese text-to-
sql dataset. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 6923-6935.

Ping Wang, Tian Shi, and Chandan K Reddy. 2020b.
Text-to-sql generation for question answering on elec-
tronic medical records. In Proceedings of The Web
Conference 2020, pages 350-361.

Kun Wu, Lijie Wang, Zhenghua Li, Ao Zhang, Xinyan
Xiao, Hua Wu, Min Zhang, and Haifeng Wang. 2021.
Data augmentation with hierarchical sql-to-question
generation for cross-domain text-to-sql parsing. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
8974-8983.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024b. Synthesizing text-to-
sql data from weak and strong llms. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7864-7875.

Wei Yang, Peng Xu, and Yanshuai Cao. 2021. Hier-
archical neural data synthesis for semantic parsing.
arXiv preprint arXiv:2112.02212.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, et al. 2019. Cosql: A conversational
text-to-sql challenge towards cross-domain natural
language interfaces to databases. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 1962-1979.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Yi Zhang, Jan Milan Deriu, George Katsogiannis-
Meimarakis, Catherine Kosten, Georgia Koutrika,
and Kurt Stockinger. 2024. Sciencebenchmark: a
complex real-world benchmark for evaluating natural
language to sql systems. Proceedings of the VLDB
Endowment, 17(4):685-698.

Victor Zhong, Mike Lewis, Sida I Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings
of the 2020 Conference on Empirical Methods in

2980

https://doi.org/10.18653/v1/2024.findings-acl.137
https://doi.org/10.18653/v1/2024.findings-acl.137

Natural Language Processing (EMNLP), pages 6869—
6882.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

2981

A Prompts

These are the prompts mentioned in the main body.

A.1 Question Generation

1.

2.

You are an expert in a specific domain. I will provide you with a database schema and a set of
keywords. Based on these, identify the domain of expertise and generate a set of professional-level
questions related to the given table that can be solved through SQL queries on the database.

[Instructions]

First, identify the domain of expertise based on the given keywords and schema.

Generate 15 questions related to the {table_name} table, ensuring that the questions reflect
different types of SQL operations and address problems relevant to the identified domain.

Question Generation Guidelines: Your task is to generate questions related to the {table_name}
table. These questions may involve multiple table joins with other tables in the schema. The
questions should be designed to solve problems relevant to the identified domain.

Scan: Generate questions that involve scanning all rows in a table with optional filtering.

Aggregate: Generate questions that require grouping data (e.g., by object type or survey
results) and performing aggregation.

Filter: Generate questions that require filtering out rows that don’t match a specific criterion.

Sort: Generate questions that involve sorting results based on one or more attributes (e.g.,
distance, magnitude).

TopSort: Generate questions that select the top-K rows based on certain criteria (e.g., closest
objects).

Join: Generate questions that require joining two or more tables using relevant foreign key
relationships.

Except: Generate questions that involve computing the set difference between two sets of
astrophysical data (e.g., objects detected in two different surveys).

Intersect: Generate questions that involve computing the intersection of two sets of astro-
physical data (e.g., common objects across two surveys).

Union: Generate questions that require computing the union of two sets of astrophysical
data (e.g., merging results from two observations).

[Output format]
{
"Domain”: "<Identified Domain of Expertise>",
"NLQ": "<Natural Language Question>",
"Keyword": "<Keywords for the question>",
"Related Schema”: "<Relevant tables from theschema>",

"Related SQL operator”: "<SQL operations: Scan, Aggregate, Filter, Sort,\\
TopSort, Join, Except, Intersect, Union>"

2982

For example:
L
{
"Domain”: "Astrophysics"”,
"NLQ": "What is the distance between each object and its neighbor?”,
"Keyword"”: "distance, objid, neighborobjid”,
"Related Schema”: "neighbors”,
"Related SQL operator”: "Scan”
}s
{
"Domain”: "Astrophysics"”,
"NLQ": "Which objects were detected in the 'boss' survey but not \
in the 'eboss' survey, and what is their average redshift?”,
"Keyword"”: "objects, boss survey, eboss survey, average redshift,
set difference”,
"Related Schema”: "specobj",
"Related SQL operator”: "Except, Aggregate”
}»
{
"Domain”: "Astrophysics”,
"NLQ": "Which objects were observed in both the 'sdss' and 'boss' \
surveys, and sort them by their velocity dispersion (veldisp)?”,
"Keyword": "objects, sdss survey, boss survey, velocity dispersion”,
"Related Schema”: "specobj",
"Related SQL operator”: "Intersect, Sort”
3
]
Database Schema: {Schema}
Keywords: {Keywords}

A.2 SQL Skeleton Generation

Please generate an SQL template based on the given question and schema. Ensure that all SQL
clauses are included, such as SELECT, FROM, JOIN, WHERE, GROUP BY, ORDER BY, and HAVING.
Use placeholders for specific table and column names as follows:

1. Use col_# for column names.
2. Use table_# for table names.

3. Use value_# for constant values.

Example 1:

Input:

{"question": "Show me the redshift of spectroscopic object with subclass \
of STARFORMING"}

Schema:

CREATE TABLE specobj (

2983

specobjid number Example Values[(Decimal('299489952322840576'),), ...],
subclass text Example Values[(None,), ('BROADLINE',), ('STARFORMING',)],
z number Example Values[(7.01124,), (0.00415325,),
(0.00415325,)1,
primary key (specobjid)

)

Output:

{"template”: "SELECT col_@ FROM table_1 WHERE col_0 = value_0"}

Example 2:
Input:
{"question”: "Find the photometric objects with object ids,\
spectroscopic object id whose spectroscopic class is 'GALAXY' ..."}
Schema:
CREATE TABLE photoobj (
objid number Example Values[(1237645879551066262,), ...1,
u number Example Values[(24.6346,), ...1,
r number Example Values[(24.802,), ...]
E
CREATE TABLE specobj (
specobjid number Example Values[(Decimal('299489952322840576'),), ...1,
class text Example Values[('GALAXY',), ...1,
primary key (specobjid)
)
Output:

{"template”: "SELECT col_1, col_2 FROM table_0
JOIN table_1 WHERE col_3 = value_0 AND col_4 - col_5 < value_1
AND col_4 - col_4 > value_2"}

Now, apply the same transformation to the question below. Do not let specific table names,
column names, or constant values (like "description”, "name", "GALAXY", or "BROADLINE")
appear in the template.

Input:

{"question”": "{Question}"}
Schema:
{Schema}

Output:

A.3 SQL Generation

You are an expert in a specific domain. You are provided with:
1. An SQL query template.
2. A question that the query needs to answer.

3. The schema of the relevant database.

2984

Your task is to:

1. Strictly use the information from the provided schema to complete the PostgreSQL query.
Ensure that all necessary table names, column names, and clauses (such as FROM and JOIN)
come from the schema only.

2. Avoid introducing any table names, column names, or other elements that are not explicitly
defined in the schema.

3. The generated 10 SQLs need to be directly related to the given question and fit the SQL
query template.

4. Keep the output in JSON format.

Example:

Input:

SQL Query Template:

SELECT col_1, col_2 FROM table_1 JOIN table_0 WHERE col_3 = value_0;
Question:

What are the names and descriptions of the different types of photos associated
with objects in the astrophysical classifications from the specobj table?

Database Schema:
CREATE TABLE photo_type (
value number Example Values[(6,), (2,), (4,)1,
name text Example Values[('GHOST',), ('STAR',), ('NOTATYPE',)],
description text Example Values[
('Sky: Blank sky spectrogram (no objects in this arcsecond area).',),
('Trail: A satellite or asteroid or meteor trail. (not yet used)',),
('Unknown: Object type is not known.',)
1,
primary key (value),
foreign key (value) references photoobj(type),
foreign key (value) references neighbors(neighbortype)

g

CREATE TABLE specobj (
specobjid number Example Values[(Decimal('299489952322840576'),), ...1,
bestobjid number Example Values[(1237649920046661771,), ...],

survey text Example Values[('boss',), ('sdss',), ('eboss',)],

class text Example Values[('GALAXY',), ('STAR',)), ('Qs0',)],

subclass text Example Values[(None,), ('BROADLINE',), ('STARFORMING',)],
ra number Example Values[(128.95375,), (131.37494,), (138.87159,)1,

dec number Example Values[(0.120958,), (11.281341,), (14.749983,)1,

zerr number Example Values[(-1.0,), (-4.0,), (-6.0,)1,

veldisp number Example Values[(0.0,), (850.0,), (262.5,)],

veldisperr number Example Values[(0.0,), (-3.90,), (-4.0,)],

primary key (specobjid),

foreign key (bestobjid) references photoobj(objid)

2985

Output:
{
"sql”: [

"SELECT p.name, p.description FROM photo_type p JOIN specobj s
ON p.value = s.bestobjid WHERE s.class = 'STAR';",
"SELECT p.name, s.programname FROM photo_type p JOIN specobj s
ON p.value = s.bestobjid WHERE s.subclass = 'BROADLINE';",
"SELECT p.name, s.programname FROM photo_type p JOIN specobj s
ON p.value = s.bestobjid WHERE s.class = 'QSO';",
"SELECT p.name, s.programname FROM photo_type p JOIN specobj s
ON p.value = s.bestobjid WHERE s.ra > 130;",
"SELECT p.name, s.programname FROM photo_type p JOIN specobj s
ON p.value = s.bestobjid WHERE s.zerr < -2;",
"SELECT p.name, s.programname FROM photo_type p JOIN specobj s
ON p.value = s.bestobjid WHERE s.veldisp > 500;",
"SELECT p.name, s.programname FROM photo_type p JOIN specobj s
ON p.value = s.bestobjid WHERE s.survey = 'boss';",
"SELECT p.name, s.programname FROM photo_type p JOIN specobj s
ON p.value = s.bestobjid WHERE s.programname = 'eboss';",
"SELECT p.name, s.programname FROM photo_type p JOIN specobj s
ON p.value = s.bestobjid WHERE s.dec > 10;",
"SELECT p.name, s.programname FROM photo_type p JOIN specobj s
ON p.value = s.bestobjid WHERE s.veldisperr < -3;"

Now, it’s your turn.

Input:

SQL Query Template: {Template}
Question: {Question}

Database Schema:

{Database Schema}

Output:

A4 NLQ Generation

You need to generate the corresponding user query according to a given SQL query. Here are the
examples:

Example 1:

Input:

"sql"”: "SELECT count(*) FROM biomarker_fda_test_trial

JOIN biomarker_fda_test

ON

biomarker_fda_test_trial.test_submission = biomarker_fda_test.test_submission
AND

biomarker_fda_test_trial.test_trade_name = biomarker_fda_test.test_trade_name

2986

WHERE biomarker_fda_test.test_manufacturer = '23andMe'”,

OQutput:
{

"question” "Show number of test trials of 23andMe”

Example 2:

Input:

"sql": "SELECT DISTINCT T3.name, T2.name

FROM healthy_expression AS T1

JOIN anatomical_entity AS T3 ON T1.uberon_anatomical_id = T3.id
JOIN cancer_tissue AS T4 ON T3.id = T4.uberon_anatomical_id
JOIN disease AS T2 ON T4.doid = T2.id;",

Output:
{
"question”: "which diseases have related anatomical entities?”
}
Now, it’s your turn. Just return 1 user query in JSON format.
Input:
"sql": "{SQL query}"
Output:

A.5 Keyword Generation

You are a domain expert. Please carefully review the following database schema and interpret
the field names, data types, and example values to identify relevant domain-specific terms. For
instance, recognize that certain variables (e.g., z) in a schema might represent key concepts in a
specific field, such as z representing redshift in astrophysics.

Below is the definition of the database schema:

{Schema}

Please analyze the schema and provide the following output in JSON format:

{

"domain”: "your inferred domain”,
"keywords": ["keywordl"”, "keyword2", , "keywordN"]

In this case, the output should not simply repeat the column names. Instead, you should map them
to real-world domain-specific concepts (e.g., z could be recognized as "redshift" in astrophysics)
and provide relevant keywords based on your understanding of the schema and its context.

2987

B Additional Experiment

B.1 Experiment on smaller models

For models with smaller parameters, we con-
ducted additional experiments, as shown in table
15. Specifically, on the CORDIS dataset, we in-
cluded two smaller models, Qwen2.5-Coder-1.5B
and Qwen2.5-Coder-3B, expanding the experimen-
tal set to include four different architectures and six
parameter sizes. The experimental results confirm
that our conclusions remain consistent with those
presented in the paper.

B.2 Results on Spider

To further validate the superiority of our approach,
we conducted additional experiments on the Spider
dataset which is shown in table 16.

C Analysis
C.1 Error analysis of DSQG

We manually analyzed the data synthesized on the
CORDIS dataset and identified several issues with
the synthesized data. Specific examples and analy-
ses are provided in the following table. The main
issues are: 1) Mechanical questions, where some
questions directly use keywords from the schema
or database content, making them appear unnatural
and different from how humans typically phrase
questions; 2) Ambiguous questions, where certain
questions are unclear, making it difficult for hu-
mans to discern the true query intent. We will
include an error analysis in the revised manuscript.

C.2 Ambiguous Schema Case Analysis

Our method remains effective even when the
database schema name is ambiguous or domain-
independent. This is because, when generating
domain-specific questions, our DSQG-Syn ap-
proach works in two ways: first, by extracting
domain-related keywords from the database con-
tent itself, and second, by linking related informa-
tion from other tables through foreign keys. These
two strategies ensure that, even when the schema
name is ambiguous or domain-independent, our
method can still generate relevant domain-specific
questions. For instance, in the CORDIS dataset,
the ’people’ table contains only two columns,
“unics_id’ and "name,” which might appear domain-
independent. However, our method can still gen-
erate domain-specific questions, such as ’List the
acronyms and titles of projects where the princi-
pal investigator is ’Alessandro Troisi’ and the start

year is after 2018." This is possible because the
actual value in the 'name’ column —’ Alessandro
Troisi’—serves as a specific keyword. This is then
linked to the ’projects’ table via foreign keys, en-
abling the retrieval of domain-specific information,
such as the project start date.

2988

Error type NLQ SQL Error analysis
Mechanical | Show project titles | SELECT p.title, | The ec_max_contribution col-
questions and start dates | p.start_date FROM | umn in the project table repre-
where EC max con- | projects p WHERE | sents the maximum amount of
tribution is greater | p.ec_max_contribution > | government funding for a project.
than 100,000 100000; However, this keyword is directly
used in the generated question,
whereas, in practice, people typ-
ically refer to ’the funding the
project received.’
Ambiguity List the acronyms | SELECT DISTINCT | The ambiguity in the question
questions and titles of | p.acronym, p.title | lies in whether it is asking for
projects that have | FROM projects p JOIN | projects that have members from
members from 'DE’ | project_members pm ON | the union of 'DE’ and UK’ (i.e.,
and UK’ with | p.unics_id= pm.project | projects with members from ei-
latitude and longi- | WHERE pm.country | ther 'DE’ or "UK’) or from the in-
tude information | INCDE’, ’'UK’) AND | tersection of 'DE’ and UK’ (i.e.,
available. pm.latitude IS NOT | projects with members from both
NULL AND pm.longitude | 'DE’ and "UK").
IS NOT NULL GROUP
BY p.acronym, p.title
Table 14: Error Analysis in Natural Language Questions
Method Qwen2.5-Coder-1.5B-Instruct Qwen2.5-Coder-3B-Instruct

No-finetuning 0.27 0.41
(Hu et al., 2023)-Syn 0.20 0.37
(Zhang et al., 2024)-Syn 0.28 0.40
Ours 0.29 0.42
Table 15: Performance comparison on smaller models
DeepSeek-
dataset Methods DeepSeek-Coder-v1 Coder-v2 CodeLLaMA StarCoder
6.7B 338 16B 7B 3B 34B 7B 5B
No-finetuning 632 605 717 445 499 599 663 601
(Hu et_g;;IZOB) 71.0 634 723 546 633 649 688 711
(H“se‘ al, 2023) 456 787 684 702 667 776 687 744
-Syn+Real
Spider (#hang est;rll 2029 913 577 721 502 215 523 660 687
(Zhansg etal, 2024) 45 | 786 68.0 644 689 770 690 732
-Syn+Real
Ours 71.1 712 716 633 490 602 673 704
Ours+Real 77.2 788 693 681 716 770 706 753

Table 16: Spider results (%) of various open-source LLMs on methods.

2989

