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Abstract

Embedding-based retrieval (EBR), the main-
stream approach in information retrieval (IR),
aims to help users obtain relevant information
and plays a crucial role in retrieval-augmented
generation (RAG) techniques of large language
models (LLMs). Numerous methods have been
proposed to significantly improve the quality
of retrieved content and many generic bench-
marks are proposed to evaluate the retrieval
abilities of embedding models. However, texts
in the medical domain present unique contexts,
structures, and language patterns, such as termi-
nology, doctor-patient dialogue, and electronic
health records (EHRs). Despite these unique
features, specific benchmarks for medical con-
text retrieval are still lacking. In this paper, we
propose MedEureka, an enriched benchmark
designed to evaluate medical-context retrieval
capabilities of embedding models with multi-
granularity and multi-data types. MedEureka
includes four levels of granularity and six types
of medical texts, encompassing 18 datasets, in-
corporating granularity and data type descrip-
tion to prompt instruction-fine-tuned text em-
bedding models for embedding generation. We
also provide the MedEureka Toolkit to sup-
port evaluation on the MedEureka test set.
Our experiments evaluate state-of-the-art open-
source and proprietary embedding models, and
fine-tuned classical baselines, providing a de-
tailed performance analysis. This underscores
the challenges of using embedding models
for medical domain retrieval and the need
for further research. Our code and data are
released in the repository: https://github.
com/JOHNNY-fans/MedEureka.

1 Introduction

Embedding-based Retrieval (Huang et al., 2020;
Li et al., 2021; He et al., 2023) has been a valu-
able research topic and has become a mainstream
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Figure 1: The overall architecture of the MedEureka,
including data source, data type, granularity, language,
and corresponding constructed task.

method for information retrieval. By transform-
ing the text into semantic-rich dense vectors, the
relevant text is retrieved by calculating the vec-
tor similarity. Siamese networks (Reimers and
Gurevych, 2019), contrastive learning (Gao et al.,
2021; Wang et al., 2022), and various effective
negative sampling strategies (Chuang et al., 2022;
Formal et al., 2022; Nishikawa et al., 2022; Wang
and Dou, 2023) have been widely used in the train-
ing of embedding models to improve retrieval per-
formence by bringing the query closer to positive
samples and pushing it farther away from negative
samples. A more advanced approach is based on
the concept of prompting, using instruction-fine-
tuned text embeddings (Su et al., 2023; Chen et al.,
2024) to achieve more detailed vector representa-
tions. Many advanced embedding models trained
on large corpora have been released (Wang et al.,
2023; Li et al., 2023; OpenAl, 2024b; Wang et al.,
2024), while evaluations for the retrieval ability
of embedding models are already present in some
generic-domain benchmarks (Thakur et al., 2021;
Muennighoff et al., 2023; Xiao et al., 2023).
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In the medical domain, the evaluation of model
retrieval capabilities is conducted separately for in-
dividual datasets (Xiao et al., 2023; Chen et al.,
2020) due to the unique context and expertise.
Meanwhile, there are numerous practical appli-
cations for medical information retrieval, such as
terminology normalization (Xu et al., 2020), the
retrieval and analysis of EHRs (Myers et al., 2024),
and some RAG-based QA (Lozano et al., 2023;
Huang et al., 2024) of medical literature and knowl-
edge bases. However, there is a lack of domain-
specific evaluations in the medical field to guide the
selection of suitable embedding models for medical
context retrieval in different scenarios.

In this paper, we introduce MedEureka, a bench-
mark specifically designed for multi-granularity
medical-context retrieval using embedding mod-
els. As illustrated in Figure 1, MedEureka encom-
passes four levels of granularity: phrase, sentence,
paragraph, and document. It also incorporates six
types of medical texts: Table, Literature, Knowl-
edge Base (KB), Term, Electronic Health Record
(EHR), and medical Dialogue, along with a unique
SQL case. The raw data for this benchmark were
sourced from academic open-source projects and
websites. Following data organization and classi-
fication, and with the support of Al-assisted an-
notation, we constructed 18 datasets for training,
validation, and testing, each defined by distinct
granularity levels and semantic labels.

We developed the MedEureka Toolkit to fa-
cilitate the evaluation of the MedEureka bench-
mark’s test set and assessed the retrieval perfor-
mance of various advanced embedding models,
including both proprietary and open-source op-
tions. The overall performance is illustrated in
radar plots, as shown in Figure 2. To evaluate
these instruction fine-tuned embedding models, we
generated prompts using granularity and seman-
tic tags. Additionally, we trained several baseline
embedding models on MedEureka using classical
training methods based on both generic and med-
ical Pre-trained Language Models (PLMs). Our
experiments demonstrate that state-of-the-art em-
bedding models trained on large-scale corpora ex-
hibit strong medical retrieval capabilities, particu-
larly for data types with minimal divergence from
the generic domain or clear semantics, such as di-
alogues. However, challenges persist in handling
more specialized medical content, such as elec-
tronic health records, medical literature, and termi-
nology. Even with supervised methods, training is

prone to bias due to the constraints of PLM param-
eter size and capabilities, as well as diverse text
granularity and type settings. We also conducted a
detailed analysis to provide insights and guidance,
aiming to encourage the NLP community to pursue
further research and collaboration in addressing the
practical challenges highlighted by this benchmark.

2 Related Work

2.1 Advanced Embedding Models.

Embedding-based retrieval (EBR) has become
a mainstream approach to information retrieval.
Particularly, with the advent of LLMs, numer-
ous high-quality corpora have been created, and
many generalized embedding models have been
released, achieving excellent performance, such as
OpenAl text embeddings (OpenAl, 2022, 2024b),
GTE (Li et al., 2023). More advanced models,
e.g., Instructor-x1 (Su et al., 2023) and ES (Wang
et al., 2023), incorporate instructions into training
processes. By employing different prompts, these
models (Wang Yuxin, 2023; Xiao et al., 2023) im-
prove the quality and adaptability of embeddings
across diverse scenarios. Additionally, recent ad-
vancements in diversifying training data, generat-
ing synthetic data, and leveraging LLMs as back-
bones have further contributed to the development
of more generalized embeddings, such as multilin-
gual (Wang et al., 2024), multi-granularity (Chen
et al., 2024), and LLM-based (Li et al., 2023).

2.2 Training Strategies for Embedding

Various training strategies for embedding mod-
els have been proposed to achieve more detailed
vector representations with the success of PLMs.
Traditional method employs siamese network to
generate semantically meaningful sentence embed-
dings (Reimers and Gurevych, 2019). Contrastive
learning (Gao et al., 2021; Wang et al., 2022), along
with numerous negative sampling strategies, has
recently emerged as a prominent method for train-
ing embedding models. SNCSE (Wang and Dou,
2023) alleviates feature suppression by treating
the negations of positive samples as soft negatives.
DiffCSE (Chuang et al., 2022) introduces equiv-
ariant contrastive learning, InfoCSE (Wu et al.,
2022) learns sentence representations by recon-
structing segments of the original sentences, while
RankCSE (Liu et al., 2023) incorporates ranking
consistency and ranking distillation, thereby en-
hancing representation quality.
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Task ID Source | Language Annotation | Phrase Sen. SQL Para. Doc. | # Examples(train/dev/test) | # Avg Len (query/target)
Table 1 Website zh Auto & Human * N - 1,776 1592 / 592 105.80/2811.27
i Website en Auto & Human * 806 /269 / 269 60.08 /561.42
Literaure | RIUA-QA zh Auto & Human X - - 360/120/ 120 204.11/264.25
i COVID-QA en Auto & Human * 1 979 /32717326 12.77 /1 6065.79
KB I Website zh Auto & Human - * - 1 - 985/330/328 188.76 / 192.09
i Website zh Auto & Human - * 1967/ 657 / 656 15836/ 1823.71
I Website zh Auto & Human | #T - 7,749 /1,005 / 1,005 1526/ 13.44
i Website cross Auto & Human | #1T - 2,4786 /8,262 / 8.262 6.38/12.91
Term 111 AskAPatient en Auto K1 - 5,051/2,748 / 4,137 4.36/4.03
v SMM4H-17 en Auto K1 - 2,124/709/1,194 4.20/5.45
v TwADR-L en Auto K2 - 3,204/ 656 /988 432/451
I Self-built zh Auto & Human X ¥ - - 2,097 /718 /721 45.98/69.27
EHR 11 Website zh Auto & Human * - ‘ - 1,709 / 570/ 570 48.17/191.72
il Website zh Auto & Human - 1 1 - 1,692 /564 / 564 71.37/191.72
v Website zh Auto & Human * - - 2 1229/410/ 410 72.62/976.30
I Qnorm zh Auto 2 - - - 959/320/320 93.63/100.18
Dialogue 11 MeQSum en Auto * - 1 - 600 /200 /200 13.69/81.41
1T Chinese-medical-dialogue zh Auto & Human K1 - - - 1,800 / 600 / 600 87.46/85.31
Table 1: Dataset statistics and descriptions. The columns represent the annotation method (auto-generated or

human), the number of examples, the granularity, and the average length of both query and target.

2.3 Generic-domain Evaluation of Retrieval.

The evaluation of retrieval performance has been
included in many embedding benchmarks, such
as the STS benchmark (Reimers and Gurevych,
2019) and MTEB (Muennighoft et al., 2023). Addi-
tionally, prominent benchmarks like BEIR (Thakur
et al., 2021) focus on retrieval capabilities across
generic domains and include some medical datasets.
Ajith et al. (2024) introduced a comprehensive
benchmark for scientific literature retrieval, while
(Zhang et al., 2021) evaluated dense retrieval in
multilingual settings. However, there remains a
gap in comprehensive, fine-grained, and multi-task
evaluation of embedding model retrieval capabili-
ties specifically within the medical domain.

2.4 Applications of EBR

Embedding-based retrieval has numerous applica-
tion scenarios within the NLP field. Some general
use cases include document retrieval (Schopf et al.,
2022), question-answering systems (Liu et al.,
2019), and recommendation systems (Agrawal
et al., 2021). Particularly in the era of LLMs,
EBR is widely used in Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2020; Siriwardhana
et al., 2023) technology to enhance the quality of
generated content and reduce hallucinations. Fur-
thermore, the medical field also presents numerous
retrieval scenarios, such as clinical terminology
normalization (Castano et al., 2016; Sarker et al.,
2018; Xu et al., 2020), electronic health record
(EHR) retrieval (Sivarajkumar et al., 2024; Myers
et al., 2024), medical literature and knowledge base
search (Lozano et al., 2023; Huang et al., 2024).

3 The MedEureka Benchmark

3.1 Data Collection

Collecting corpora of varying granularity and types
poses significant challenges due to copyright and
privacy protection concerns. We chose not to
use simulation, self-building, or distillation tech-
niques because they require specialized medical
expertise. As a result, we invested considerable
effort into finding academic open-source materi-
als, identifying formal application pathways, and
securing copyright-free medical data and knowl-
edge. As shown in Fig 1, we obtained six differ-
ent types of medical text data from open-source
projects and websites to construct retrieval evalua-
tion datasets with varying granularity and types.
We discovered several datasets related to medi-
cal terminology (Limsopatham and Collier, 2016;
Sarker et al., 2018), clinical evidence (Lyu et al.,
2023), scientific literature (Moller et al., 2020) and
doctor-patient dialogues (Ben Abacha and Demner-
Fushman, 2019; Toyhom, 2019; DataTager, 2024)
within open-source projects. We also identified sev-
eral publicly accessible Chinese terminology base
“Chinese Common Clinical Medical Terminology
2023 Edition” (CUCMTerm2023) and the first part
of Chinese Pharmacopoeia (ChP-1)! from the web-
site, which we stored locally after performing OCR
and post-processing. In addition, we obtained some
desensitized patient cases from open-source forums
iiyi>, and medical tables coming from an open-

"https://ydz.chp.org.cn/#/main
https://bingli.iiyi.com/
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Model \ Language Max Length  Hidden Size Instruction Publish Time
text-embedding-ada-002 (OpenAl, 2022) multi-lingual 8,192 1,536 X 2022.12
text-embedding-3-large (OpenAl, 2024b) multi-lingual 8,192 3,072 X 2024.01
gte-large-zh (Li et al., 2023) zh 512 1,024 X 2023.12
gte-large (Li et al., 2023) en 512 1,024 X 2023.12
Instructor-x1 (Su et al., 2023) en 512 1,024 v 2023.01
bge-large-en-v1.5 (Xiao et al., 2023) en 512 1,024 v 2023.12
bge-large-zh-v1.5 (Xiao et al., 2023) zh 512 1,024 v 2023.12
bge-m3 (Chen et al., 2024) multi-lingual 8,196 1,024 X 2024.01
m3e-base (Wang Yuxin, 2023) multi-lingual 512 768 X 2023.06
m3e-large (Wang Yuxin, 2023) zh 512 1,024 X 2023.06
e5-mistral-7b-instruct (Wang et al., 2023) en 32,768 4,096 [%4 2023.12
multilingual-e5-large-instruct (Wang et al., 2024) multi-lingual 512 1,024 v 2024.02
gte-Qwen2-1.5B-instruct (Li et al., 2023) multi-lingual 32,768 1,536 v 2024.06
gte-Qwen2-7B-instruct (Li et al., 2023) multi-lingual 32,768 1,536 v 2024.06
bge-multilingual-gemma2 (Chen et al., 2024) multi-lingual 8,192 3,584 v 2024.07
bert-base-uncased (Devlin, 2018) en 512 768 X 2019.01
biobert-base-cased-v1.2! (Lee et al., 2020) en 512 768 X 2021.01
bert-base-chinese (Devlin, 2018) zh 512 768 X 2021.01
medbert-base-wwm-chinese® (Yang et al., 2021) zh 512 768 X 2021.05
bert-base-multilingual-uncased (Devlin et al., 2018) | multi-lingual 512 768 X 2019.01

Table 2: Descriptions of the advanced embedding models and pre-trained language models (PLMs) used in training
the baselines, detailing the language support, maximum length, hidden size, instruction support (analysed from the
official example), and publish time. § denotes those biomedical PLMs.
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Figure 2: The radar charts illustrating the performance of different language-support types of embedding models on
the MedEureka datasets (a): Performence of English embedding models. (b): Performance of Chinese embedding
models. (¢): Performance of multi-lingual embedding models.

source medical website MSD?, via web crawler
techniques.

3.2 Tasks in MedEureka

MedEureka focuses on evaluating retrieval capabil-
ities in the medical domain, particularly for embed-
ding models. Our main task is identifying the most
relevant content to a query from a target base. This
involves testing their ability to generate effective
vector representations. Additionally, for embed-
ding models that support instructions, we use the
dataset’s granularity and data type to prompt for
better vector representations, the specific instruc-
tion prompts are shown in Appendix C.

Formally, the main task of the evaluation is:
Given a query () (with/without prompt) and a tar-

3https ://www.msdmanuals.cn/professional/
pages-with-widgets/tables?mode=1list

get T', the embedding model E generates the cor-
responding vector representations Vg and V7. By
calculating the semantic distance between them,
the top-K candidate information C' with a higher
score is retrieved, where K is a hyper-parameter to
determine the number of recalls.

In the medical domain, common retrieval appli-
cations such as Knowledge-Base Question Answer-
ing (KBQA) systems, Table Question Answering
(TQA) systems, Literature Question Answering
systems, and medical dialogue systems (Ragha-
van et al., 2021; Luo et al., 2022; Pal et al., 2022;
Xu et al., 2019) typically use the RAG method to
retrieve relevant medical sources like Knowledge
Bases, Tables, Literature, queries, and dialogues.
Clinical data analysis (Xu et al., 2024), Clinical
Decision Support Systems (CDSS) (Papadopoulos
et al., 2022), and Diagnosis-Related Group (DRG)
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systems (Wang et al., 2020) often involve search-
ing relational databases and standard terminology
bases. From these practical scenarios, we abstract
some seed retrieval tasks. As shown in Table 1,
across the involved tasks, we consider six medical
data types: Table, Literature, KB, Term, EHR,
and Dialogue; four levels of granularity: Phrase,
Sentence, Paragraph, and Document, as well as a
special case involving SQL. The SQL-related task
is designed to investigate the semantic similarity
between SQL queries and natural language texts
within the vector space of the embedding model. In
this statistic table, the special mark * denotes the
granularity of the query, and * denotes the granu-
larity of the target.

3.3 Construction and Annotation

As shown in Figure 1, using this collected corpus,
we defined a total of 18 task datasets that involve re-
trieval between medical texts of varying granularity
and types.

Table. For the tables in Markdown format ob-
tained from MSD*, we used an LLM to automati-
cally generate questions based on the table content,
followed by manual corrections. To offer a more
intuitive demonstration of the automatic query gen-
eration process using LLMs, we provide a specific
prompt example for the Table task. This example
is presented in Figure C11 in the Appendix. We ob-
tained both English and Chinese versions of these
table sources. Using these questions as queries
and the corresponding entire table as the target, we
created Table I and Table II.

Literature. In RJUA-QA (Lyu et al., 2023), we
identified several clinical references meticulously
sourced from professional literature, guidelines,
major textbooks, authoritative publications from
PubMed, and the extensive clinical experience of
seasoned practitioners with over a decade of ex-
pertise. Additionally, the dataset includes numer-
ous virtual patient questions related to medical spe-
cialty diagnosis and examination advice. We used
these questions as queries and expert-annotated
references as retrieval targets, resulting in the cre-
ation of dataset Literature.l. In COVID-QA, we
use questions as queries and corresponding context
from the “paragraphs” field as the target, resulting
in dataset Literature.Il

KB. Using the Chinese Medicine Pharma-
copoeia (ChP-1) obtained, we transformed it into
a structured knowledge base containing 1,493
drug documents, each covering about ten drug at-

tribute fields, through OCR techniques and post-
processing. We then generated questions about
drug attributes using a combination of automatic
questioning by an LLM and manual review. These
questions were used as queries, and we set two lev-
els of targets: attribute level and document level,
resulting in datasets KB.I and KB.IIL.

Term. In this part, we employ a terminology nor-
malization task to find the corresponding standard
term for a medical phrase from a large standard ter-
minology database. The medical phrase serves as
the query, and the standard terminology database as
the target. For the Chinese, we have independently
constructed a dataset Term.I for terminology nor-
malization based on the synonyms and previously
utilized phrases in CUCMTerm2023 corpus, which
includes the same 4 term categories present in our
established standard terminology database. More-
over, we extracted the Chinese-English transla-
tion pairs from the CUCMTerm2023 and con-
structed the cross-lingual dataset Term.II. For
English terms, we adopt three reputable datasets
AskAPatient, SMM4H-17, and TwADR-L and get
Term.III, Term.IV and Term.V.

EHR. Based on typical patient cases from iiyi,
we extracted and structured the EHR-related sec-
tions, which include fields such as the patient’s
chief complaint, symptoms, imaging study results,
and findings from a complete checkup. We also use
LLMs with human verification to generate queries
based on the contents of one or two EHR fields.
These queries’ target includes the granularity of
specific fields and the entire EHR. Specifically, we
included an interesting pseudo-SQL code experi-
ment in this section since hospital doctors often
look up medical records by writing SQL queries.
Thus, a total of four datasets EHR.I, EHR.II,
EHRL.III, and EHR.IV were obtained for this part.

Dialogue. Patient-dialogue datasets are com-
mon in open-source projects, and in this study,
we consider three cases: the patient questions
standardization dataset (Qnorm®), the patient
questions summary dataset (MeQSum?), and the
doctor-patient dialogues dataset (Chinese-medical-
dialogue®). We extracted some corresponding
queries and targets from them and then obtained the
dataset Dialogue.I, Dialogue.Il and Dialogue.IIl.

4https://huggingface.co/datasets/PandaVT/
datatager_standard_med_question

5https://github.com/abachaa/MeQSum

6https://github.com/Toyhom/
Chinese-medical-dialogue-data
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Model Table Literature KB Term EHR Dialogue
I il 1 I I I I il I v \% I I it v I it
Advanced instruction-fine-tuned Embedding Models (without instruction)
MRR@10
bm25* 69.45 6401 | 2676 62.22 | 26.11 81.88 | 39.88 3598 15.67 1473 | 7635 69.28 7.05 7342 | 70.09 66.17 5490
gte-large-zh 68.26 - 47.90 - 53.62 84.16 | 51.54 - - - 52.15 5054 778  51.86 | 87.03 - 84.15
gte-large - 87.80 - 5297 - - - - 67.81 46.67 39.79 - - - - - 90.15 -
m3e-base 70.45 80.05 | 36.66 39.48 | 54.59 7748 | 50.12 7.84 5549 25.61 27.17 | 6297 4326 33.60 42.18 | 95.15 81.50  78.54
m3e-large 68.32 - 36.85 - 53.84 68.63 | 48.52 - - - 83.64 4240 4346 37.54 | 93.95 - 71.60
bge-m3 70.17 8580 | 48.90 5248 | 46.35 82.88 | 50.58 37.80 5821 32.62 30.58 | 84.03 5260 4593 5030 | 98.07 87.94 76.52
bge-m3 (sparse) 7093 7786 | 37.75 6558 | 4801 8273 | 47.67 1.64 31.94 1142 11.55 | 82.13 60.88 6553 6047 | 82.57 79.79 67.37
text-embedding-ada-002 69.07 88.13 | 44.09 5348 | 2992 8230 | 47.74 37.88 66.12 4148 3842 | 7424 5028 38.74 40.57 | 96.85  90.66  63.90
text-embedding-3-large 6474 8895 37.86 51.25 | 51.89 77.01 | 5027 65.77 70.65 50.83 42.51 | 77.51 4922 36.84 37.00 | 9849  91.68 67.52
Exact HR@10
bm25* 7753 7955 | 0.83 81.60 | 19.51 8521 | 48.36 48.10 20.10 2227 | 8558 7632 9.04 84.88 | 83.75 83.00 64.17
gte-large-zh 71.87 - 19.17 - 6585 9771 | 57.81 - - - 70.32 5947 1241 65.37 | 95.00 - 94.67
gte-large - 97.03 - 69.63 - - - - 87.62 6893 62.15 - - - - - 99.00 -
m3e-base 7872 9257 | 833 56.13 | 59.76 86.43 | 57.32 1230 71.24 3400 3947 | 7795 5281 4238 5732 | 99.38  95.00 91.17
m3e-large 71.53 - 10.83 - 42.38 87.65 | 55.82 - - - - 9390 5175 51.77 5244 | 99.06 - 89.67
bge-m3 77770 96.65 | 1333  70.86 | 69.51 89.48 | 57.01 53.69 7447 4456 4858 | 91.96 6228 5390 64.15 | 100.00 97.50  90.17
bge-m3 (sparse)’ 7922 89.96 | 6.67 8558 | 4695 8521 | 5443 201 4544 1566 17.21 | 90.98 71.40 7553 76.59 | 92.50  89.50  80.00
text-embedding-ada-002 96.11 97.02 | 333 7147 | 2774 8490 | 90.74 56.97 87.28 69.17 62.44 | 8779 5859 49.46 5634 | 9843  99.50  79.00
text-embedding-3-large 9375 97.02 9.16 7515 | 5640 88.10 | 92.73 8518 9245 7529 68.21 | 89.87 60.00 50.17 55.12 | 100.00 100.00 81.16
Advanced instruction-fine-tuned Embedding Models (with instruction)
MRR@10
Instructor-x1 82.06 36.28 6429 2502 2545 82.41
bge-large-en-v1.5 - 85.90 - 43.04 - - - 2695 730 1044 - - - - - 81.09 -
bge-large-zh-v1.5 68.72 - 46.27 - 62.76 8220 | 49.80 - - - 83.68 4850 3694 4692 | 95.12 - 80.55
e5-mistral-7b-instruct - 85.84 - 52.64 - - - - 66.35 4738 3852 - - - - - 94.23 -
multilingual-e5-large-instruct | 70.94 8545 | 46.25 46.46 | 63.47 81.33 | 49.01 49.03 6529 37.96 34.27 | 7832 52.02 4424 4951 | 9524 9282 7529
gte-Qwen2-1.5B-instruct 7222 89.06 | 4831 5572 | 6337 8397 | 46.01 5522 6223 3656 33.04 | 81.63 61.83 4730 5891 | 94.86 9236 79.39
gte-Qwen2-7B-instruct 70.61 87.54 | 5043 57.05 | 5541 6820 | 51.87 7531 5444 2624 27.04 | 8419 6496 5938 59.56 | 99.17 9345 87.69
bge-multilingual-gemma2 7439 89.98 5833 4739 | 70.53 7825 | 52.39 8047 73.03 53.77 46.11 | 89.74 65.61 62.13 60.05 | 9945 9326 79.75
Exact HR@10
Instructor-x1 94.05 59.20 85.13 43.10 45.14 91.50
bge-large-en-v1.5 - 96.65 - 58.90 - - - 50.04 1482 23.58 - - - - - 91.00 -
bge-large-zh-v1.5 78.89 - 20.83 - 65.55 89.18 | 56.42 - - - 90.98 5526 4823 66.59 | 99.06 - 91.17
e5-mistral-7b-instruct - 95.91 - 73.62 - - - - 88.37 70.18 61.34 - - - - - 100.00 -
multilingual-e5-large-instruct | 77.87  94.05 | 10.00 65.34 | 70.73 88.87 | 5622 69.99 8552 60.97 5445 | 89.60 6140 5496 62.68 | 99.06  99.50  89.33
gte-Qwen2-1.5B-instruct 80.74 96.65 | 1583 73.62 | 42.68 96.19 | 55.82 80.05 8540 61.73 54.66 | 91.26 69.65 58.69 7220 | 99.06  98.00 91.00
gte-Qwen2-7B-instruct 79.39 97.03 | 1583 73.93 | 4695 9421 | 59.31 9270 8538 46.73 52.73 | 90.98 71.05 67.02 74.39 | 100.00 100.00 95.67
bge-multilingual-gemma2 80.07 97.77 2417 6933 | 6280 98.02 | 59.00 9475 92.94 79.65 7146 | 96.53 71.75 68.97 73.17 | 100.00 100.00 92.33

Table 3: Comparison of advanced embedding model performance on MRR @ 10 and Exact HR @ 10 using cosine
similarity as the distance metric. { indicates sparse retrieval, while all others are dense retrieval.

We used different construction methods for each of
the three sources of data and the specific construc-
tion details are shown in Appendix B.

Specifically, for the human-machine collabora-
tive portion of the dataset construction process, we
use GPT-40 (OpenAl, 2024a) as the auxiliary LLM,
and we implemented a dual annotation strategy,
where two annotators independently reviewed and
validated the data. For datasets where the data
source already contains a clear mapping between
query and target, such as the Term task, we do not
manually correct the content of each sample, but
only perform data cleaning and processing of the
format. For datasets with a predefined query-target
mapping, such as the Term task, we did not man-
ually modify individual samples but focused on
data cleaning and format processing. In contrast,
for datasets involving query generation and auto-
matic annotation using LLMs, such as the Table
task, we performed manual corrections. First, we
consulted a medical expert to define key validation
criteria, emphasizing medically relevant terms and
factual accuracy (e.g., numerical values). Then,
a PhD student and a Master’s student specializ-

ing in medical NLP independently reviewed the
data. Identified risks and discrepancies were sub-
sequently discussed and corrected, resulting in a
refined dataset. Approximately 10% of the data
required modification. This approach ensured a
high level of accuracy and reliability in the dataset.
We show sample data for each task in the Appendix
Figure C2 to Figure C10.

3.4 Data Statistic

We present the dataset statistics in Table 1, describ-
ing the data type of the dataset, the corresponding
ID (Roman numerals), the source, the language,
the annotation method, the granularity of the query
and target, the number of samples and the average
length of the query and target.

3.5 Evaluation Metrics

For all retrieval tasks, we first selected Mean Re-
ciprocal Rank (MRR) as the evaluation metric. De-
noted as MRR @n, where n represents the number
of top-retrieved items considered, MRR measures
the average reciprocal rank of the first relevant item
for each query. Higher MRR values indicate bet-
ter ranking quality, meaning relevant items appear
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0.00

0.00
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74.17
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69.00
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5.00
1.25
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98.12
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59.27
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70.00
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45.21
87.23
88.48
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99.72
93.96
99.31
91.95
99.60
99.46

30.74
2527
55.92
51.74
57.21
5294
57.01
57.61

1.75
0.00
90.18
46.84
88.77
48.42
88.95
89.82

8.90
77.30
40.49
76.38

1.12
91.08
69.89
91.82

0.00
75.83
0.00
75.83

0.00
98.78
14.94
99.09

0.46
100.00
71.29
100.00

bert-base-multilingual-uncased™
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eureka-sbert-bert-base-multilingual-uncased

20.30
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94.06
7.36
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24.38
57.11
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8.04
84.76
38.10
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7.69
100.00
32.59
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1.66
99.58
95.84
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1.05
88.77
48.95
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88.48
46.10
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21.22
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95.00
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Table 4: Comparison of training baseline models performance on Exact HR@ 10 using cosine similarity as the

T3]

distance metric. “x

closer to the top. While MRR emphasizes ranking
importance, it can be lenient for tasks requiring
the retrieval of multiple relevant items. To address
this, we also introduced Exact Hit Rate, denoted
as Exact HR @n, which measures the proportion of
queries where all relevant items are ranked within
the top n results.
Mathematically, MRR @n is defined as:

1 1
MRR@n = — _ 1
n Q| qzec:? rank, 0

where () represents the set of queries, and rank, is
the rank position of the first relevant item retrieved
for query q.

Exact HR@n is defined as:

1
Exact HR@n = —
Q)

> Ige)

qeQ,ceC

2

where C' represents the candidates retrieved by
queries (), and I is an indicator function that re-
turns 1 if all relevant items are included in ¢ for
query ¢, and 0 otherwise.

4 Experiments

4.1 Baseline Models

We selected the traditional information retrieval
method BM?25, along with recent state-of-the-art
embedding models and 8 advanced instruction-fine-
tuned embedding models as baselines. Meanwhile,
we chose two mainstream training methods, Sim-
CSE (Gao et al., 2021) and SBERT (Reimers and
Gurevych, 2019), to train BERT-base PLMs on
MedEureka as training baselines. The basic infor-
mation for these models is shown in Table 2.

indicates direct retrieval with frozen base PLMs

4.2 Implementation Details

We use cosine similarity to measure distances be-
tween embedding vectors, incorporating prompts
from Section 3.2 for models that support them.
FAISS (Johnson et al., 2019) is employed for accel-
erated computation. Text exceeding model length
limits is truncated accordingly. The specific LLM
used in the data construction process is gpt-4o-
2024-08-06. For training baseline models, we fol-
low the original method’s parameters, with a batch
size of 64 per device, training for ten epochs on
four H800 GPUs. Optimal checkpoints are selected
based on validation performance, and the pooled
CLS token of the PLMs is used as sentence rep-
resentation. In particular, for supervised training,
we distill negative samples with the powerful bge-
multilingual-gemma2, which finds up to five nega-
tive samples for each query by setting a threshold.

4.3 Results and Analysis
4.3.1 Overall Results and Analysis.

We evaluated the overall experimental results
regarding the performance of different models
on various tasks. Figure 2 shows the overall
performance of embedding models using radar
charts. The results for “MRR@10” and “Ex-
act HR@10” with cosine similarity are presented
in Table 3. Additionally, we use line charts to
depict the trends for all “Exact HR@n” results
in Appendix Figure C13 and Figure C14, where
n € {5, 10, 20, 50, 100, 200, 500}.

It is evident that different models exhibit vary-
ing levels of performance. Some models show
clear proficiency in certain tasks, making them
well-suited to handle those tasks effectively. As
expected, model accuracy significantly improves as
the number of recalls increases. Both OpenAl’s em-
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Figure 3: Performance comparison on six granularities across eight models: (a) m3e-base, (b) bge-m3, (c)
multilingual-e5-large-instruct, (d) gte-Qwen2-7B-instruct, (e) bge-multilingual-gemma2, (f) text-embedding-3-
large, (g) eureka-sup-simcse-bert-base-multilingual-uncased, (h) eureka-sbert-bert-base-multilingual-uncased.

bedding and the bge-multilingual-gemma2 models
demonstrate strong performance and robust multi-
lingual capabilities. However, there is no “hexago-
nal warrior” that is competent in every aspect.

Analyzed in terms of model size, hidden vector
dimension, and supported context length, generally,
larger models and higher vector dimensions yield
better results, with LLM-based embedding models
showing particular superiority. However, this im-
provement has limitations, such as the gte model ex-
hibits fluctuations on certain tasks. Notably, longer
context lengths tend to provide more complete se-
mantics, which can enhance performance.

Table 4 shows the performance of training base-
lines. Intuitively, trained methods, particularly su-
pervised training, show significant improvement
across multiple tasks, such as Term, Literature, and
EHR. An interesting phenomenon is that differ-
ent training methods align with different dominant
tasks and tend to exhibit bias, risking local optima
when training on existing PLMs. In contrast, ad-
vanced embedding models, trained on large-scale
data, demonstrate better generalization. Addition-
ally, training based on PLMs in the medical field
yields superior performance.

From the perspective of different metrics, we
observe that almost all models perform worse on
MRR @10 compared to HR@10 across all tasks.
This reflects the influence of MRR, which penalizes
models based on the ranking position of correctly
recalled candidates. While the models can find the
correct answers within a certain range, the lower
MRR suggests that the models struggle with more
suitable ranking. This highlights the importance of

re-ranking to address this issue.

4.3.2 Analysis by Data Type.

To provide a more intuitive analysis of the model’s
performance across different types of medical texts,
we used radar charts in Figure 2 to illustrate capabil-
ities by data type, distinguishing between Chinese,
English, and multilingual models.

With the accumulation of high-quality training
corpora in the era of large models, advanced em-
bedding models have achieved strong performance
on many retrieval tasks. Specifically, models excel
in Table and Dialogue data, though performance in
Literature, EHR, and Terminology still has room
for improvement. This observation underscores
that while large volumes of medical knowledge-
based data have been leveraged to train state-of-
the-art models, challenges persist for datasets that
mirror real-world medical scenarios. In areas such
as terminology normalization, medical literature
QA, and electronic health record retrieval, the se-
mantic alignment between queries and targets re-
mains incomplete.

4.3.3 Analysis by Text Granularity.

From the perspective of granularity, as shown in
Figure 3, retrieval performance tends to improve
when the query and target share the same granular-
ity. However, when the granularity is too fine, such
as with phrases, performance may degrade due
to the limited semantic information. Fine-grained
retrieval is also more challenging. For instance,
retrieving a paragraph with a sentence is more dif-
ficult than retrieving a document. Additionally,
for SQL statements, direct alignment with natural
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language is challenging without specific training.

4.3.4 Error Analysis

We conducted error analyses on bge-multilingual-
gemma?2, which exhibits strong performance across
a wide range of retrieval tasks. We randomly se-
lected 200 error cases, which evenly covered all 18
tasks on average. The errors were categorized into
three types: fine-grained errors, semantic ambigu-
ity, and lack of professional knowledge. Figure C1
presents the distribution of these error cases using
a bar chart, where an error case may belong to mul-
tiple categories due to the overlapping nature of
some error types. Additionally, we provide specific
error examples in Appendix Section A for further
illustration.

The results indicate that most errors stem from
challenges in fine-grained retrieval, particularly in
accurately capturing key numerical details and spe-
cific symptoms, where subtle distinctions are often
overlooked. The model also struggles with seman-
tic ambiguity, especially in long texts, and demon-
strates limitations in domain-specific knowledge,
particularly when multiple specialized concepts or
technical terms are intertwined.

5 Ethical Considerations

This paper proposes a new medical-domain re-
trieval evaluation benchmark MedEureka for Em-
bedding Models. All of the datasets in MedEureka
adhere to ethical guidelines and respect copyright
laws. The entire data collection process is free of
copyright issues and privacy issues, and there are
three types of data sources, including license ap-
plications, the open source community, and public
file cleaning and organizing. Meanwhile, the man-
ual participation part in the dataset construction
process was all done by the authors of this paper
without any ethical issues.

6 Conclusion

We have taken a significant step forward by devel-
oping MedEureka, a multi-granularity and multi-
data-type evaluation benchmark designed to ad-
vance the study of embedding models in informa-
tion retrieval scenarios. MedEureka encompasses
six distinct medical data types: Table, Literature,
Knowledge Base (KB), Terminology, Electronic
Health Records (EHR), and Dialogue. It also in-
cludes four different text granularities, including
Phrase, Sentence, Paragraph, and Document as

well as a special SQL form, resulting in a total
of eighteen datasets. These datasets provide a
comprehensive resource for evaluating embedding
models within the medical domain. We assessed
fifteen state-of-the-art embedding models, trained
two types of baseline models, and provided per-
formance results and analyses across various for-
mats. Furthermore, we examined the impact of
different data types and granularities on retrieval
performance.

Limitations

Evaluating medical retrieval tasks is challenging,
primarily due to limited access to specialized re-
sources, necessitating reliance on open-source data.
Access to private data, like complete EHRs and
cutting-edge studies, remains difficult. Addition-
ally, balancing the benchmark is challenging, as
some datasets, such as English EHRs and pro-
fessional knowledge bases, are unbalanced. Be-
sides, we have only constructed a cross-language
dataset consisting of Chinese and English retrievals.
There is still an opportunity to expand the dataset
by adding more languages, which would provide
a more comprehensive evaluation of the multilin-
gual capabilities of embedding models. Moreover,
MedEureka focuses on evaluating whether embed-
dings retrieve relevant content, using two classical
metrics: MRR and Exact HR. However, it does
not assess the relevance ranking of the retrieved
content, as there is no labeling of the order of rele-
vant documents, which is challenging to implement.
Consequently, metrics like nDCG cannot be used.
These limitations highlight areas for future research
and improvement.
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A Cases of Three Classical Error Types

Fine-grained error: This occurs when the em-
bedding vectors fail to sufficiently distinguish key
information during retrieval. For example, in re-
sponse to the query “What are the abnormalities of
the gastrointestinal, genitourinary, and neurologi-
cal systems that are manifested during the physical
examination of a pregnant woman who is vomiting?
How do these manifestations help diagnose the un-
derlying etiology?”, the most relevant erroneously
retrieved document correctly identified pregnancy
and symptoms such as vomiting but mistakenly pro-
vided information related to early-stage pregnancy
instead of addressing the requested abnormalities.

Semantic ambiguity: This type of error arises
when the embedding vector captures only partial
semantics while overlooking the overall meaning
of the query. For instance, for the query “What
characterises the epidemiological distribution of
rabies, Powassan encephalitis and West Nile virus
encephalitis globally? Please describe in detail
the main endemic regions for each condition.”,
the most relevant retrieved tables incorrectly fo-
cused only on encephalitis and its endemic regions
but failed to account for the specific diseases men-
tioned, leading to the retrieval of information about
“some arboviral encephalitis” rather than the tar-
geted conditions.

Lack of professional knowledge: This occurs
when the embedding model struggles to encode
specialized medical terminology, leading to the re-
trieval of content unrelated to the medical terms in
the query. For example, in response to the query
“What are the results of anti-HAV IgM and anti-
HAV IgG antibodies in serological testing for acute
hepatitis A? How do these results help confirm the
diagnosis of acute infection?”, the most relevant
erroneously retrieved document contained no in-
formation about acute hepatitis A or the specified
antibodies. Instead, it retrieved content related to
hepatitis B and its corresponding antibodies.

B The specific construction details for
Dialogue Task

For MeQSum, we only partitioned the dataset with-
out applying any additional processing, resulting
in a total of 1,000 test samples.

For Chinese-Medical-Dialogue, we first ana-
lyzed the dataset and identified data from six medi-
cal departments. We then clustered the data within
each department based on query embedding vectors
using the bge-m3 model. The number of clusters
obtained for each department is shown in Table B1:

Department Clusters
Andriatria 18,298
Internal Medicine (IM) 51,826
Obstetrics and Gynecology (OAGD) 48,204
Oncology 21,360
Pediatrics 29,044
Surgery 34,434

Table B1: Cluster statistics for each medical department.

To ensure a more balanced data distribution, we
randomly selected one sample from each cluster
after clustering and then randomly sampled 500
instances per department, yielding a final test set
of 3,000 samples.

For Qnorm, due to the high similarity among
QA pairs, we applied a filtering process based on
relative edit distance, setting a threshold of 0.85
to extract 1,599 challenging test samples.
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C Supplementary materials for dataset
and experiment

Figure C1 presents the distribution of these error
cases

Figure C2 to Figure C10 presents the sample
data each task.

Figure C11 illustrates the specific prompt used
for automatic query generation, taking the Table
task as an example.

Figure C12 illustrates the specific query prompts
used for each task.

Figure C14 presents the performance and trend
of embedding models on the Chinese task, de-
picted as a line chart from Exact HR@5 to Ex-
act HR@500. The Exact HR @num represents the
exact hit rate with num indicating the number of
candidates. Similarly, the performance of embed-
ding models on the English and cross-lingual tasks
is illustrated in Figure C13.

120

©  Fine-grained Errors
+  Semantic Ambiguity
Lack of Professional Knowledge

=
® =)
3 3

Error Count
Y
3

40

Error Type

Figure C1: Distribution of these error cases on bge-
multilingual-gemma?2.
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Model Table Literature KB Term EHR Dialogue
I s 1 I I )i I i it v v I )i it v I s it
bert-base-uncased” - 0.70 - 3.82 - - - - 1452 681 6.26 - - - - - 0.94 -
biobert-base-cased-v1.2* - 0.36 - 4.10 - - - - 16.13 833 6.70 - - - - = 0.88 -
eureka-sup-simese-bert-base-uncased - 67.69 - 54.18 - - - - 98.55 7484 85.56 - - - - - 68.28 -
eurek p-simcse-bert-b: d - 6.20 - 8.97 - - - - 2659 11.57 1027 - - - - - 13.42 -
eureka-sup-simese-biobert-base-cased-v1.2 - 75.34 - 60.75 - - - - 98.45 7411 8537 - - - - - 73.83 -
eureka p-simese-biobert-base-cased-v1.2 - 3531 - 16.82 - - - - 4557 18.83 18.99 - - - - - 39.98 -
eureka-sbert-bert-base-uncased - 78.45 - 59.57 - - - - 96.70 77.42 8290 - - - - - 77.94 -
eureka-sbert-biobert-base-cased-v1.2 - 84.52 - 65.33 - - - - 95.12 7535 7737 - - - - - 81.25 -
bert-base-chinese™ 1.56 - 11.27 - 0.19 0.60 | 23.11 - - - - 1.62 1.08 009 0.1 2.60 - 28.03
medbert-base-wwm-chinese” 0.92 - 372 - 0.15 0.33 19.08 - - - - 0.20 0.06 0.02 0.43 0.27 - 19.62
eureka-sup-simcse-bert-base-chinese 63.29 - 83.80 - 9237  99.85 | 47.98 - - - - 94.89 85.65 83.58 4583 | 89.82 - 90.48
eureka-unsup-simcse-bert-base-chinese 37.32 - 12.18 - 20.13 4631 | 4278 - - - - 83.78 40.04 3530 11.83 | 66.41 - 59.45
eureka-sup-simese-medbert-base-wwm-chinese 64.28 - 79.41 - 93.88  99.77 | 50.03 - - - - 94.77 8473 80.69 44.60 | 80.32 - 86.61
eureka-unsup-simese-medbert-base-wwm-chinese 3491 - 20.86 - 17.60  28.81 44.41 - - - - 81.81 40.15 3770 14.19 | 64.00 - 57.67
eureka-sbert-bert-base-chinese 6791 - 80.87 - 95.74 9977  49.26 - - - - 9492 8556 81.02 5580 9245 - 90.17
eureka-sbert-medbert-base-wwm-chinese 69.61 - 85.62 - | 9495 9977 | 50.69 - - - - 9520 8582 8279 5424 | 92.02 - 87.45
bert-base-multilingual-uncased™ 0.52 0.76 3.08 5.90 ‘ 0.04 0.47 ‘ 18.06  0.48 16.17  7.10 6.35 0.83 0.88 043 0.15 ‘ 0.16 .12 2024
ka-sup-si bert-b: Itili ! d | 6320 80.64 | 82.01 59.78 9542 100.00 4942 8344 9855 7509 8634 | 9500 85.62 8321 4680 8585 76.13 89.73
eureka-unsup-simcse-bert-bas 1tili l-uncased | 4871 51.90 | 24.97 23.10 | 20.83  66.66 | 4554 426 5149 20.78 2287 | 86.98 41.89 38.04 12.14 | 7028 57.81 56.48
eureka-sbert-bert-base-multilingual-uncased 64.18 83.58 | 83.58 57.70 | 9446  99.77 | 49.71 80.90 96.23 74.60 79.67 | 95.05 82.50 79.13 4741 | 87.55 7642 89.04

Table C1: Comparison of training baseline models performance on MRR @ 10 using cosine similarity as the distance
metric. “+” indicates direct retrieval with frozen base PLMs

2839



Table I

Query: FEIT A HERENFN IS At 15 A Sk N AL K 4IRS S 51 AE0 4 571 5207 T A7 ) A
W) ? T AR B A AR BRIV B AR 46 7 B o

Target:

) SEAE MR
gy 25T SISTIIMIEAL, SKMR, SRALR0IER 6 M AES
Sy pim orsomg 5 ETBIIRONGBERE, SXFR, ATATRELIHIERL 6-1
! ' ;205‘5;’; %1 01%MOISREGER, SIBIE, SR2R, UETBI2ME, SRR >
o 125 015%HTER, STBILI-20E, SK2R
BB 5.2mg 265 SNBIL1E, SRINAR
B 66533 6~1%: SNBI1E, SR2R=125: SPBIL 2, K2R

* BERTAREREZIREFRN
PEARRRAR E AR ABRRES o

+EEREEIT/RE R 137
mcg/50 meg) MAS. IEHIEN
/B, BRMAR.

Table 11

Query: During cardiopulmonary resuscitation (CPR) for children of different ages, the
compression techniques for newborns, 1-year-olds, and 8-year-olds vary. For newborns, it is
recommended to use thumb compressions with hands encircling the chest, or two-finger
compressions; for 1-year-olds, single-hand compressions are advised; and for 8-year-olds, two-
hand compressions are recommended. Please explain in detail the specific implementation
methods of these different compression techniques and the reasons for their applicability at
different ages.

Target:

Age (yr) Term neonate <12mo 1 2 3 4 5 6 7 8 9 10 M 12 13 14 15 16
Weight, typical (kg) a5 <10 10 12 i3 16 18 20 22 25 28 30 35 40 45 50 55 60

Thumb compression,
Compression techniques hands around chest 1 hand 2hands
(preferred) or 2 fingers

Airway size (Portex) in cm 000 00 00 0 o 7 7 7 7 7 7 7 7 7 8 8 8 8
35 5 5 6 6
Dome.
Rendell- Rendell-
Domecuff cuff
Masks in Laerdal sizes or equivalent Circular 0/1 Baker type  Baker type #
- o mask #3 mask #

Child 400~ Adult 1600
Ventilation bag with reservair for 100% 02 delivery Infant 240 mL

500 mL mL
Laryngoscope blade size Miller 0 Straight blade { 1 1 2 2 2 2 2 2 2 3 8 3 8 8 3 3
Curved or
Straight blade (preferred) ¥
straight
or curved blade
blade
ETT size (Portex) in mm g 35 4 45 45 5 5 55 55 6 6 6 6 65 65 65 65 7
Uncuffed Uncuffed Cuffed
Pediatric
Direct oropharyngeal Adult tonsil
Suction catheter 10F tonsil
Through ETT suctionl0 Fr
suction8 Fr

ETT =endotracheal tube; Fr = French.

Courtesy of Dr. B. Paes and Dr. M. Sullivan, the Departments
of Pediatrics and Medicine, St. Joseph's Hospital, The
Children's Hospital, Hamilton Health Sciences Corporation,
McMaster University, Hamilton, Ontario, Canada

Figure C2: Sample data for the Table Task.
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Literature I

Query: (8 : AR, FRE—A0SHBIERE . FapR B T —LHR R 77 1 5
A, AAEREATVEHE R WA R R SRS 0L . BB HERENRFEFE B2, RIFAE
. PRAS, BRoY X T EAR ) 5 BHR R3-S0 L IIfT e IX SR R P T B — Bt il 1
FARIE A 2109775 87T LAHE B FRE X LERER NG > s o

Target:

LABVERTF IR R B E AR, W 3~6 A KDL ko TR 5 TIDRY i 471 Ji 5% 1) e PR R 2
LHBA ZHMEAERTE R — BE AR B, DRAFBE Z LR, FEE
IR CLRREAR o PIR 12 M T B R AR e E MG R R I . B WA £ B IX PRI A
G (63%), PEIRIAF] W S AL(58%) . HibE [X.(42%) B B ZE (32%); [ 35 ] M BUJRIE . AL
JE s HEIGE . ERRER A T ERA R . SHERAEIRAH LG, SRR BRON R A 0 o
A W B 4S5, Y AR ) T TR B AT 6 L P P SR LA R B R B K, YRR A AR
THZAM, BERBERAEEEN) 2, HAha OB R R AT R B 2N
B SR B RS JE R A (45% )t i 8 1 i A R AR B A R et I R R
Wo 2T F RSB 55— A BB R R IR i PRI R HE R AR AR, B8 R IR
B, WIRWZ . HIRSERE. HER Wi, Bhah, 2962% A8 Tk wi 51 iR & BB AL A PETh
RERRRS, 409 H)REE AT B0 Lttt O BE 5 P Dh RE i 8 TR 5%

2. IARRITIRY . ZEgnim s s, JUHR S E T UMRE KGR, A a(EiEE
PR ), R VRN I 0 MR 4 B AR RS A o 4 I FH NTHAS 4 157 51 R R i bR T 4
(NIHchronicprostatitissymptomindex, NIH-CPSI, i fff 5% 15-2)3F 47 5iE 4R ¥E 43 -« #E
AR B DU AR L (LB 3R 15-3) 317998 IR Ak 8 AR (R 15-1) 0 h RIS W F 6 28
BLREIR R 90 BEA T 45501 o

3. AR R BRI ZE A IRYT . 1AL HEde DL IREUETUAE RI69T b, TR
4~0 , FEBUIRYT 2 5 X RS TR BT SO . BT BT RO RS, T
BN HABBURUE R . A T R RO IR Y J8 R RS 6 2 AR B ) A4
il FUFTMBZ A REL i 1 45 0 etk o TIIATY W56 D IRBLAR F2~4)H . RS2 B4k sl
A FIRIT IR TR HBIT RS . 456 F o2 R R A I R S i
SRAFLIF 250 () MAZ A BELI 77 46 B HE PRAER AN P IE AR o TIIBAY - A o 32 AR B
AR AR A S AT SR AR 2 RIMAZ A BEL i 74 26T

Figure C3: Sample data for the Literature Task (1/2).

2841




Literature II
Query: Where can published genomic sequences be found for the 2019-nCoV virus?

Target: "Note from the editors: novel coronavirus (2019-nCoV)\n\nhttps://
www.ncbi.nlm.nih.gov/pmc/articles/PMC6988271/\n\nSHA:
d958168d185240e544a918d843a14e887dc41d2b\n\nAuthors: nan\nDate: 2020-01-23\nDOI:
10.2807/1560-7917.es.2020.25.3.2001231\nLicense:  cc-by\n\nAbstract: nan\n\nText: The
situation has continued to evolve rapidly since then and just a few weeks later, as at 23 January,
614 laboratory-confirmed cases and 17 deaths have been reported [2] including some cases
detected outside mainland China [3] . Meanwhile, on 7 January 2020, the novel coronavirus,
currently named 2019-nCoV, was officially announced as the causative agent by Chinese
authorities [3] . In order to support public health action, viral genome sequences were released
by Chinese researchers on 10 January [4] and 2 days later, four further sequences were also
made available on the Global Initiative on Sharing All Influenza Data (GISAID) (https://
www.gisaid.org/). While more cases are being reported on a daily basis and there is evidence
for some human-to-human transmission in China, a number of important questions remain
unanswered. For example, there is no certainty about the source of the outbreak, the
transmissibility of the virus as well as the clinical picture and severity of the disease.\n\nIn this
issue of Eurosurveillance, we are publishing two articles on different aspects of the newly
emerged 2019-nCoV. One is a research article by Corman et al. on the development of a
diagnostic methodology based on RT-PCR of the E and RdRp genes, without the need for virus
material; the assays were validated in five international laboratories [5] . Before this
publication, a description of the assays had already been made publically available on a
dedicated WHO webpage [6] to support rapid development of laboratory testing capacities. The
other is a rapid communication where researchers based in Hong Kong report on their attempt
to estimate the severity among hospitalised cases of 2019-nCoV infection through modelling
based on publically available information, mainly from Wuhan health authorities [7] . It also
points out the need for more detailed information to make an informed evaluation of the
situation as basis for public health decision-making.\n\nToday, the WHO Director-General
Tedros Adhanom Ghebreyesus, taking into consideration the deliberations of the members of
the International Health Regulations (IHR) Emergency Committee on 2019-nCoV in their
second meeting, decided not to declare a public health emergency of international concern.
\n\nInternational health organisations such as the European Centre for Disease Prevention and
Control (ECDC) and the WHO are monitoring the situation and provide regular updates. ECDC
has set up a dedicated webpage on which updates and risk assessments with focus on Europe
are available: https://www.ecdc.europa.eu/en/ novel-coronavirus-china.

Figure C4: Sample data for the Literature Task (2/2).
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KB I

Query: 34z, 3% o JEWEPKR MK 2RSS KRR . Bk INLE %
o BAFIAR N : 5450, JPEA450. HEFRGER) 750, KW TS50, #3090, K
759, WH"459. BREZT50. ZRIDBEARTS9. HRE30g. Abilik150g. A Gkih)459. &b
F2F459. WGS9, W A1509. HEL30g. SeMb10g. AFH10. %245 A4 5 i Bk i
FERA 4 LR, FE S ENE T R 42

Target:

i /NLE R B E+ABR, BRA30Ah, ORISR SR ARy s HAR MRS N
DR PSR . KT, 5 LR ORECHT . 0, 1R . RE100g AN 2100 ~
1200 AR B, BIFR

HA/NLE M. &R IR A i GEN0S12)M & . a5 R4
15 RIS DL\ e S re b b A RER A B FE s DL E-0 1 % BEBR VST (63: 37) i 8h
s KR A2250m . BRISARELHE R SR N BRI T BN MK 14000, X6t HE S LA
TR BRE BN I IR RERENER RERE, BERE, 0P e imlg
Er30ugfTR A VAR, B ARk i v v ) A B B 25 R N AR, B, TRA1IE
390 AR E HE B INA FEES0mL ZE, FREER, B4R (BhFR200W, HHiZRK40kHz)45
IyBh, s, BREER. APEANSEAMER, 85, g, REEm. e W
TE V53 TR 2 W BT HE S P T K S v T A5 1 0ul i N TR A, s, RS AR SR
BHEARTFUAFRAR (C5H2002) fEEARFHNE(CIsHIsO2) &R AHDT
1.25mg, A= IR R R4 TR €03 GE I 0512) I 58 GEEYE R 1) o (0 510 55 R 458 I M
DL /\ e it be B A R NI T A DL ZHE-1% 0K BEBRYAR. (95: 5) M ahAl: Ak
JFp450nm . FERAR AL LT FE 0TS B AR 30000 5% HR ot VA VR FF) 1 A BROTELAT 3 % FR
EE, WEERRE. I A Tl S 1 5pa i LRI A o AR A VAT PR 1 45 B B
SWFRAS, M, BUER, MERE, BEMARE LSRR (LHRERM2
%) . IRAHEE T ARy . BUR201.50 (K24 T2 ih0.50) K6 B, B HLJE
T I N0% EER AR (0.15% 1N kidk = & 4% 10ml, %IE, WIEE RS
TBA) . KEEMAKEAME &P e50ml, %%, REER, WEERMRY . #H G
(ThER500W, AiiZR53kHz) 404340, %, PR ERER, FKEMI & ek 2 ok
FIER, 4, B, WGP e, I, BB, B DL ks 2 R O
TR VAR S BEA AR 5L, N R, WS, RAR. ARMEA A LIHg &
(C33H3N40) i, A48/F2.2mg,

Figure C5: Sample data for the KB Task (1/2).
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KB II

Query: Jdr, 45% . JEWMEM ST, REEHM, UG, WXRH, WHEE. Eib
AEUIFCEEHIBE AL . LA MRS 40055 #E 4004 b 3 160977 B3 Ry 80941} Kz 60 111 24
80gfR %600 {56, FESERILAE , ML T MBS (LA . (O RHAEAT R L2 2

Target:

24 A RO A M B L R G AL)

Rb T A AT F-400% 114003 b 35 16097 85 P 80941} Bz 609111 24809k £+ 6091 15 609\ n il 32 LA
JABR, BGESER26.79. HHPFE226.50. IIZTRH BRSNS BEE . IREMUKRTE K, %6
—WRI/NI, B RN, PRI, URIA I TR A R X 8 BE 130 ~ 1.35 (60~ 80°C )
HIBE  #HEY A, MKRTEZIR, BRI/, 5B RN, =R UNY, I8
i, SR IE I U s A X B BE R 130~ 1.35 (60~ 80°C) MIBHE s HIAT T LL45% SEEAE
A, T4 BT E A S R A4 LLT0% AR, B 24N S L 4y BT B
W, WOSRIEWL, &I LRI, I SR Y SO % BE R 1.30 ~ 1.35 (60~ 80" C)INAH
. 5 baRanky S IEHR S BRSO T, I8, B

PR A A7 AR BRI IRGE AL WRETTITR o

S (5) T 4 Bt o A R e b R R A R T R A T 45 Sl 23 ) T ] — RERR G il
B b, DRZR-ZR OBE-UKBER (240 8: DIRJRIFHN], JEIF, B, M, WELL10%6
R SRR, TE105°C hNBh B B i A 1 AT o b i e, 7555 % FRZ A G i X e
SN ALE b, BAHRMEL AR . OB, B, I ZEE40mlji#kE il
AN, PR, URTRHER SRk, FREIMPTIE I UEE R, RS 5 U B R
ik, [R) T BN B AV FRIROPT BT X B P R ) s 1 e 5 g ) VA
PE X B A R E aiid: GE0502)i50 , W b3k = Fh 4% 10ul, 53 51 55T W)
—HERGHEM b, SR, DIIRCHE-CRR AR (3: 1) REFFR, B, B, B
T, BELLERRRBRVES% = ALK R, IR B AN . il aild, E5
B o

R A A G AT A RIS TELE  GE0108)

B I RS RO ik GEN0512) MsE . 5k 5 R geaE VRS DL+ \ e 2k
RESEEE SRRSO DLW R BAHA, LLO3% BRI W A i hAHB, & R iRl
SEFEATHRBE VR :  BETRTHOR S AR I K S 240nm Pz A4S K27 4nm s AR A
40C o FLBAREHEETEE . DRI B AMIK T4000,

Frg: | 1] (3 | EBNAHA%) R BIARB(%) | || -1 |0~5|5—>8]95—92| |5~ 20(8]92] |
20~35|8—20]92—80]| | 35~45|20—60|80—40| | 45~55|60 | 40 | Xt B A 15 VR 1Y) 1] 25 B B 38 1
X Rl ER A o) R R B M o) BR S R AR BERRE . BNT0% HYEE ] A I mldh & 5L
5 D H %20ug. &P 45ugif IR G, BIAT . A i VI 00 ol 5 B 25 e O
TR, B, BZ0.30, WEMRE, BHRIEHTEH S, HEMAT0%HEE25m], %
ZE, WoEER, MMERELVNG, B8, HREER, H70% R R R ER, %
A), VR, BREEUEH. RIS MUK 140 A A W OGS R VAR B R R & 10ul, 1
NWBAREGEASC, WE, R AMmEHLETERUEEH (C17TH26011) Fl & H
(C17H26010) MR &, AFAT0.28mg; &4,z LN (CgHoO) if, A3
F0.20mg,

Difes E¥RUEE SN, HTHFBHS, KEEN, ZHEE, BXGEH, W EIE.
Mg E5HEOR—R8I, —H3RK,

S AFS I Y T IR 2547 30

W R 4t

Figure C6: Sample data for the KB Task (2/2).
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Term I
Clinical examination
Query: “ 4L AE  Target: —SAfLIRIETE
Disease dignosis
Query: JEMERIZEICHIAE ~ Target: A8 A ZRUHEEAE [ 25 5% H A
Procedure operation
Query: Z& BARIAMEYIRR  Target: BB PIEEAR
Symptom_sign
Query: JEREHSMULRAAE  Target: LA NURLEAEAE

Term II

Clinical _examination

Query: optical coherence tomography Target: AT 2 HH
Disease_dignosis

Query: dysfunction after cardiac surgery — Target: .U JEF AR5 I BEFERS
Procedure_operation

Query: reduction of vertebral fracture Target: HHEE T EPLA
Symptom_sign
Query: autonomic dysreflexia Target: H FEMZ G BTG

Term IIT
Query: GI distress ~ Target: Excessive upper gastrointestinal gas

Term IV
Query: accident i kept waking up ~ Target: Middle insomnia

Term V
Query: Mental illness  Target: Psychotic Disorders

Figure C7: Sample data for the Term Task.
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EHRI
Query: EEUEREE LI ZHHIRA,

Target:
SELECT * FROM Outpatient Medical Record WHERE Chief Complaint LIKE '%_I 57 %'
AND Chief Complaint LIKE '% % %'

EHR II
Query: B 3 i &5 BB TR BV I R

Target:

S L ey S R VAN e e T S a1 ] o N e B S oY 2 271 R T

Bk EFEE, UiERE AR O, TORZMKE I, TR R R A R I
M, FTRERIRAEAE, V5512080 FEE. SR EA TR E. ERLHARESL

B RN B BOR R BT T SRS E E SR LA B TR R A R
FHEBEIE 697 . ABEAEDLRRE #hE . A KRRIRIGTE . a2, AREMSLATAE .,

FHw AT, TRELH, TFFREME MRS TR TET. hiigiwEeEs, —
fE A 1.

U % B E T2 BB B, Oi A KRR, SEUME, WM. E3hZIR. 2
BERBett A a2 WA B TR E . ARt — S FARIGTEOREEE . &g EH
PRE . DA BCE TR NBE . BUAE: KRB, WE3h32MR, KRB BN
a, ZfEIEH.

EHR III

Query: SELECT * FROM Outpatient Medical Record WHERE History of Present lllness
LIKE "% 1g 1k & DhRE A2 %'

Target:

PR SRR SORAF AT I R A BB S SR . R FAFIRIGT . SAERTAS A BLIMLLIT
260umol /L, KIFTFI 2R LI EIRT . —FRHTH SRS i FREEER . A
fiF369.4umol/L, FHUREGL. Ik IMFIGITEIFF BT, —A A e H ek e s
ATTREAERE, B E A YUEF80Tumol /L, SRFTHRHIAIRMIR, GELL, WA
B, B4 ERETREZ, JoRE—SRITNERR . 21T BEMARIMEK, A, #
AR, TRB. RE, kBEZ K, MERAPOR . T, TR, TBRER
B TFRIRA, THAK, 2, KEMHE, B2

DU SR8 T RR TGRS BB R, 0PV ER AN, fEZ 7. 18
AT RNIRME LM, TR, WO W, TRE A JkE. LE,
FENZW W, TCHE. MR, O MKRE. ToRERK. B, RIS, TERAMEREE R
ARG . TERARTIRT, T4AHEFRELILE, DREESYRITR. 6
AR JRERIOR NG, AR, 12 DN\ "E IS DR 2\ "R R LR
B, B BEIRRE, KMEIER . IR TR, ELHZAEL.

Figure C8: Sample data for the EHR Task (1/2).
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EHR IV

Query: AEARHA A B BRIMEL. Bk FEIMAFRBL, ¥ BN S 4000, b i b
SEIEbR R R

Target:

EAFRE, 3%, KRR

FFTE VKK G 2 B ARREFRAA/INGT o

U SRR E RS T4/ NN BT FEDK BB I MBS VKK, S8 E k808, a4
BERAE VKBt (EAE, JRYS, DURORRAR, ToReRRfiis, JCWPu s K hpigk v, Jo%
OMKI:, TEREM. R I, E RN, TCRR . O, T EREE. f5)5 T A
B, WORT (AR KNEATE) , ARSI B K, hRE—B21R, Ok
bt , 12 LR .

BEAE R, TR, AMGE LAY e, IR “G5%7 A Yui it
L8

ART:37.6C, P98YK/ 4y, R20¥k/4y, BP:130/80mmHg, A FIEH ., B, MERE
B, 6. 2SR EER. THE, BN, R, Bk, & ILIMRHE
o B RRMELERMBNIK . LWIMEIER . SETEH, JUETEY, MAETLE
M, XL REE, EAARZ25mm, REKZINIER, SGHFE. BESMNEIER,
SPESETCRHE WY, AR, BTWE, SEERETTRL. K, SdkET
M, RELHI, SEIASZELERE. DBELEH, BELEE. B3, MEEd. |
JERETCLIRN, B E T, SRR T Bk, RETCMRIES WY, WA . 3
WEHRHL, RIS HKAR K, SEIBKTE R MR E. LERD, FURRIEI K. MER
IR, ToMiTE . MORETCERMKMITR . AR B N MITUF, XUMEIR SR8 B
BRTCHETE . BRI INES , Toie R R M R . SUIIN2 i, IS A T
FBE BTN o SUMFI S ST, N A NBIES . ORI TR, OR
FHBNOLT 25 L R ZE B e 1. 5em . TERREN & O L BRI . (O EFE R TLY K. O
O8I/ 53, ST, BIMMEDR B Jm e &, ARM RO EEES . TobkE R, Toar ik
BRIk TH . TPk, BHMEMIE ) o EHFE, TEREEKihK, KK
H R R ghie . MERRTC R BBk USRSk, MU N R Mk E. . Murphyfif B4
FIRETOHE, WEXLMNERE, WehBahittms, BSE4a-0k/ 5, KEkSaEK
FREIRE . NLITRAMERHERWSTH . B TRTE, PR TIESIER . MUK
PEUAIER, WK RN, MBS MEREROR BE— ZSRUURE S i S IEH
e, PURTCIE, W ERAE. A6 IRAEBITE. AMRMEDL: J8 B B RIALL ik, 7
M, JerKifl, PEikimi R am iR e, JoRnd B, AR R

NG MR AZ0810.03510°9/L, Hki g b 266.90% , Wk EmiELLER
26.80% , H KL ZENI%L6.71¥10%9/L, Wk ELZHI4K2.69¥1079/ Lo ILEEDUIR : 8 LAl i )
[E]13.4Sec, [ FRpruEfbELAR1.07, FE501E (L EE MG R I [8]27.0Sec, 442 1 J5H2.889/1,
B I Jif ) 1] 13.6Sec

Figure C9: Sample data for the EHR Task (2/2).
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Dialogue I

Query:)x BRK—Eif i) 7, “PHHHBK:, &8, EATR, BORAREE Tt
M, RARFXAFERFEA T RS K JRERA4? WA, B RRRIZE , {HR3
FABOR, RIS HBRBE T, SR AT ER RR?

Target:

FRMZETE Kt ERRARAEL, WEROCBEYABRZUY .. B HiERRZHRL
R, REAEREIPIEME. FART XS S B R 2 S O™ B A,
LT RERIR R A 4

Dialogue I1

Query:Is titanium dioxide an inactive ingredient in Equate acetaminophen or Tylenol
acetaminophen?

Target:

SUBJECT: Acetaminophen inactive ingredients

MESSAGE: My wife is severely allergic to Titanium Dioxide. It is not listed in the inactive
ingredients for Equate or Tylenol Acetaminophen on the package or on your page but other
sources on the Internet claim it is used to coat the tablets to make them easier to swallow. Are
they coated with Titanium Dioxide and if so why is it not listed as an inactive ingredient?
Thanks, [NAME]

Dialogue II1
Query: 4k AE/N LI B 3% EARIGIT /N AT A AR I W 3% B ARSI o

Target:

ANLR R VS B4 RE R T IAEI2AE A, FEB 202 K, 30K A /E HBA4KIR
W, BEAEIN, SKAGH, IR . TS T I, SRER AR
., —RIZZHWR, KHARBUALE . )5 GG MR AR L, AT 247N ik Fie, I R i
CT. W2 HRIE T REER A ERIH. #1125 FFIazEEa3ml, SRR 25
RAEEBEHBAC, T HALERE AR RAF, WAb#tRE B, AT, X— 12 HRAN
RVERWMEE RS, BEEL, FREMBRRNS. MARSE, fLm 7 msReE, #
TEIEFEN. RELEHRE, RESK, HHMPRESRE. AEFKE. E.

Figure C10: Sample data for the Dialogue Task.
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query_generation

RHRAIR—BRIET L MBI T A . TR BRI AR % A 1 25 I A7
RUREAEHERRE, FFEREI— S AR R HR, IIRBTEIR 5] b kit
PR =47, FEBRARAT N A SRR b AR BE A7 0k B B T AR o 15 B A A TR
BORGEM B L B RAREE, AR R T A IR ) BTSN LL
TRAHER

T R BTR

B REBHIS

7 BHURAT4E

s A R T A

B LA IR R LU R BT PR A S e 25

LU Re— AN 4]

[ 3A% ]

{example_table}

[l
json
{H

"FA MR R A

"G PR N SO PRI

YR ONUESE () L ESRE (o) R EBER.

" [ R G O T URE BE A Wi PR SR B B4 5% 4 ) FEAAEAE IR 1 a5 otk
MR AEdR 5 . DL AL OMESRIE . WESNRKIZ N LI TR LI
JR IR, TREAEARIR. A SR BRI, YRR I AR R LR T AR
Ui®>552% Fil e ML F A8 o £ RS 2R PRy ML PR R B0 358 K ok SRS RS A8 R R s T L N
. AR T IREE, URSMAESTRI. BHEXEER, X =MREEK
FERRPER FEREAEIR B B IR AEZE e s

"B BN O URESE B PR T S R B FE A R . 8 R B L O 9
PERES? VRN TR R M. WAL OE SR, WREAGREM<E. WED
FkJe S B 0 SR R R G . SR IR . W LT RIS >S5 S IR LR R . AT
REFEA MR Al kI, PRk s B AR 7] o A 2 0 o T X ek
SR AR RAE, RICHTERNRE, N RIK FERE, A M LaGES
FI, WARMLER TR X EERFAE T DI X A X =

3

(451
{query_table}

[t

Figure C11: The specific prompt for automatic query generation on Table task.
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( ‘ )

"Literature_en": "Given a query for the experts, retrieve relevant scientific
articles.",

"Literature_zh": "4E —ASKEEHENFE, ERAKCHESFER. ",
"Table_en": "Given a query, retrieve the relevant medical table.",
"Table_zh": "Z45E— AW, AWAHRKKEASTRE. ",
"KB_para_zh": "ZE—ANEE, Aifjh2Zan B s B. Y,
"KB_doc_zh": "4, EIAHCH AL . Y,

"AskAPatient_en": "Given a social media phrase, retrieve relevant medical
terminology",

"SMM4H-17_en": "Given a social media phrase, retrieve relevant medical terminology",

"TwADR-L_en": "Given a social media phrase, retrieve relevant medical terminology",

"Disease_dignosis_zh": "#hE—ANMEIE, EHFSEREEZEARE. ",
"Clinical_examination_zh": "4 & — MG, EMAEREEEEREE. ",
"Procedure_operation_zh": "% —MEIE, EWRHERNFAREEEIE. ",
"Symptom_sign_zh": "#wE—ANMEIE, ERFRHEIDERAEGEEE. ",

"Disease_dignosis_cross": "Given a phrase, retrieve normalized disease diagnosis
term.",

"Clinical_examination_cross": "Given a phrase, retrieve normalized clinical
examination term.",

"Procedure_operation_cross": "Given a phrase, retrieve normalized procedure operation
term.",

"Symptom_sign_cross": "Given a phrase, retrieve normalized symptom sign term.",

"EHR_query2sql_zh": "4 E AR TFETHE RGBS, SEECHSQLEHa . "

"EHR_sql2para_zh": "4 E—ASQLIEA, EIHIEHIEF B TR LEBE. ",

"EHR_query2para_zh": "4E AN, A UHAHSRHIEST BRI B E.

"EHR_query2doc_zh": "4 —NE, EHAHRNET BT Y,

"Dialogue_qgnorm_zh": "ZiE—ASREBEEE, EIHK &, ",

"Dialogue_en": "Given a query for patients, retrieve relevant medical patient's
questions",

"Dialogue_zh": "Z5%E KA BHERIEM, EWHRHEZ. "

Figure C12: The specific query prompts for different tasks.
00 . _Ta_pl_g.ll 100 theraturg.ll 100 —— '[erm.llﬂ 100 Term.IV atedarge
80 80 80 80
£ 60 £ 60 £ 60 £ 60
g g g g
S 40 S 40 S 40 S 40
w w w w
20 20 20 20
0 ) O O O L O P 0 e S O O S 0 Ke) S O O S 0 Ke) S O O L O P
(P P O A ) (P P O A N (P P O A N @ D L AP AN
& @ & & LG E & LG E & LG E &
T L EEEE T L E L E T L EEEE T L EEE
Hit Rate Hit Rate Hit Rate Hit Rate
100 Term.V._ 100~ Didlogue.| 100
80 80 80
£ 60 £ 60 £ 60
g g e
S 40 S 40 S
E: & ENTASK &
20 20 20
0 5 QO O 0 S & O 0 5 S O O S & O 0 el O O 0 S L P
@ D PSS S @ D PSS S PP LSS
€8T E LG S L @G EC &S
T EELE L L T EEE L L SEEE L0
Hit Rate Hit Rate Hit Rate

Figure C13: Line chart of performance across different numbers of recalled items in English and Cross-lingual
datasets
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Literature.| —meage
100 Table.| 100 100 KB 100 KBAL e
80 | — 80 A 80 80 ks et b e ness
— — / AT — — eureka-shert bt base chinese
£ 60 2 60 7 2 60 £ 60 R e A
o o o o B
g 40 g a0 g 40 g 40
20 20 20 20
0 0 0
5 S O O S & O ) Q Q QS 50 QQ 5 S O 0O O & O “ QS Q S & O
FPEE &S ORI EEFE &S EEFLE &S
EEE QOO & & & & EEE OO FEE L0
FEE & & RS FEE
Hit Rate Hit Rate Hit Rate Hit Rate
100 EHR.I 100 EHR.II 100 EHR.INI 100 EHR.IV e
80 80 80 80 urla-uroup amcsebarhese hnese
_ _ _ _ e
£ 60 £ 60 2 60 £ 60 ot ayeioiig o
S by S S S ——
g 40 g 0 g a0 g
20 20 20 20
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5 S O O LS O » 5 QS Q S & O ) QO 0 O S & O “ S 0 0 S & O
EEEE S S L EEL S E LSS L EEL S S
FEE OO T (00 FEELLE FEE 00
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Figure C14: Line chart of performance across different numbers of recalled items in Chinese datasets(Since the
corpus length of some datasets is less than 500, the hit rate range for certain datasets has been set from 5 to 200.)
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