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Abstract

Embedding-based retrieval (EBR), the main-
stream approach in information retrieval (IR),
aims to help users obtain relevant information
and plays a crucial role in retrieval-augmented
generation (RAG) techniques of large language
models (LLMs). Numerous methods have been
proposed to significantly improve the quality
of retrieved content and many generic bench-
marks are proposed to evaluate the retrieval
abilities of embedding models. However, texts
in the medical domain present unique contexts,
structures, and language patterns, such as termi-
nology, doctor-patient dialogue, and electronic
health records (EHRs). Despite these unique
features, specific benchmarks for medical con-
text retrieval are still lacking. In this paper, we
propose MedEureka, an enriched benchmark
designed to evaluate medical-context retrieval
capabilities of embedding models with multi-
granularity and multi-data types. MedEureka
includes four levels of granularity and six types
of medical texts, encompassing 18 datasets, in-
corporating granularity and data type descrip-
tion to prompt instruction-fine-tuned text em-
bedding models for embedding generation. We
also provide the MedEureka Toolkit to sup-
port evaluation on the MedEureka test set.
Our experiments evaluate state-of-the-art open-
source and proprietary embedding models, and
fine-tuned classical baselines, providing a de-
tailed performance analysis. This underscores
the challenges of using embedding models
for medical domain retrieval and the need
for further research. Our code and data are
released in the repository: https://github.
com/JOHNNY-fans/MedEureka.

1 Introduction

Embedding-based Retrieval (Huang et al., 2020;
Li et al., 2021; He et al., 2023) has been a valu-
able research topic and has become a mainstream
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Figure 1: The overall architecture of the MedEureka,
including data source, data type, granularity, language,
and corresponding constructed task.

method for information retrieval. By transform-
ing the text into semantic-rich dense vectors, the
relevant text is retrieved by calculating the vec-
tor similarity. Siamese networks (Reimers and
Gurevych, 2019), contrastive learning (Gao et al.,
2021; Wang et al., 2022), and various effective
negative sampling strategies (Chuang et al., 2022;
Formal et al., 2022; Nishikawa et al., 2022; Wang
and Dou, 2023) have been widely used in the train-
ing of embedding models to improve retrieval per-
formence by bringing the query closer to positive
samples and pushing it farther away from negative
samples. A more advanced approach is based on
the concept of prompting, using instruction-fine-
tuned text embeddings (Su et al., 2023; Chen et al.,
2024) to achieve more detailed vector representa-
tions. Many advanced embedding models trained
on large corpora have been released (Wang et al.,
2023; Li et al., 2023; OpenAI, 2024b; Wang et al.,
2024), while evaluations for the retrieval ability
of embedding models are already present in some
generic-domain benchmarks (Thakur et al., 2021;
Muennighoff et al., 2023; Xiao et al., 2023).
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In the medical domain, the evaluation of model
retrieval capabilities is conducted separately for in-
dividual datasets (Xiao et al., 2023; Chen et al.,
2020) due to the unique context and expertise.
Meanwhile, there are numerous practical appli-
cations for medical information retrieval, such as
terminology normalization (Xu et al., 2020), the
retrieval and analysis of EHRs (Myers et al., 2024),
and some RAG-based QA (Lozano et al., 2023;
Huang et al., 2024) of medical literature and knowl-
edge bases. However, there is a lack of domain-
specific evaluations in the medical field to guide the
selection of suitable embedding models for medical
context retrieval in different scenarios.

In this paper, we introduce MedEureka, a bench-
mark specifically designed for multi-granularity
medical-context retrieval using embedding mod-
els. As illustrated in Figure 1, MedEureka encom-
passes four levels of granularity: phrase, sentence,
paragraph, and document. It also incorporates six
types of medical texts: Table, Literature, Knowl-
edge Base (KB), Term, Electronic Health Record
(EHR), and medical Dialogue, along with a unique
SQL case. The raw data for this benchmark were
sourced from academic open-source projects and
websites. Following data organization and classi-
fication, and with the support of AI-assisted an-
notation, we constructed 18 datasets for training,
validation, and testing, each defined by distinct
granularity levels and semantic labels.

We developed the MedEureka Toolkit to fa-
cilitate the evaluation of the MedEureka bench-
mark’s test set and assessed the retrieval perfor-
mance of various advanced embedding models,
including both proprietary and open-source op-
tions. The overall performance is illustrated in
radar plots, as shown in Figure 2. To evaluate
these instruction fine-tuned embedding models, we
generated prompts using granularity and seman-
tic tags. Additionally, we trained several baseline
embedding models on MedEureka using classical
training methods based on both generic and med-
ical Pre-trained Language Models (PLMs). Our
experiments demonstrate that state-of-the-art em-
bedding models trained on large-scale corpora ex-
hibit strong medical retrieval capabilities, particu-
larly for data types with minimal divergence from
the generic domain or clear semantics, such as di-
alogues. However, challenges persist in handling
more specialized medical content, such as elec-
tronic health records, medical literature, and termi-
nology. Even with supervised methods, training is

prone to bias due to the constraints of PLM param-
eter size and capabilities, as well as diverse text
granularity and type settings. We also conducted a
detailed analysis to provide insights and guidance,
aiming to encourage the NLP community to pursue
further research and collaboration in addressing the
practical challenges highlighted by this benchmark.

2 Related Work

2.1 Advanced Embedding Models.

Embedding-based retrieval (EBR) has become
a mainstream approach to information retrieval.
Particularly, with the advent of LLMs, numer-
ous high-quality corpora have been created, and
many generalized embedding models have been
released, achieving excellent performance, such as
OpenAI text embeddings (OpenAI, 2022, 2024b),
GTE (Li et al., 2023). More advanced models,
e.g., Instructor-xl (Su et al., 2023) and E5 (Wang
et al., 2023), incorporate instructions into training
processes. By employing different prompts, these
models (Wang Yuxin, 2023; Xiao et al., 2023) im-
prove the quality and adaptability of embeddings
across diverse scenarios. Additionally, recent ad-
vancements in diversifying training data, generat-
ing synthetic data, and leveraging LLMs as back-
bones have further contributed to the development
of more generalized embeddings, such as multilin-
gual (Wang et al., 2024), multi-granularity (Chen
et al., 2024), and LLM-based (Li et al., 2023).

2.2 Training Strategies for Embedding

Various training strategies for embedding mod-
els have been proposed to achieve more detailed
vector representations with the success of PLMs.
Traditional method employs siamese network to
generate semantically meaningful sentence embed-
dings (Reimers and Gurevych, 2019). Contrastive
learning (Gao et al., 2021; Wang et al., 2022), along
with numerous negative sampling strategies, has
recently emerged as a prominent method for train-
ing embedding models. SNCSE (Wang and Dou,
2023) alleviates feature suppression by treating
the negations of positive samples as soft negatives.
DiffCSE (Chuang et al., 2022) introduces equiv-
ariant contrastive learning, InfoCSE (Wu et al.,
2022) learns sentence representations by recon-
structing segments of the original sentences, while
RankCSE (Liu et al., 2023) incorporates ranking
consistency and ranking distillation, thereby en-
hancing representation quality.
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Task ID Source Language Annotation Phrase Sen. SQL Para. Doc. # Examples(train/dev/test) # Avg Len (query/target)

Table I Website zh Auto & Human - - - 1,776 / 592 / 592 105.80 / 2811.27
II Website en Auto & Human - - - 806 /269 / 269 60.08 / 561.42

Literature I RJUA-QA zh Auto & Human - - - 360 / 120 / 120 204.11 / 264.25
II COVID-QA en Auto & Human - - - 979 / 327 / 326 12.77 / 6065.79

KB I Website zh Auto & Human - - - 985 / 330 / 328 188.76 / 192.09
II Website zh Auto & Human - - - 1967 / 657 / 656 158.36 / 1823.71

Term

I Website zh Auto & Human - - - - 7,749 / 1,005 / 1,005 15.26 / 13.44
II Website cross Auto & Human - - - - 2,4786 /8,262 / 8,262 6.38 / 12.91
III AskAPatient en Auto - - - - 5,051 / 2,748 / 4,137 4.36 / 4.03
IV SMM4H-17 en Auto - - - - 2,124 / 709 / 1,194 4.20 / 5.45
V TwADR-L en Auto - - - - 3,204 / 656 / 988 4.32 / 4.51

EHR

I Self-built zh Auto & Human - - - 2,097 / 718 / 721 45.98 / 69.27
II Website zh Auto & Human - - - 1,709 / 570 / 570 48.17 / 191.72
III Website zh Auto & Human - - - 1,692 / 564 / 564 71.37 / 191.72
IV Website zh Auto & Human - - - 1229 / 410 / 410 72.62 / 976.30

Dialogue
I Qnorm zh Auto - - - - 959 / 320 / 320 93.63 / 100.18
II MeQSum en Auto - - - 600 / 200 / 200 13.69 / 81.41
III Chinese-medical-dialogue zh Auto & Human - - - - 1,800 / 600 / 600 87.46 / 85.31

Table 1: Dataset statistics and descriptions. The columns represent the annotation method (auto-generated or
human), the number of examples, the granularity, and the average length of both query and target.

2.3 Generic-domain Evaluation of Retrieval.

The evaluation of retrieval performance has been
included in many embedding benchmarks, such
as the STS benchmark (Reimers and Gurevych,
2019) and MTEB (Muennighoff et al., 2023). Addi-
tionally, prominent benchmarks like BEIR (Thakur
et al., 2021) focus on retrieval capabilities across
generic domains and include some medical datasets.
Ajith et al. (2024) introduced a comprehensive
benchmark for scientific literature retrieval, while
(Zhang et al., 2021) evaluated dense retrieval in
multilingual settings. However, there remains a
gap in comprehensive, fine-grained, and multi-task
evaluation of embedding model retrieval capabili-
ties specifically within the medical domain.

2.4 Applications of EBR

Embedding-based retrieval has numerous applica-
tion scenarios within the NLP field. Some general
use cases include document retrieval (Schopf et al.,
2022), question-answering systems (Liu et al.,
2019), and recommendation systems (Agrawal
et al., 2021). Particularly in the era of LLMs,
EBR is widely used in Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2020; Siriwardhana
et al., 2023) technology to enhance the quality of
generated content and reduce hallucinations. Fur-
thermore, the medical field also presents numerous
retrieval scenarios, such as clinical terminology
normalization (Castano et al., 2016; Sarker et al.,
2018; Xu et al., 2020), electronic health record
(EHR) retrieval (Sivarajkumar et al., 2024; Myers
et al., 2024), medical literature and knowledge base
search (Lozano et al., 2023; Huang et al., 2024).

3 The MedEureka Benchmark

3.1 Data Collection

Collecting corpora of varying granularity and types
poses significant challenges due to copyright and
privacy protection concerns. We chose not to
use simulation, self-building, or distillation tech-
niques because they require specialized medical
expertise. As a result, we invested considerable
effort into finding academic open-source materi-
als, identifying formal application pathways, and
securing copyright-free medical data and knowl-
edge. As shown in Fig 1, we obtained six differ-
ent types of medical text data from open-source
projects and websites to construct retrieval evalua-
tion datasets with varying granularity and types.
We discovered several datasets related to medi-
cal terminology (Limsopatham and Collier, 2016;
Sarker et al., 2018), clinical evidence (Lyu et al.,
2023), scientific literature (Möller et al., 2020) and
doctor-patient dialogues (Ben Abacha and Demner-
Fushman, 2019; Toyhom, 2019; DataTager, 2024)
within open-source projects. We also identified sev-
eral publicly accessible Chinese terminology base
“Chinese Common Clinical Medical Terminology
2023 Edition” (CUCMTerm2023) and the first part
of Chinese Pharmacopoeia (ChP-1)1 from the web-
site, which we stored locally after performing OCR
and post-processing. In addition, we obtained some
desensitized patient cases from open-source forums
iiyi2, and medical tables coming from an open-

1https://ydz.chp.org.cn/#/main
2https://bingli.iiyi.com/
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Model Language Max Length Hidden Size Instruction Publish Time

text-embedding-ada-002 (OpenAI, 2022) multi-lingual 8,192 1,536 2022.12
text-embedding-3-large (OpenAI, 2024b) multi-lingual 8,192 3,072 2024.01
gte-large-zh (Li et al., 2023) zh 512 1,024 2023.12
gte-large (Li et al., 2023) en 512 1,024 2023.12
Instructor-xl (Su et al., 2023) en 512 1,024 2023.01
bge-large-en-v1.5 (Xiao et al., 2023) en 512 1,024 2023.12
bge-large-zh-v1.5 (Xiao et al., 2023) zh 512 1,024 2023.12
bge-m3 (Chen et al., 2024) multi-lingual 8,196 1,024 2024.01
m3e-base (Wang Yuxin, 2023) multi-lingual 512 768 2023.06
m3e-large (Wang Yuxin, 2023) zh 512 1,024 2023.06
e5-mistral-7b-instruct (Wang et al., 2023) en 32,768 4,096 2023.12
multilingual-e5-large-instruct (Wang et al., 2024) multi-lingual 512 1,024 2024.02
gte-Qwen2-1.5B-instruct (Li et al., 2023) multi-lingual 32,768 1,536 2024.06
gte-Qwen2-7B-instruct (Li et al., 2023) multi-lingual 32,768 1,536 2024.06
bge-multilingual-gemma2 (Chen et al., 2024) multi-lingual 8,192 3,584 2024.07

bert-base-uncased (Devlin, 2018) en 512 768 2019.01
biobert-base-cased-v1.2♯ (Lee et al., 2020) en 512 768 2021.01
bert-base-chinese (Devlin, 2018) zh 512 768 2021.01
medbert-base-wwm-chinese♯ (Yang et al., 2021) zh 512 768 2021.05
bert-base-multilingual-uncased (Devlin et al., 2018) multi-lingual 512 768 2019.01

Table 2: Descriptions of the advanced embedding models and pre-trained language models (PLMs) used in training
the baselines, detailing the language support, maximum length, hidden size, instruction support (analysed from the
official example), and publish time. ♯ denotes those biomedical PLMs.

(a) (b) (c)

Figure 2: The radar charts illustrating the performance of different language-support types of embedding models on
the MedEureka datasets (a): Performence of English embedding models. (b): Performance of Chinese embedding
models. (c): Performance of multi-lingual embedding models.

source medical website MSD3, via web crawler
techniques.

3.2 Tasks in MedEureka

MedEureka focuses on evaluating retrieval capabil-
ities in the medical domain, particularly for embed-
ding models. Our main task is identifying the most
relevant content to a query from a target base. This
involves testing their ability to generate effective
vector representations. Additionally, for embed-
ding models that support instructions, we use the
dataset’s granularity and data type to prompt for
better vector representations, the specific instruc-
tion prompts are shown in Appendix C.

Formally, the main task of the evaluation is:
Given a query Q (with/without prompt) and a tar-

3https://www.msdmanuals.cn/professional/
pages-with-widgets/tables?mode=list

get T , the embedding model E generates the cor-
responding vector representations VQ and VT . By
calculating the semantic distance between them,
the top-K candidate information C with a higher
score is retrieved, where K is a hyper-parameter to
determine the number of recalls.

In the medical domain, common retrieval appli-
cations such as Knowledge-Base Question Answer-
ing (KBQA) systems, Table Question Answering
(TQA) systems, Literature Question Answering
systems, and medical dialogue systems (Ragha-
van et al., 2021; Luo et al., 2022; Pal et al., 2022;
Xu et al., 2019) typically use the RAG method to
retrieve relevant medical sources like Knowledge
Bases, Tables, Literature, queries, and dialogues.
Clinical data analysis (Xu et al., 2024), Clinical
Decision Support Systems (CDSS) (Papadopoulos
et al., 2022), and Diagnosis-Related Group (DRG)
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systems (Wang et al., 2020) often involve search-
ing relational databases and standard terminology
bases. From these practical scenarios, we abstract
some seed retrieval tasks. As shown in Table 1,
across the involved tasks, we consider six medical
data types: Table, Literature, KB, Term, EHR,
and Dialogue; four levels of granularity: Phrase,
Sentence, Paragraph, and Document, as well as a
special case involving SQL. The SQL-related task
is designed to investigate the semantic similarity
between SQL queries and natural language texts
within the vector space of the embedding model. In
this statistic table, the special mark denotes the
granularity of the query, and denotes the granu-
larity of the target.

3.3 Construction and Annotation
As shown in Figure 1, using this collected corpus,
we defined a total of 18 task datasets that involve re-
trieval between medical texts of varying granularity
and types.

Table. For the tables in Markdown format ob-
tained from MSD4, we used an LLM to automati-
cally generate questions based on the table content,
followed by manual corrections. To offer a more
intuitive demonstration of the automatic query gen-
eration process using LLMs, we provide a specific
prompt example for the Table task. This example
is presented in Figure C11 in the Appendix. We ob-
tained both English and Chinese versions of these
table sources. Using these questions as queries
and the corresponding entire table as the target, we
created Table I and Table II.

Literature. In RJUA-QA (Lyu et al., 2023), we
identified several clinical references meticulously
sourced from professional literature, guidelines,
major textbooks, authoritative publications from
PubMed, and the extensive clinical experience of
seasoned practitioners with over a decade of ex-
pertise. Additionally, the dataset includes numer-
ous virtual patient questions related to medical spe-
cialty diagnosis and examination advice. We used
these questions as queries and expert-annotated
references as retrieval targets, resulting in the cre-
ation of dataset Literature.I. In COVID-QA, we
use questions as queries and corresponding context
from the “paragraphs” field as the target, resulting
in dataset Literature.II

KB. Using the Chinese Medicine Pharma-
copoeia (ChP-1) obtained, we transformed it into
a structured knowledge base containing 1,493
drug documents, each covering about ten drug at-

tribute fields, through OCR techniques and post-
processing. We then generated questions about
drug attributes using a combination of automatic
questioning by an LLM and manual review. These
questions were used as queries, and we set two lev-
els of targets: attribute level and document level,
resulting in datasets KB.I and KB.II.

Term. In this part, we employ a terminology nor-
malization task to find the corresponding standard
term for a medical phrase from a large standard ter-
minology database. The medical phrase serves as
the query, and the standard terminology database as
the target. For the Chinese, we have independently
constructed a dataset Term.I for terminology nor-
malization based on the synonyms and previously
utilized phrases in CUCMTerm2023 corpus, which
includes the same 4 term categories present in our
established standard terminology database. More-
over, we extracted the Chinese-English transla-
tion pairs from the CUCMTerm2023 and con-
structed the cross-lingual dataset Term.II. For
English terms, we adopt three reputable datasets
AskAPatient, SMM4H-17, and TwADR-L and get
Term.III, Term.IV and Term.V.

EHR. Based on typical patient cases from iiyi,
we extracted and structured the EHR-related sec-
tions, which include fields such as the patient’s
chief complaint, symptoms, imaging study results,
and findings from a complete checkup. We also use
LLMs with human verification to generate queries
based on the contents of one or two EHR fields.
These queries’ target includes the granularity of
specific fields and the entire EHR. Specifically, we
included an interesting pseudo-SQL code experi-
ment in this section since hospital doctors often
look up medical records by writing SQL queries.
Thus, a total of four datasets EHR.I, EHR.II,
EHR.III, and EHR.IV were obtained for this part.

Dialogue. Patient-dialogue datasets are com-
mon in open-source projects, and in this study,
we consider three cases: the patient questions
standardization dataset (Qnorm4), the patient
questions summary dataset (MeQSum5), and the
doctor-patient dialogues dataset (Chinese-medical-
dialogue6). We extracted some corresponding
queries and targets from them and then obtained the
dataset Dialogue.I, Dialogue.II and Dialogue.III.

4https://huggingface.co/datasets/PandaVT/
datatager_standard_med_question

5https://github.com/abachaa/MeQSum
6https://github.com/Toyhom/

Chinese-medical-dialogue-data
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Model Table Literature KB Term EHR Dialogue
I II I II I II I II III IV V I II III IV I II III

Advanced instruction-fine-tuned Embedding Models (without instruction)

MRR@10

bm25† 69.45 64.01 26.76 62.22 26.11 81.88 39.88 - 35.98 15.67 14.73 76.35 69.28 7.05 73.42 70.09 66.17 54.90
gte-large-zh 68.26 - 47.90 - 53.62 84.16 51.54 - - - - 52.15 50.54 7.78 51.86 87.03 - 84.15

gte-large - 87.80 - 52.97 - - - - 67.81 46.67 39.79 - - - - - 90.15 -
m3e-base 70.45 80.05 36.66 39.48 54.59 77.48 50.12 7.84 55.49 25.61 27.17 62.97 43.26 33.60 42.18 95.15 81.50 78.54
m3e-large 68.32 - 36.85 - 53.84 68.63 48.52 - - - - 83.64 42.40 43.46 37.54 93.95 - 77.60
bge-m3 70.17 85.80 48.90 52.48 46.35 82.88 50.58 37.80 58.21 32.62 30.58 84.03 52.60 45.93 50.30 98.07 87.94 76.52

bge-m3 (sparse)† 70.93 77.86 37.75 65.58 48.01 82.73 47.67 1.64 31.94 11.42 11.55 82.13 60.88 65.53 60.47 82.57 79.79 67.37
text-embedding-ada-002 69.07 88.13 44.09 53.48 29.92 82.30 47.74 37.88 66.12 41.48 38.42 74.24 50.28 38.74 40.57 96.85 90.66 63.90
text-embedding-3-large 64.74 88.95 37.86 51.25 51.89 77.01 50.27 65.77 70.65 50.83 42.51 77.51 49.22 36.84 37.00 98.49 91.68 67.52

Exact HR@10

bm25† 77.53 79.55 0.83 81.60 19.51 85.21 48.36 - 48.10 20.10 22.27 85.58 76.32 9.04 84.88 83.75 83.00 64.17
gte-large-zh 77.87 - 19.17 - 65.85 97.71 57.81 - - - - 70.32 59.47 12.41 65.37 95.00 - 94.67

gte-large - 97.03 - 69.63 - - - - 87.62 68.93 62.15 - - - - - 99.00 -
m3e-base 78.72 92.57 8.33 56.13 59.76 86.43 57.32 12.30 71.24 34.00 39.47 77.95 52.81 42.38 57.32 99.38 95.00 91.17
m3e-large 77.53 - 10.83 - 42.38 87.65 55.82 - - - - 93.90 51.75 51.77 52.44 99.06 - 89.67
bge-m3 77.70 96.65 13.33 70.86 69.51 89.48 57.01 53.69 74.47 44.56 48.58 91.96 62.28 53.90 64.15 100.00 97.50 90.17

bge-m3 (sparse)† 79.22 89.96 6.67 85.58 46.95 85.21 54.43 2.01 45.44 15.66 17.21 90.98 71.40 75.53 76.59 92.50 89.50 80.00
text-embedding-ada-002 96.11 97.02 3.33 71.47 27.74 84.90 90.74 56.97 87.28 69.17 62.44 87.79 58.59 49.46 56.34 98.43 99.50 79.00
text-embedding-3-large 93.75 97.02 9.16 75.15 56.40 88.10 92.73 85.18 92.45 75.29 68.21 89.87 60.00 50.17 55.12 100.00 100.00 81.16

Advanced instruction-fine-tuned Embedding Models (with instruction)

MRR@10

Instructor-xl - 82.06 - 36.28 - - - - 64.29 25.02 25.45 - - - - - 82.41 -
bge-large-en-v1.5 - 85.90 - 43.04 - - - - 26.95 7.30 10.44 - - - - - 81.09 -
bge-large-zh-v1.5 68.72 - 46.27 - 62.76 82.20 49.80 - - - - 83.68 48.50 36.94 46.92 95.12 - 80.55

e5-mistral-7b-instruct - 85.84 - 52.64 - - - - 66.35 47.38 38.52 - - - - - 94.23 -
multilingual-e5-large-instruct 70.94 85.45 46.25 46.46 63.47 81.33 49.01 49.03 65.29 37.96 34.27 78.32 52.02 44.24 49.51 95.24 92.82 75.29

gte-Qwen2-1.5B-instruct 72.22 89.06 48.31 55.72 63.37 83.97 46.01 55.22 62.23 36.56 33.04 81.63 61.83 47.30 58.91 94.86 92.36 79.39
gte-Qwen2-7B-instruct 70.61 87.54 50.43 57.05 55.41 68.20 51.87 75.31 54.44 26.24 27.04 84.19 64.96 59.38 59.56 99.17 93.45 87.69

bge-multilingual-gemma2 74.39 89.98 58.33 47.39 70.53 78.25 52.39 80.47 73.03 53.77 46.11 89.74 65.61 62.13 60.05 99.45 93.26 79.75

Exact HR@10

Instructor-xl - 94.05 - 59.20 - - - - 85.13 43.10 45.14 - - - - - 91.50 -
bge-large-en-v1.5 - 96.65 - 58.90 - - - - 50.04 14.82 23.58 - - - - - 91.00 -
bge-large-zh-v1.5 78.89 - 20.83 - 65.55 89.18 56.42 - - - - 90.98 55.26 48.23 66.59 99.06 - 91.17

e5-mistral-7b-instruct - 95.91 - 73.62 - - - - 88.37 70.18 61.34 - - - - - 100.00 -
multilingual-e5-large-instruct 77.87 94.05 10.00 65.34 70.73 88.87 56.22 69.99 85.52 60.97 54.45 89.60 61.40 54.96 62.68 99.06 99.50 89.33

gte-Qwen2-1.5B-instruct 80.74 96.65 15.83 73.62 42.68 96.19 55.82 80.05 85.40 61.73 54.66 91.26 69.65 58.69 72.20 99.06 98.00 91.00
gte-Qwen2-7B-instruct 79.39 97.03 15.83 73.93 46.95 94.21 59.31 92.70 85.38 46.73 52.73 90.98 71.05 67.02 74.39 100.00 100.00 95.67

bge-multilingual-gemma2 80.07 97.77 24.17 69.33 62.80 98.02 59.00 94.75 92.94 79.65 71.46 96.53 71.75 68.97 73.17 100.00 100.00 92.33

Table 3: Comparison of advanced embedding model performance on MRR@10 and Exact HR@10 using cosine
similarity as the distance metric. † indicates sparse retrieval, while all others are dense retrieval.

We used different construction methods for each of
the three sources of data and the specific construc-
tion details are shown in Appendix B.

Specifically, for the human-machine collabora-
tive portion of the dataset construction process, we
use GPT-4o (OpenAI, 2024a) as the auxiliary LLM,
and we implemented a dual annotation strategy,
where two annotators independently reviewed and
validated the data. For datasets where the data
source already contains a clear mapping between
query and target, such as the Term task, we do not
manually correct the content of each sample, but
only perform data cleaning and processing of the
format. For datasets with a predefined query-target
mapping, such as the Term task, we did not man-
ually modify individual samples but focused on
data cleaning and format processing. In contrast,
for datasets involving query generation and auto-
matic annotation using LLMs, such as the Table
task, we performed manual corrections. First, we
consulted a medical expert to define key validation
criteria, emphasizing medically relevant terms and
factual accuracy (e.g., numerical values). Then,
a PhD student and a Master’s student specializ-

ing in medical NLP independently reviewed the
data. Identified risks and discrepancies were sub-
sequently discussed and corrected, resulting in a
refined dataset. Approximately 10% of the data
required modification. This approach ensured a
high level of accuracy and reliability in the dataset.
We show sample data for each task in the Appendix
Figure C2 to Figure C10.

3.4 Data Statistic
We present the dataset statistics in Table 1, describ-
ing the data type of the dataset, the corresponding
ID (Roman numerals), the source, the language,
the annotation method, the granularity of the query
and target, the number of samples and the average
length of the query and target.

3.5 Evaluation Metrics
For all retrieval tasks, we first selected Mean Re-
ciprocal Rank (MRR) as the evaluation metric. De-
noted as MRR@n, where n represents the number
of top-retrieved items considered, MRR measures
the average reciprocal rank of the first relevant item
for each query. Higher MRR values indicate bet-
ter ranking quality, meaning relevant items appear
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Model Table Literature KB Term EHR Dialogue
I II I II I II I II III IV V I II III IV I II III

bert-base-uncased∗ - 1.86 - 7.36 - - - - 17.50 7.54 7.59 - - - - - 3.50 -
biobert-base-cased-v1.2∗ - 1.12 - 7.98 - - - - 19.94 9.46 8.70 - - - - - 1.50 -

eureka-sup-simcse-bert-base-uncased - 82.90 - 73.01 - - - - 100.00 85.26 99.80 - - - - - 86.50 -
eureka-unsup-simcse-bert-base-uncased - 12.27 - 16.87 - - - - 35.15 24.25 15.08 - - - - - 18.50 -

eureka-sup-simcse-biobert-base-cased-v1.2 - 87.73 - 77.91 - - - - 100.00 83.50 99.70 - - - - - 87.50 -
eureka-unsup-simcse-biobert-base-cased-v1.2 - 59.11 - 33.74 - - - - 60.72 38.50 28.34 - - - - - 56.50 -

eureka-sbert-bert-base-uncased - 92.57 - 79.75 - - - - 100.00 92.36 99.49 - - - - - 91.50 -
eureka-sbert-biobert-base-cased-v1.2 - 93.31 - 82.21 - - - - 99.93 93.96 98.08 - - - - - 94.50 -

bert-base-chinese∗ 1.69 - 0.00 - 0.00 0.61 30.74 - - - - 3.05 1.75 0.18 0.24 5.00 - 29.83
medbert-base-wwm-chinese∗ 1.52 - 0.00 - 0.00 0.61 25.27 - - - - 0.55 0.00 0.00 0.49 1.25 - 22.00

eureka-sup-simcse-bert-base-chinese 74.16 - 78.33 - 98.78 100.00 55.92 - - - - 99.72 90.18 88.30 59.02 96.88 - 97.50
eureka-unsup-simcse-bert-base-chinese 53.55 - 0.00 - 10.06 64.18 51.74 - - - - 93.96 46.84 44.50 18.05 82.50 - 69.67

eureka-sup-simcse-medbert-base-wwm-chinese 76.35 - 75.00 - 99.09 100.00 57.21 - - - - 99.31 88.77 87.06 59.27 90.62 - 94.83
eureka-unsup-simcse-medbert-base-wwm-chinese 53.04 - 2.50 - 7.32 46.80 52.94 - - - - 91.95 48.42 45.21 23.66 79.69 - 69.00

eureka-sbert-bert-base-chinese 76.52 - 74.17 - 99.39 100.00 57.01 - - - - 99.60 88.95 87.23 69.76 97.81 - 97.17
eureka-sbert-medbert-base-wwm-chinese 76.69 - 80.00 - 99.09 100.00 57.61 - - - - 99.46 89.82 88.48 70.00 98.12 - 95.67

bert-base-multilingual-uncased∗ 0.84 1.12 0.00 8.90 0.00 0.46 24.38 1.03 20.30 8.04 7.69 1.66 1.05 1.06 0.49 0.62 1.50 21.50
eureka-sup-simcse-bert-base-multilingual-uncased 74.83 91.08 75.83 77.30 98.78 100.00 57.11 94.06 100.00 84.76 100.00 99.58 88.77 88.48 63.41 95.00 88.50 97.00

eureka-unsup-simcse-bert-base-multilingual-uncased 61.15 69.89 0.00 40.49 14.94 77.29 53.93 7.36 65.43 38.10 32.59 95.84 48.95 46.10 21.22 82.19 73.50 67.00
eureka-sbert-bert-base-multilingual-uncased 75.17 91.82 75.83 76.38 99.09 100.00 57.11 92.64 100.00 91.44 99.09 99.60 87.72 86.35 58.54 94.38 93.50 97.00

Table 4: Comparison of training baseline models performance on Exact HR@10 using cosine similarity as the
distance metric. “∗” indicates direct retrieval with frozen base PLMs

closer to the top. While MRR emphasizes ranking
importance, it can be lenient for tasks requiring
the retrieval of multiple relevant items. To address
this, we also introduced Exact Hit Rate, denoted
as Exact HR@n, which measures the proportion of
queries where all relevant items are ranked within
the top n results.

Mathematically, MRR@n is defined as:

MRR@n =
1

|Q|
∑

q∈Q

1

rankq
(1)

where Q represents the set of queries, and rankq is
the rank position of the first relevant item retrieved
for query q.

Exact HR@n is defined as:

Exact HR@n =
1

|Q|
∑

q∈Q,c∈C
I(q, c) (2)

where C represents the candidates retrieved by
queries Q, and I is an indicator function that re-
turns 1 if all relevant items are included in c for
query q, and 0 otherwise.

4 Experiments

4.1 Baseline Models

We selected the traditional information retrieval
method BM25, along with recent state-of-the-art
embedding models and 8 advanced instruction-fine-
tuned embedding models as baselines. Meanwhile,
we chose two mainstream training methods, Sim-
CSE (Gao et al., 2021) and SBERT (Reimers and
Gurevych, 2019), to train BERT-base PLMs on
MedEureka as training baselines. The basic infor-
mation for these models is shown in Table 2.

4.2 Implementation Details

We use cosine similarity to measure distances be-
tween embedding vectors, incorporating prompts
from Section 3.2 for models that support them.
FAISS (Johnson et al., 2019) is employed for accel-
erated computation. Text exceeding model length
limits is truncated accordingly. The specific LLM
used in the data construction process is gpt-4o-
2024-08-06. For training baseline models, we fol-
low the original method’s parameters, with a batch
size of 64 per device, training for ten epochs on
four H800 GPUs. Optimal checkpoints are selected
based on validation performance, and the pooled
CLS token of the PLMs is used as sentence rep-
resentation. In particular, for supervised training,
we distill negative samples with the powerful bge-
multilingual-gemma2, which finds up to five nega-
tive samples for each query by setting a threshold.

4.3 Results and Analysis

4.3.1 Overall Results and Analysis.
We evaluated the overall experimental results
regarding the performance of different models
on various tasks. Figure 2 shows the overall
performance of embedding models using radar
charts. The results for “MRR@10” and “Ex-
act HR@10” with cosine similarity are presented
in Table 3. Additionally, we use line charts to
depict the trends for all “Exact HR@n” results
in Appendix Figure C13 and Figure C14, where
n ∈ {5, 10, 20, 50, 100, 200, 500}.

It is evident that different models exhibit vary-
ing levels of performance. Some models show
clear proficiency in certain tasks, making them
well-suited to handle those tasks effectively. As
expected, model accuracy significantly improves as
the number of recalls increases. Both OpenAI’s em-
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Figure 3: Performance comparison on six granularities across eight models: (a) m3e-base, (b) bge-m3, (c)
multilingual-e5-large-instruct, (d) gte-Qwen2-7B-instruct, (e) bge-multilingual-gemma2, (f) text-embedding-3-
large, (g) eureka-sup-simcse-bert-base-multilingual-uncased, (h) eureka-sbert-bert-base-multilingual-uncased.

bedding and the bge-multilingual-gemma2 models
demonstrate strong performance and robust multi-
lingual capabilities. However, there is no “hexago-
nal warrior” that is competent in every aspect.

Analyzed in terms of model size, hidden vector
dimension, and supported context length, generally,
larger models and higher vector dimensions yield
better results, with LLM-based embedding models
showing particular superiority. However, this im-
provement has limitations, such as the gte model ex-
hibits fluctuations on certain tasks. Notably, longer
context lengths tend to provide more complete se-
mantics, which can enhance performance.

Table 4 shows the performance of training base-
lines. Intuitively, trained methods, particularly su-
pervised training, show significant improvement
across multiple tasks, such as Term, Literature, and
EHR. An interesting phenomenon is that differ-
ent training methods align with different dominant
tasks and tend to exhibit bias, risking local optima
when training on existing PLMs. In contrast, ad-
vanced embedding models, trained on large-scale
data, demonstrate better generalization. Addition-
ally, training based on PLMs in the medical field
yields superior performance.

From the perspective of different metrics, we
observe that almost all models perform worse on
MRR@10 compared to HR@10 across all tasks.
This reflects the influence of MRR, which penalizes
models based on the ranking position of correctly
recalled candidates. While the models can find the
correct answers within a certain range, the lower
MRR suggests that the models struggle with more
suitable ranking. This highlights the importance of

re-ranking to address this issue.

4.3.2 Analysis by Data Type.
To provide a more intuitive analysis of the model’s
performance across different types of medical texts,
we used radar charts in Figure 2 to illustrate capabil-
ities by data type, distinguishing between Chinese,
English, and multilingual models.

With the accumulation of high-quality training
corpora in the era of large models, advanced em-
bedding models have achieved strong performance
on many retrieval tasks. Specifically, models excel
in Table and Dialogue data, though performance in
Literature, EHR, and Terminology still has room
for improvement. This observation underscores
that while large volumes of medical knowledge-
based data have been leveraged to train state-of-
the-art models, challenges persist for datasets that
mirror real-world medical scenarios. In areas such
as terminology normalization, medical literature
QA, and electronic health record retrieval, the se-
mantic alignment between queries and targets re-
mains incomplete.

4.3.3 Analysis by Text Granularity.
From the perspective of granularity, as shown in
Figure 3, retrieval performance tends to improve
when the query and target share the same granular-
ity. However, when the granularity is too fine, such
as with phrases, performance may degrade due
to the limited semantic information. Fine-grained
retrieval is also more challenging. For instance,
retrieving a paragraph with a sentence is more dif-
ficult than retrieving a document. Additionally,
for SQL statements, direct alignment with natural
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language is challenging without specific training.

4.3.4 Error Analysis
We conducted error analyses on bge-multilingual-
gemma2, which exhibits strong performance across
a wide range of retrieval tasks. We randomly se-
lected 200 error cases, which evenly covered all 18
tasks on average. The errors were categorized into
three types: fine-grained errors, semantic ambigu-
ity, and lack of professional knowledge. Figure C1
presents the distribution of these error cases using
a bar chart, where an error case may belong to mul-
tiple categories due to the overlapping nature of
some error types. Additionally, we provide specific
error examples in Appendix Section A for further
illustration.

The results indicate that most errors stem from
challenges in fine-grained retrieval, particularly in
accurately capturing key numerical details and spe-
cific symptoms, where subtle distinctions are often
overlooked. The model also struggles with seman-
tic ambiguity, especially in long texts, and demon-
strates limitations in domain-specific knowledge,
particularly when multiple specialized concepts or
technical terms are intertwined.

5 Ethical Considerations

This paper proposes a new medical-domain re-
trieval evaluation benchmark MedEureka for Em-
bedding Models. All of the datasets in MedEureka
adhere to ethical guidelines and respect copyright
laws. The entire data collection process is free of
copyright issues and privacy issues, and there are
three types of data sources, including license ap-
plications, the open source community, and public
file cleaning and organizing. Meanwhile, the man-
ual participation part in the dataset construction
process was all done by the authors of this paper
without any ethical issues.

6 Conclusion

We have taken a significant step forward by devel-
oping MedEureka, a multi-granularity and multi-
data-type evaluation benchmark designed to ad-
vance the study of embedding models in informa-
tion retrieval scenarios. MedEureka encompasses
six distinct medical data types: Table, Literature,
Knowledge Base (KB), Terminology, Electronic
Health Records (EHR), and Dialogue. It also in-
cludes four different text granularities, including
Phrase, Sentence, Paragraph, and Document as

well as a special SQL form, resulting in a total
of eighteen datasets. These datasets provide a
comprehensive resource for evaluating embedding
models within the medical domain. We assessed
fifteen state-of-the-art embedding models, trained
two types of baseline models, and provided per-
formance results and analyses across various for-
mats. Furthermore, we examined the impact of
different data types and granularities on retrieval
performance.

Limitations

Evaluating medical retrieval tasks is challenging,
primarily due to limited access to specialized re-
sources, necessitating reliance on open-source data.
Access to private data, like complete EHRs and
cutting-edge studies, remains difficult. Addition-
ally, balancing the benchmark is challenging, as
some datasets, such as English EHRs and pro-
fessional knowledge bases, are unbalanced. Be-
sides, we have only constructed a cross-language
dataset consisting of Chinese and English retrievals.
There is still an opportunity to expand the dataset
by adding more languages, which would provide
a more comprehensive evaluation of the multilin-
gual capabilities of embedding models. Moreover,
MedEureka focuses on evaluating whether embed-
dings retrieve relevant content, using two classical
metrics: MRR and Exact HR. However, it does
not assess the relevance ranking of the retrieved
content, as there is no labeling of the order of rele-
vant documents, which is challenging to implement.
Consequently, metrics like nDCG cannot be used.
These limitations highlight areas for future research
and improvement.
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A Cases of Three Classical Error Types

Fine-grained error: This occurs when the em-
bedding vectors fail to sufficiently distinguish key
information during retrieval. For example, in re-
sponse to the query “What are the abnormalities of
the gastrointestinal, genitourinary, and neurologi-
cal systems that are manifested during the physical
examination of a pregnant woman who is vomiting?
How do these manifestations help diagnose the un-
derlying etiology?”, the most relevant erroneously
retrieved document correctly identified pregnancy
and symptoms such as vomiting but mistakenly pro-
vided information related to early-stage pregnancy
instead of addressing the requested abnormalities.

Semantic ambiguity: This type of error arises
when the embedding vector captures only partial
semantics while overlooking the overall meaning
of the query. For instance, for the query “What
characterises the epidemiological distribution of
rabies, Powassan encephalitis and West Nile virus
encephalitis globally? Please describe in detail
the main endemic regions for each condition.”,
the most relevant retrieved tables incorrectly fo-
cused only on encephalitis and its endemic regions
but failed to account for the specific diseases men-
tioned, leading to the retrieval of information about
“some arboviral encephalitis” rather than the tar-
geted conditions.

Lack of professional knowledge: This occurs
when the embedding model struggles to encode
specialized medical terminology, leading to the re-
trieval of content unrelated to the medical terms in
the query. For example, in response to the query
“What are the results of anti-HAV IgM and anti-
HAV IgG antibodies in serological testing for acute
hepatitis A? How do these results help confirm the
diagnosis of acute infection?”, the most relevant
erroneously retrieved document contained no in-
formation about acute hepatitis A or the specified
antibodies. Instead, it retrieved content related to
hepatitis B and its corresponding antibodies.

B The specific construction details for
Dialogue Task

For MeQSum, we only partitioned the dataset with-
out applying any additional processing, resulting
in a total of 1,000 test samples.

For Chinese-Medical-Dialogue, we first ana-
lyzed the dataset and identified data from six medi-
cal departments. We then clustered the data within
each department based on query embedding vectors
using the bge-m3 model. The number of clusters
obtained for each department is shown in Table B1:

Department Clusters

Andriatria 18,298
Internal Medicine (IM) 51,826
Obstetrics and Gynecology (OAGD) 48,204
Oncology 21,360
Pediatrics 29,044
Surgery 34,434

Table B1: Cluster statistics for each medical department.

To ensure a more balanced data distribution, we
randomly selected one sample from each cluster
after clustering and then randomly sampled 500
instances per department, yielding a final test set
of 3,000 samples.

For Qnorm, due to the high similarity among
QA pairs, we applied a filtering process based on
relative edit distance, setting a threshold of 0.85
to extract 1,599 challenging test samples.
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C Supplementary materials for dataset
and experiment

Figure C1 presents the distribution of these error
cases

Figure C2 to Figure C10 presents the sample
data each task.

Figure C11 illustrates the specific prompt used
for automatic query generation, taking the Table
task as an example.

Figure C12 illustrates the specific query prompts
used for each task.

Figure C14 presents the performance and trend
of embedding models on the Chinese task, de-
picted as a line chart from Exact HR@5 to Ex-
act HR@500. The Exact HR@num represents the
exact hit rate with num indicating the number of
candidates. Similarly, the performance of embed-
ding models on the English and cross-lingual tasks
is illustrated in Figure C13.

Figure C1: Distribution of these error cases on bge-
multilingual-gemma2.
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Model Table Literature KB Term EHR Dialogue
I II I II I II I II III IV V I II III IV I II III

bert-base-uncased∗ - 0.70 - 3.82 - - - - 14.52 6.81 6.26 - - - - - 0.94 -
biobert-base-cased-v1.2∗ - 0.36 - 4.10 - - - - 16.13 8.33 6.70 - - - - - 0.88 -

eureka-sup-simcse-bert-base-uncased - 67.69 - 54.18 - - - - 98.55 74.84 85.56 - - - - - 68.28 -
eureka-unsup-simcse-bert-base-uncased - 6.20 - 8.97 - - - - 26.59 11.57 10.27 - - - - - 13.42 -

eureka-sup-simcse-biobert-base-cased-v1.2 - 75.34 - 60.75 - - - - 98.45 74.11 85.37 - - - - - 73.83 -
eureka-unsup-simcse-biobert-base-cased-v1.2 - 35.31 - 16.82 - - - - 45.57 18.83 18.99 - - - - - 39.98 -

eureka-sbert-bert-base-uncased - 78.45 - 59.57 - - - - 96.70 77.42 82.90 - - - - - 77.94 -
eureka-sbert-biobert-base-cased-v1.2 - 84.52 - 65.33 - - - - 95.12 75.35 77.37 - - - - - 81.25 -

bert-base-chinese∗ 1.56 - 11.27 - 0.19 0.60 23.11 - - - - 1.62 1.08 0.09 0.11 2.60 - 28.03
medbert-base-wwm-chinese∗ 0.92 - 3.72 - 0.15 0.33 19.08 - - - - 0.20 0.06 0.02 0.43 0.27 - 19.62

eureka-sup-simcse-bert-base-chinese 63.29 - 83.80 - 92.37 99.85 47.98 - - - - 94.89 85.65 83.58 45.83 89.82 - 90.48
eureka-unsup-simcse-bert-base-chinese 37.32 - 12.18 - 20.13 46.31 42.78 - - - - 83.78 40.04 35.30 11.83 66.41 - 59.45

eureka-sup-simcse-medbert-base-wwm-chinese 64.28 - 79.41 - 93.88 99.77 50.03 - - - - 94.77 84.73 80.69 44.60 80.32 - 86.61
eureka-unsup-simcse-medbert-base-wwm-chinese 34.91 - 20.86 - 17.60 28.81 44.41 - - - - 81.81 40.15 37.70 14.19 64.00 - 57.67

eureka-sbert-bert-base-chinese 67.91 - 80.87 - 95.74 99.77 49.26 - - - - 94.92 85.56 81.02 55.80 92.45 - 90.17
eureka-sbert-medbert-base-wwm-chinese 69.61 - 85.62 - 94.95 99.77 50.69 - - - - 95.20 85.82 82.79 54.24 92.02 - 87.45

bert-base-multilingual-uncased∗ 0.52 0.76 3.08 5.90 0.04 0.47 18.06 0.48 16.17 7.10 6.35 0.83 0.88 0.43 0.15 0.16 1.12 20.24
eureka-sup-simcse-bert-base-multilingual-uncased 63.20 80.64 82.01 59.78 95.42 100.00 49.42 83.44 98.55 75.09 86.34 95.00 85.62 83.21 46.80 85.85 76.13 89.73

eureka-unsup-simcse-bert-base-multilingual-uncased 48.71 51.90 24.97 23.10 20.83 66.66 45.54 4.26 51.49 20.78 22.87 86.98 41.89 38.04 12.14 70.28 57.81 56.48
eureka-sbert-bert-base-multilingual-uncased 64.18 83.58 83.58 57.70 94.46 99.77 49.71 80.90 96.23 74.60 79.67 95.05 82.50 79.13 47.41 87.55 76.42 89.04

Table C1: Comparison of training baseline models performance on MRR@10 using cosine similarity as the distance
metric. “∗” indicates direct retrieval with frozen base PLMs
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Table I

Query: 氮卓斯汀、色甘酸钠和奥洛他定作为鼻内肥大细胞稳定剂在初始剂量方面有何不
同？请详细描述各自的使用年龄段和相应的初始剂量。



Target: 














Table II

Query: During cardiopulmonary resuscitation (CPR) for children of different ages, the 
compression techniques for newborns, 1-year-olds, and 8-year-olds vary. For newborns, it is 
recommended to use thumb compressions with hands encircling the chest, or two-finger 
compressions; for 1-year-olds, single-hand compressions are advised; and for 8-year-olds, two-
hand compressions are recommended. Please explain in detail the specific implementation 
methods of these different compression techniques and the reasons for their applicability at 
different ages.



Target: 


















Figure C2: Sample data for the Table Task.
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Literature I

Query: 患者：医生您好，我是一名50岁的男性患者。最近我出现了一些排尿方面的问
题，包括进行性排尿困难、尿频和尿急的情况。我还注意到尿等待时间变长，尿流变
细，尿不尽，尿分叉，而且夜间需要起床3-5次上厕所。这些症状困扰了我一段时间了，
我想请问您有什么治疗方案可以帮助我缓解这些症状吗？谢谢。



Target:
 慢性前列腺炎患者病程长，通常3~6个月及以上。II型与III型前列腺炎的临床表现类

似且具有多样性;症状在同一患者的不同阶段，以及不同患者之间存在差异，主要表
现为以下症状。疼痛是慢性前列腺炎最主要的临床表现。最常见的是会阴区疼痛不
适(63%)，疼痛还可见于睾丸(58%)、耻骨区(42%)及阴茎(32%);患者也可出现尿道、肛
周、腹股沟、腰骶部及下背部的疼痛。与排尿症状相比，疼痛症状对患者生活质量
的影响更高，而疼痛的严重程度和频率比疼痛的部位和类型影响更大，当疼痛发生
于骨盆外时，患者疼痛症状往往较为广泛，其社会心理健康及生活质量也较骨盆内
者差。射精时或射精后的疼痛不适(45%)也是慢性前列腺炎重要的非特异性临床表
现。慢性前列腺炎的另一个重要临床表现是储尿期和排尿期症状，包括尿频、尿
急、夜尿增多、排尿等待、排尿中断等。此外，约62%的慢性前列腺炎患者伴有性功
能障碍，40%的患者可出现早泄，其疼痛程度与性功能障碍密切相关

 II型和III型：须详细询问病史，尤其是反复下泌尿道感染史，全面体格检查(包括直
肠指检)，尿液和前列腺按摩液常规检查。推荐应用NIH慢性前列腺炎症状评分
(NIHchronicprostatitissymptomindex， NIH-CPSI， 见附录15-2)进 行 症状评分 。 推
荐“两杯法”或“四杯法”(见附录15-3)进行病原体定位试验(表15-1)。为明确诊断需对类
似症状的疾病进行鉴别

 前列腺炎应采取个体化的综合治疗。II型：推荐以口服敏感抗生素治疗为主，疗程为
4~6周，建议治疗2周后对患者进行阶段性的疗效评价。如抗生素疗效不满意者，可
改用其他敏感抗生素。伴有下尿路刺激症状的患者推荐联合使用α受体阻滞剂、植物
制剂和M受体阻滞剂等改善症状。IIIA型：可先口服抗生素2~4周，后续是否继续抗
生素治疗取决于前期的疗效反馈。推荐结合使用α受体阻滞剂、植物制剂、非甾体抗
炎镇痛药和(或)M受体阻滞剂等改善排尿症状和疼痛症状。IIIB型：推荐使用α受体阻
滞剂、植物制剂、非甾体抗炎镇痛药和M受体阻滞剂等药物治疗。



Figure C3: Sample data for the Literature Task (1/2).
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Literature II
Query: Where can published genomic sequences be found for the 2019-nCoV virus?



Target: "Note from the editors: novel coronavirus (2019-nCoV)\n\nhttps://
www.ncbi.nlm.nih.gov/pmc/articles/PMC6988271/\n\nSHA: 
d958168df85240e544a918d843a14e887dc41d2b\n\nAuthors: nan\nDate: 2020-01-23\nDOI: 
10.2807/1560-7917.es.2020.25.3.2001231\nLicense: cc-by\n\nAbstract: nan\n\nText: The 
situation has continued to evolve rapidly since then and just a few weeks later, as at 23 January, 
614 laboratory-confirmed cases and 17 deaths have been reported [2] including some cases 
detected outside mainland China [3] . Meanwhile, on 7 January 2020, the novel coronavirus, 
currently named 2019-nCoV, was officially announced as the causative agent by Chinese 
authorities [3] . In order to support public health action, viral genome sequences were released 
by Chinese researchers on 10 January [4] and 2 days later, four further sequences were also 
made available on the Global Initiative on Sharing All Influenza Data (GISAID) (https://
www.gisaid.org/). While more cases are being reported on a daily basis and there is evidence 
for some human-to-human transmission in China, a number of important questions remain 
unanswered. For example, there is no certainty about the source of the outbreak, the 
transmissibility of the virus as well as the clinical picture and severity of the disease.\n\nIn this 
issue of Eurosurveillance, we are publishing two articles on different aspects of the newly 
emerged 2019-nCoV. One is a research article by Corman et al. on the development of a 
diagnostic methodology based on RT-PCR of the E and RdRp genes, without the need for virus 
material; the assays were validated in five international laboratories [5] . Before this 
publication, a description of the assays had already been made publically available on a 
dedicated WHO webpage [6] to support rapid development of laboratory testing capacities. The 
other is a rapid communication where researchers based in Hong Kong report on their attempt 
to estimate the severity among hospitalised cases of 2019-nCoV infection through modelling 
based on publically available information, mainly from Wuhan health authorities [7] . It also 
points out the need for more detailed information to make an informed evaluation of the 
situation as basis for public health decision-making.\n\nToday, the WHO Director-General 
Tedros Adhanom Ghebreyesus, taking into consideration the deliberations of the members of 
the International Health Regulations (IHR) Emergency Committee on 2019-nCoV in their 
second meeting, decided not to declare a public health emergency of international concern.
\n\nInternational health organisations such as the European Centre for Disease Prevention and 
Control (ECDC) and the WHO are monitoring the situation and provide regular updates. ECDC 
has set up a dedicated webpage on which updates and risk assessments with focus on Europe 
are available: https://www.ecdc.europa.eu/en/ novel-coronavirus-china.

Figure C4: Sample data for the Literature Task (2/2).
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KB I

Query: 某女，3岁。症见发热头痛、腹胀满、咳嗽痰多、呕吐酸腐。医师处以小儿百寿
丸。该药剂组成为：钩藤45g、炒僵蚕45g、胆南星(酒炙)75g、天竺黄75g、桔梗30g、木
香75g、砂仁45g、陈皮75g、麸炒苍术75g、茯苓30g、炒山楂150g、六神曲(麸炒)45g、炒
麦芽45g、薄荷45g、滑石150g、甘草30g、朱砂10g、牛黄10。该药剂中牛黄的具体制备
方法是什么？在该药剂中，牛黄的含量测定方法是什么？



Target: 

药名:小儿百寿丸。制法:以上十八味，除牛黄外，朱砂水飞成极细粉；其余钩藤等十六
味粉碎成细粉；将牛黄研细，与上述粉末配研，过筛，混匀。每100g粉末加炼蜜100～
120g制成大蜜丸，即得。



药名:小儿百寿丸。含量测定:木香照高效液相色谱法（通则0512)测定。色谱条件与系统
适用性试验以十八烷基硅烷键合硅胶为填充剂；以甲醇-0.1%磷酸溶液（63：37)为流动
相；检测波长为225nm。理论板数按去氢木香内酯峰计算应不低于14000。对照品溶液的
制备取木香烃内酯对照品、去氢木香内酯对照品适量，精密称定，加甲醇制成每1ml各
含30μg的混合溶液，即得。供试品溶液的制备取重量差异项下的本品，剪碎，混匀,取约
3g,精密称定,精密加人甲醇50ml,密塞，称定重量，超声处理（功率200W，频率40kHz)45
分钟，放冷，再称定重量，用甲醇补足减失的重量，摇匀，滤过，取续滤液，即得。测
定法分别精密吸取对照品溶液与供试品溶液各10ul,注入液相色谱仪，测定，即得。本品
每丸含木香以木香烃内酯（C5H2oO2）和去氢木香内酯(C1sH1sO2）的总量计,不得少于
1.25mg。牛黄照高效液相色谱法(通则0512)测定(避光操作)。色谱条件与系统适用性试验
以十八烷基硅烷键合硅胶为填充剂；以乙晴-1%冰醋酸溶液（95：5)为流动相；检测波长
为450nm。理论板数按胆红素峰计算应不低于3000。对照品溶液的制备取胆红素对照品
适量，精密称定，加二氯甲烷制成每1ml含15μg的溶液,即得。供试品溶液的制备取重量
差异项下的本品，剪碎，取适量，精密称定，精密加人硅藻土适量（约为取样量的2
倍），混合均匀后充分研磨成细粉，取细粉约1.5g（相当于本品0.5g),精密称定,置具塞锥
形瓶中,加入10%草酸溶液（含0.15%十六烷基三甲基氯化铵）10ml，密塞，涡旋至充分
混匀，精密加人水饱和的二氯甲烷50ml，密塞，称定重量，涡旋至充分混匀，超声处理
（功率500W，频率53kHz）40分钟，放冷，再称定重量，用水饱和的二氯甲烷补足减失
的重量，摇匀，离心，取二氯甲烷液，滤过，取续滤液，即得。测定法分别精密吸取对
照品溶液与供试品溶液各5pl，注人液相色谱仪，测定，即得。本品每丸含牛黄以胆红素
（C33H3N4O）计，不得少于2.2mg。



Figure C5: Sample data for the KB Task (1/2).
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KB II

Query: 某女，45岁。症见肝肾阴亏，眩晕耳鸣，羞明畏光，迎风流泪，视物昏花。医师
处以杞菊地黄丸。该药剂组成为：枸杞子40g菊花40g熟地黄160g酒萸肉80g牡丹皮60g山药
80g茯苓60g泽泻6。在鉴别过程中，枸杞子的颜色变化和显色特征有哪些？



Target: 

药名:杞菊地黄丸(浓缩丸)

处方:枸杞子40g菊花40g熟地黄160g酒萸肉80g牡丹皮60g山药80g茯苓60g泽泻60g\n制法:以
上八味，取酒英肉26.7g、牡丹皮26.5g、山药粉碎成细粉；泽泻、茯苓加水煎煮二次，第
一次3小时，第二次2小时，滤过，滤液合并并浓缩成相对密度为1.30～1.35（60～80℃）
的稠膏；熟地黄切片，加水煎煮三次，第一次3小时，第二次2小时，第三次1小时，滤
过，滤液合并并浓缩成相对密度为1.30～1.35（60～80℃）的稠膏；枸杞子以45%乙醇作
溶剂，剩余的酒英肉与牡丹皮及菊花以70%乙醇作溶剂，浸渍24小时后，分别进行渗
漉，收集漉液，合并上述漉液，回收乙醇浓缩成相对密度为1.30～1.35（60～80°℃)的稠
膏，与上述细粉与稠膏混匀,制成浓缩丸,干燥，打光，即得。

性状:本品为棕色至棕黑色的浓缩丸；味甜而酸。

鉴别:(5)项下的供试品溶液及上述对照药材溶液和对照品溶液各5μl,分别点于同一硅胶G薄
层板上，以甲苯-乙酸乙酯-冰醋酸（24：8：1)为展开剂，展开，取出，晾干，喷以10%硫
酸乙醇溶液，在105℃加热至斑点显色清晰。供试品色谱中，在与对照药材色谱和对照品
色谱相应的位置上，显相同的紫红色斑点。(5)取本品6g，研碎，加乙醚40ml.加热回流1
小时，滤过，滤液挥去乙醚，残渣加丙酮1ml使溶解，作为供试品溶液。另取牡丹皮对照
药材1g，同法制成对照药材溶液。再取丹皮酚对照品，加丙酮制成每1ml含1mg的溶液，
作为对照品溶液。照薄层色谱法（通则0502)试验，吸取上述三种溶液各10μl,分别点于同
一硅胶G薄层板上，使成条状，以环已烷-乙酸乙酯（3：1）为展开剂，展开，取出，晾
十，喷以盐酸酸性5%三氯化铁乙醇溶液，加热至斑点显色清晰。供试品色谱中，在条
斑。

检查:应符合丸剂项下有关的各项规定（通则0108）。

含量测定:照高效液相色谱法（通则0512）测定。色谱条件与系统适用性试验以十八烷基
硅烷键合硅胶为填充剂；以乙晴为流动相A，以0.3%磷酸溶液为流动相B，按下表中的规
定进行梯度洗脱；莫诺苷和马钱苷检测波长为240nm，丹皮酚检测波长为274nm；柱温为
40℃。理论板数按莫诺苷、马钱苷峰计算均应不低于4000。

表格:|时间(分钟)|流动相A(%)|流动相B(%)||---|---|---||0~5|5→8|95→92||5～20|8|92||
20~35|8→20|92→80||35~45|20→60|80→40||45~55|60|40|对照品溶液的制备取莫诺苷
对照品、马钱苷对照品和丹皮酚对照品适量，精密称定，加70%甲醇制成每1ml中含莫诺
苷与马钱苷各20ug、含丹皮酚45ug的混合溶液，即得。供试品溶液的制备取重量差异项
下的本品，研细，取约0.3g，精密称定，置具塞锥形瓶中，精密加人70%甲醇25ml，密
塞，称定重量，加热回流1小时，放冷，再称定重量，用70%甲醇补足减失的重量，摇
匀，滤过，取续滤液，即得。测定法分别精密吸取对照品溶液与供试品溶液各10ul，注
人液相色谱仪，测定，即得。本品每丸含酒英肉以莫诺苷（C17H26O11）和马钱苷
（C17H2601o）的总量计，不得少于0.28mg；含牡丹皮以丹皮酚（CgHoO）计，不得少
于0.20mg。

功能与主治:滋肾养肝。用于肝肾阴亏，眩晕耳鸣，羞明畏光，迎风流泪，视物昏花。

用法与用量口服:一次8丸，一日3次。

规格:每8丸相当于原药材3g

贮藏:密封。

Figure C6: Sample data for the KB Task (2/2).
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Term I
Clinical_examination


    Query: 二氧化碳容积图         Target: 二氧化碳图形


Disease_dignosis


    Query: 腰椎间盘突出症         Target: 硬膜内型腰椎间盘突出症


Procedure_operation


    Query: 左肾根治性切除         Target: 单侧肾切除术


Symptom_sign


    Query: 延髓背外侧综合征     Target: 瓦伦贝格综合征                  

Term II

Clinical_examination


    Query: optical coherence tomography         Target: 光相干断层扫描


Disease_dignosis


    Query: dysfunction after cardiac surgery     Target: 心脏手术后功能障碍


Procedure_operation


    Query: reduction of vertebral fracture          Target: 脊椎骨折复位术


Symptom_sign


    Query: autonomic dysreflexia                      Target: 自主神经反射障碍

Term V
Query: Mental illness     Target: Psychotic Disorders                  

Term IV
Query: accident i kept waking up     Target: Middle insomnia                  

Term III
Query: GI distress      Target: Excessive upper gastrointestinal gas


                

Figure C7: Sample data for the Term Task.
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EHR I

Query: 主要症状包含上腹痛、发热的病人,

    

Target: 

SELECT * FROM Outpatient_Medical_Record WHERE Chief_Complaint LIKE '%上腹痛%' 
AND Chief_Complaint LIKE '%发热%'               

Query: SELECT * FROM Outpatient_Medical_Record WHERE History_of_Present_lllness 
LIKE '%慢性肾功能不全%'

    

Target: 

现病史:患者30余年前因腰痛查B超提示多囊肾，未予特殊治疗。3年前体检发现血肌酐
260umol/L，长期于门诊服中药护肾治疗，一年余前因“多囊肾出血”于我院住院，复查肌
酐369.4umol/L，予抗感染、止血等治疗后好转出院。一个月前患者因“慢性肾功能不
全”于我院住院，出院时复查肌酐801umol/L，3天前再次出现肉眼血尿，色鲜红，时有血
块，遂今至我院就诊，为求进一步治疗入住我科。刻下：患者解肉眼血尿，色鲜红，偶
有刺痛，无尿频、尿急，头晕乏力感，腹部时有疼痛，无头痛，无胸闷心慌，无畏寒发
热，无手足麻木，无腹胀，纳差，大便尚调，夜寐尚安。



现病史:患者于二十余天无明显诱因出现双下肢水肿，呈对称性压陷性水肿，伴乏力，偶
有清晨双眼睑轻度浮肿，下午减轻，偶有心慌、喘气，无畏寒、发热，无头晕、头痛，
无咳嗽、咳痰，无胸痛、胸闷，无恶心、呕吐，无腹胀、腹痛、腹泻，无大小便失禁及
肢体活动障碍，在家未予治疗，于今日上午患者出现头晕，口服降压药物后好转，伴有
后颈部、肩部胀痛不适，今来我院，门诊以\"慢性肾功能不全\"收住我科。起病以来，
患者精神、食欲、睡眠欠佳，大小便正常，体力稍下降，体重无明显变化。           

Query: 现病史中包含右股骨干粉碎性骨折的患者

     

Target: 

现病史:患者源于1小时前因出车祸致右大腿肿痛畸形、活动受限，无皮破流血，伤时无
昏迷、近事遗忘，伤后无明显头晕头痛、恶心呕吐，无咳嗽咯血，无胸闷胸痛及呼吸困
难，无腹胀腹痛等症，伤后120急送我院，急诊医生予询问病史、查体及拍片检查等处
理，拍片检查示“右股骨中段粉碎性骨折”予夹板外固定后拟“右股骨干粉碎性骨折”收住我
科住院进一步治疗。入院症见患者神清，右大腿肿痛畸形、活动受限，不能站立行走，
无口苦口干，无畏寒发热，无呼吸困难、无胸闷心悸、无自汗盗汗，伤前纳寐正常，二
便自调。



现病史:该患者于2小时前不慎滑倒，伤及右大腿，导致肿痛，畸形，活动受限，到当地
医院拍片后诊断为右股骨干粉碎性骨折。为求进一步手术治疗急来我院，经门诊检查并
阅片后，以右股骨干粉碎性骨折收入院，现症：右大腿肿痛，活动受限，饮食、睡眠尚
可，二便正常。             

EHR III

EHR II

Figure C8: Sample data for the EHR Task (1/2).
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Query: 查体中有周身皮肤微红、肿胀、充血等表现，血常规示白细胞、中性粒细胞比率
等指标异常的患者

    

Target: 

基本信息:男，53岁，农民

主诉:落冰水后全身僵硬麻木4小时。

现病史:患者诉缘于4小时前在冰上巡逻时不慎掉入冰水中，5分钟后获救成功，伤后全身
皮肤苍白、冰凉、僵硬，厥冷，四肢麻木，无昏迷抽搐，无呼吸浅慢及呼吸困难，无恶
心呕吐，无咳嗽、咳痰及咯血，自述胸痛，无胸闷、心悸，无二便失禁。伤后于当地复
温，输液治疗（药名及剂量不详），自觉周身皮肤热、痒、灼痛，为求进一步诊治，来
我院，经门诊以“冻伤”收住院。

既往史:既往体健，无手术史，外伤史及药物过敏史，否认“肝炎”、“结核”等传染病接触
史。

查体:T:37.6℃，P:98次/分，R:20次/分，BP:130/80mmHg。发育正常，营养中等，神志清
楚，合作。全身粘膜无苍白，无黄疸，皮肤弹性差，未见肝脏、蜘蛛痣。余见外科情
况。全身浅表淋巴结未触及肿大。头颅外形正常。结膜无苍白，巩膜无黄染，角膜无混
浊，双侧瞳孔等大等圆，直径约2.5mm，眼球运动正常，光反射存在。耳廓外形正常，
外耳道无异常分泌物，乳突无压痛，鼻无畸形，鼻腔粘膜无充血、水肿，鼻中隔无偏
曲，鼻翼无扇动，各副鼻窦无压痛。口唇无苍白，颊粘膜无溃疡、白斑，伸舌居中。咽
后壁无红肿，悬雍垂居中，双侧扁桃体Ⅱ°肿大，表面无脓性分泌物，喉发音清晰。颈
略抵抗，未见颈静脉怒张，颈动脉无异常搏动及杂音。气管居中，甲状腺无肿大。胸廓
对称，无畸形。胸壁无静脉曲张，未及皮下气肿。胸式呼吸，双侧呼吸动度一致，肋间
隙无增宽。语颤无增强及减弱，无捻发感及胸膜摩擦感。双肺叩诊清音，肺肝浊音介于
右锁骨中线第五肋间。双侧呼吸音清晰，下野闻及细小湿性啰音。心前区无隆起，心尖
搏动位于第五肋间左锁骨中线内侧1.5cm。无震颤及心包摩擦感。心浊音界无扩大。心律 
98次/分，律齐，各瓣膜区未闻及病理性杂音，未闻及心包摩擦音。无脉搏短拙，无奇脉
及大动脉枪击音。无水冲脉，毛细血管搏动征（-）。腹部平坦，无腹壁静脉曲张，未见
胃肠型及逆蠕动波，腹部无压痛、反跳痛、肌紧张，肝脾肋下未触及， Murphy征阴性，
麦氏点无压痛，肝肾区无叩击痛，叩诊无移动性浊音，肠鸣音4-6次/分，未闻及气过水
声及金属音。肛门及外生殖器未见异常。脊柱四肢无畸形，四肢关节活动正常。双侧肢
体肌力正常，肌张力正常，角膜反射、腹壁放射、肱二、三头肌腱反射、膝腱反射正常
存在，颈项无强直，双侧巴氏征、布氏征阴性。外科情况：周身皮肤微红、肿胀，充
血，无水泡，皮肤痛温感觉略迟钝，无感觉过敏，肢体可持重。

辅助检查:  血常规示：白细胞10.03*10^9/L，中性粒细胞比率66.90%，淋巴细胞比率
26.80%，中性粒细胞数6.71*10^9/L，淋巴细胞数2.69*10^9/L。血凝四项示：凝血酶原时
间13.4Sec，国际标准化比率1.07，部分活化凝血酶原时间27.0Sec，纤维蛋白原2.88g/L，
凝血酶时间13.6Sec。           

EHR IV

Figure C9: Sample data for the EHR Task (2/2).
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Dialogue I

Query:反胃很长一段时间了，平时出现呕吐，反胃，吃不下饭，恶心的东西看了也想
吐，我想问这样持续久了会不会有大问题？病因是什么？谢谢,目前是天天吃药，但是没
什么效果，感觉反胃越来越重了，会不会有严重的问题？



Target:

我长期经历反胃、呕吐、食欲不振和恶心，对恶心食物有强烈反应。目前每天服药但效
果不佳，反胃症状似乎在加重。我想了解这种持续的反胃是否会导致严重健康问题，以
及可能的病因是什么。

Dialogue II
Query:Is titanium dioxide an inactive ingredient in Equate acetaminophen or Tylenol 
acetaminophen?



Target:

SUBJECT: Acetaminophen inactive ingredients

MESSAGE: My wife is severely allergic to Titanium Dioxide.  It is not listed in the inactive 
ingredients for Equate or Tylenol Acetaminophen on the package or on your page but other 
sources on the Internet claim it is used to coat the tablets to make them easier to swallow.  Are 
they coated with Titanium Dioxide and if so why is it not listed as an inactive ingredient?

Thanks, [NAME]

Dialogue III

Query: 继发性小儿癫痫应该怎样治疗,小孩子有继发性癫痫应该怎样治疗呢。



Target:

小儿继发性癫痫怎么康复,我的孩子现在12个半月，宝宝出世20多天，30天前后出现4次抿
嘴，身体往后仰，头往右边，斗鸡眼的情况。7个多月出现撇嘴，每次都是单一的一个表
情，一天二三十次，精神状况不好。然后经当地医生建议，做了24小时脑电图和脑部
CT。确诊为大脑发育不良引起的继发性癫痫。确诊后开始吃德巴金3ml，每天两次。之后
发作间隔由拉长，而且发作时精神状态良好，喊他都能回应，照样玩。这一个多月来发现
发作表情更为夸张，握紧拳头，好像要使很大力气。怕药量不够，就是验了血液浓度，都
在正常值内。最近发作间隔短，表情夸张，但精神状态良好。不过有感冒，咳嗽。

                

Figure C10: Sample data for the Dialogue Task.
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query_generation

        我将给你一份来源于专业医学诊疗手册的表格。首先我需要你理解该表格的空间布
局以及包含的信息类型，并选择某一列作为提问的依据；其次，从你所选取的列中挑选
出两到三行，在理解行内容的基础上，根据这些行对应单元格中的信息生成一个问题，
要求提问要专业且具有逻辑性，严格涉及了所有筛选出的单元格的信息，输出应包含以
下五个部分：



    表名：表格的名称

    列：选取的列

    行：选取的行集

    问题：生成的问题

    答案: 根据问题以及单元格内容生成的回答



=========================================================
===============



以下是一个示例



【示例表格】

     {example_table}



【示例输出】

```json

    {{

        "表名":"胸痛的病因",

        "列":"有提示意义的临床表现",

        "行":["急性心肌梗死（心血管）", "胸主动脉夹层（心血管）","食管破裂"],

        "问题":"急性心肌梗死的临床表现包括突发的压榨样胸痛向下颌或上肢放射，劳力性
胸痛在休息后缓解，以及常有红色信号表现等。胸主动脉夹层则表现为突发的撕裂样胸
痛向后背放射，可能伴有晕厥、卒中或下肢缺血，四肢脉搏或血压不相同，且常见于年
龄>55岁和高血压患者。食管破裂的典型表现包括呕吐或器械检查后突发、严重的胸
痛，听诊有皮下捻发音，以及多个红色信号表现。请结合这些信息，分析这三种病因的
疼痛性质、伴随症状及常见的体征差异。",

       "答案":"急性心肌梗死的疼痛性质为突发的压榨样胸痛，通常向下颌或上肢放射，并
伴随劳力性胸痛在休息后缓解，常伴有红色信号表现，如异常生命体征和气短。胸主动
脉夹层的疼痛为突发的撕裂样胸痛，向后背放射，常见于年龄>55岁和高血压患者，可
能伴有晕厥、卒中或下肢缺血，四肢脉搏或血压不相同。食管破裂的疼痛通常在呕吐或
器械检查后突发，表现为严重的胸痛，听诊时可发现皮下捻发音，并伴有多个红色信号
表现，如低血压和气急。这些特征可以帮助区分这三种病因。"

    }}

```



=========================================================
==============



【表格】

     {query_table}



【输出】

Figure C11: The specific prompt for automatic query generation on Table task.
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{
 "Literature_en": "Given a query for the experts, retrieve relevant scientific 
articles.",
 "Literature_zh": "给定一个来自患者的问题，查询相关的医学片段。",
 "Table_en": "Given a query, retrieve the relevant medical table.",
 "Table_zh": "给定一个问题，查询相关的医学诊疗表格。",
 "KB_para_zh": "给定一个问题，查询中药药品说明书中的相关片段。",
 "KB_doc_zh": "给定一个问题，查询相关的中药药品说明书。",
 "AskAPatient_en": "Given a social media phrase, retrieve relevant medical 
terminology",
 ”SMM4H-17_en": "Given a social media phrase, retrieve relevant medical terminology",
 ”TwADR-L_en": "Given a social media phrase, retrieve relevant medical terminology",
 ”Disease_dignosis_zh": "给定一个短语，查询标准的疾病诊断术语。",
 ”Clinical_examination_zh": "给定一个短语，查询标准的体格检查短语。",
 ”Procedure_operation_zh": "给定一个短语，查询标准的手术操作短语。",
 ”Symptom_sign_zh": "给定一个短语，查询标准的症状体征短语。",
 ”Disease_dignosis_cross": "Given a phrase, retrieve normalized disease diagnosis 
term.",
 ”Clinical_examination_cross": "Given a phrase, retrieve normalized clinical 
examination term.",
 ”Procedure_operation_cross": "Given a phrase, retrieve normalized procedure operation 
term.",
 ”Symptom_sign_cross": "Given a phrase, retrieve normalized symptom sign term.",
 ”EHR_query2sql_zh": "给定一个关于医疗电子病历的问题，查询相关的SQL语句。",
 ”EHR_sql2para_zh": "给定一个SQL语句，查询相关的医疗电子病历段落。",
 ”EHR_query2para_zh": "给定一个问题，查询相关的医疗电子病历段落。",
 ”EHR_query2doc_zh": "给定一个问题，查询相关的医疗电子病历。",
 ”Dialogue_qnorm_zh": "给定一个来自患者的问题，查询相关的问题。",
 ”Dialogue_en": "Given a query for patients, retrieve relevant medical patient's 
questions",
 ”Dialogue_zh": "给定一个来自患者的问题，查询相关的回答。"
}

Figure C12: The specific query prompts for different tasks.
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Figure C13: Line chart of performance across different numbers of recalled items in English and Cross-lingual
datasets
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Figure C14: Line chart of performance across different numbers of recalled items in Chinese datasets(Since the
corpus length of some datasets is less than 500, the hit rate range for certain datasets has been set from 5 to 200.)
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