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Abstract

Supervised fine-tuning (SFT) is crucial in
adapting large language models (LLMs) to
a specific domain or task. However, only a
limited amount of labeled data is available
in practical applications, which poses a se-
vere challenge for SFT in yielding satisfac-
tory results. Therefore, a data-efficient frame-
work that can fully exploit labeled and unla-
beled data for LLM fine-tuning is highly an-
ticipated. Towards this end, we introduce a
semi-supervised fine-tuning (SemiFT) task and
a framework named SEMIEVOL for LLM align-
ment from a propagate-and-select manner. For
knowledge propagation, SEMIEVOL adopts a
bi-level approach, propagating knowledge from
labeled data to unlabeled data through both in-
weight and in-context methods. For knowledge
selection, SEMIEVOL incorporates a collabo-
rative learning mechanism, selecting higher-
quality pseudo-response samples. We con-
ducted experiments using GPT-40-mini and
Llama-3.1 on seven general or domain-specific
datasets, demonstrating significant improve-
ments in model performance on target data.
Furthermore, we compared SEMIEVOL with
SFT and self-evolution methods, highlighting
its practicality in hybrid data scenarios.

1 Introduction

Supervised fine-tuning (SFT) is a crucial method
for enhancing large language models’ (LLMs)
performance on instructional or domain-specific
tasks (Raffel et al., 2020; Chung et al., 2024),
playing a vital role in adapting LLMs for specific
scenarios. However, SFT relies on a substantial
amount of annotated labeled data, which can be
increasingly costly in real-world applications (Hon-
ovich et al., 2023; Kung et al., 2023). While ex-
isting LL.Ms often employ unsupervised pretrain-
ing methods (Devlin, 2018; Radford et al., 2019;
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Figure 1: Comparison of SEMIEVOL with previous
SFT methods. SEMIEVOL enables interaction between
diverse data types for superior performance evolution.

Brown, 2020) to improve their capabilities, this ap-
proach typically requires vast datasets and substan-
tial computational resources, making it impractical
for scenarios with limited accessible samples.

In practice, however, it often presents a hybrid
situation, where a small amount of labeled data
coexists with a relatively larger volume of unla-
beled data. On the one hand, when deploying
LLMs to new target tasks, a limited amount of
task-specific annotations can be valuable without
incurring excessive costs (Perlitz et al., 2023; Kung
et al., 2023). On the other hand, during the con-
tinuous inference process of LLMs, a substantial
amount of unlabeled data accumulates (Tao et al.,
2024; Honovich et al., 2023; Wang et al., 2023).
Effectively leveraging the labeled data to enhance
model performance on unlabeled data, while simul-
taneously selecting high-quality unlabeled samples,
can improve LLMs’ performance in target scenar-
ios, offering substantial practical utility. Therefore,
we aim to address the following question:

Can LLMs evolve in a real-world sce-
nario of limited labeled data and abun-
dant unlabeled data?

Designing an evolution framework for hybrid-data
scenarios is non-trivial due to the following rea-
sons: First, semi-supervised learning (Kipf and
Welling, 2016; Shi et al., 2023), which has been
widely studied in machine learning, primarily fo-
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cuses on classification tasks. When considering
generative tasks, the previous techniques such as
pseudo-labeling (Sohn et al., 2020) and contrastive
learning (He et al., 2020), cannot be directly ap-
plied to LLM use cases, like reasoning and plan-
ning (Chen et al., 2022; Hendrycks et al., 2020).
Second, previous SFT and unsupervised pretrain-
ing methods typically deal with a single type of
data (either labeled or unlabeled) (Zhang et al.,
2023). Under hybrid-data circumstances, effec-
tively maximizing their combined potential for
model improvement becomes challenging.

In this work, we introduce SEMIEVOL for im-
proving LLM reasoning in hybrid-data scenarios,
as illustrated in Figure 1. SEMIEVOL employs a
bi-level strategy for knowledge propagation-and-
selection. For knowledge propagation, SEMIEVOL
enhances LLMs’ inference performance using la-
beled data through both in-weight and in-context
scopes. During in-weight propagation, SEMIEVOL
uses labeled data to adapt the model. During
in-context propagation, SEMIEVOL employs k-
nearest neighbor retrieval in latent space to assist
prediction. Moreover, SEMIEVOL introduces a bi-
level approach for data selection and generating
pseudo-responses. First, it introduces a collabora-
tive learning framework, utilizing multiple LLMs
with different configurations for inference and self-
justification of responses, yielding more accurate
predictions. Second, SEMIEVOL adaptively selects
unlabeled data by confidence based on response
entropy. By mining on unlabeled data leverag-
ing labeled data, we obtain high-quality pseudo-
responses. Using these pseudo-response data, the
model enhances its performance on target tasks.
We conducted tests on seven general or domain-
specific datasets (e.g., MMLU, MMLU-Pro and
ConvFinQA), covering tasks such as question-
answering, reasoning, and numerical computation.
We compared SEMIEVOL with popular methods
like retrieval augmented generation, self-evolution
and SFT, demonstrating SEMIEVOL’s consistent
effectiveness across various scenarios.

We summarize the contributions as follows:

* To the best of our knowledge, we are the first
to study a practical problem of semi-supervised
fine-tuning (SemiFT), aiming to adapt LLMs
into different domains data-efficiently.

¢ We introduce SEMIEVOL, a unified framework
for knowledge propagation-and-selection that ef-
fectively combines labeled and unlabeled data
for model evolution.

* We demonstrate the consistent effectiveness of
SEMIEVOL across seven widely used general or
domain-specific generative tasks in comparison
to extensive baseline models.

2 Challenges for Real-world LLM
Fine-tuning

2.1 Supervised Fine-tuning

Supervised fine-tuning (SFT) aims to adapt Large
Language Models (LLMs) to domain-specific sce-
narios. Given an LLM M and a dataset Djpeled =
{T;, Yi}ij\il, where T; represents the input task or
context and Y; denotes the corresponding expected
response. The model minimizes the loss function
for each token of the anticipated output during the
fine-tuning process F'T'.

Challenge: Annotation Cost. Despite the ef-
fectiveness of supervised fine-tuning, it would re-
quire expensive labeling costs to access abundant
labeled data. An economic solution is to utilize
easily accessible unlabeled data without feedback
as a supplement for fine-tuning.

2.2 Background and Problem Definition:
Semi-supervised Fine-tuning (SemiFT)

In real-world scenarios, it is more common to
have access to both a small amount of labeled
data Digpeleq and a larger volume of unlabeled
data Dynlabeled = {Tl}fvil Labeled data offers
higher confidence, while unlabeled data represents
a broader sample distribution. In this paper, we
propose SEMIEVOL approach, which primarily
focuses on how to leverage both types of data
Dsemi = Diaveled U Dunlabeled to optimize the LLM
M. Our SEMIEVOL not only improves model per-
formance but also offers greater practical value.

Challenge: Generative Task. In fact, devel-
oping a semi-supervised fine-tuning framework is
highly challenging. Tradition semi-supervised ap-
proaches usually focus on classification problems
solved by pseudo-labeling while our problem is
a generative task, which requires us to generate
expected responses instead.

3 Methodology

3.1 Overview

In this paper, we develop SEMIEVOL to inte-
grate labeled and unlabeled data for improving
LLM performance in reasoning. The core idea
of SEMIEVOL is to leverage labeled data through a
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Figure 2: Overview of SEMIEVOL. It maximizes the utility of labeled data through a bi-level knowledge propagation-
and-selection framework, while leveraging collaborative learning among multiple LLMs to exploit unlabeled data,

thereby unleashing the full data potential.

bi-level propagation-and-select process. As illus-
trated in Figure 2, SEMIEVOL is featured by three
key components: (1) Knowledge Propagation: We
utilize labeled data to enhance model M’s perfor-
mance on unlabeled data. This process focuses on
two aspects, i.e., model weights and context. The
propagation process involves model adaptation us-
ing labeled data and providing the most relevant
references from the latent space to assist model
inference. (2) Collaborative Learning: We em-
ploy multiple LLMs with different configurations
as mutual teachers to infer unlabeled data. We pay
particular attention to inconsistent responses, using
the models to self-justify these discrepancies. (3)
Knowledge Self-selection: We design the adaptive
selection for unlabeled data and pseudo-responses.
Using labeled data as a guide, we identify the most
valuable unlabeled data for learning. By optimizing
LLMs on these selected data samples, the model
achieves superior evolution performance.

In summary, SEMIEVOL addresses the preva-
lent real-world scenario where both labeled and
unlabeled data coexist. By leveraging the labeled
data and the capabilities of LLMs themselves, we
perform knowledge propagation, mining, and se-
lection on unlabeled data. This strategy improves
model performance in the target scenarios.

3.2 Knowledge Propagation

Labeled data contain expected target responses,
while unlabeled data represents a broader task dis-
tribution. To leverage this, we aim to propagate
knowledge from labeled to unlabeled data, enabling
the model to effectively utilize and learn from un-
labeled instances. We design a bi-level knowledge
propagation framework that operates simultane-
ously on two fronts: in-weight and in-context.

For in-weight propagation, we initially warm

up the base model My, on labeled data Dipejeq
to enhance its predictive capabilities for the target
task. Specifically, we fine-tune the model, lever-
aging task data and target responses to obtain a
preliminary adapted model (Mq5). This pro-
cess is formulated as:

Mwarm = FT (Mbasev,Dlabeled) 5 (1)

where F'T is the fine-tuning process.

For in-context propagation, we first embed la-
beled dataset into latent space using an embedding
function €(+):

Elabeted = {€ (i) | (ti, ¥i) € Diabeted} - (2)

During inference on unlabeled data, for each task
tj € Duynlabeled, We retrieve the k nearest labeled
instances in the embedding space:

N (tj) = NN (Eiabeled; € (t5) , k), (3)
where k is set to 3, NN is the nearest neighbors
search. We use V' (¢;) as context to improve the
inference on the unlabeled data.

In summary, labeled data facilitates knowledge
propagation to unlabeled data through both in-
weight and in-context manners. In practice, we
first adapt the model to obtain the warm-up LLM
Mwarm. then utilize labeled data as context to en-
hance inference on unlabeled instances.

3.3 Collaborative Learning

To further exploit unlabeled data, we designed a col-
laborative learning framework tailored for LLMs.
This framework utilizes the inherent capabilities
of LLMs for self-justify to obtain high-confidence
pseudo-responses from unlabeled data. Some con-
current works also attempt to use LLMs for similar
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functionality (Wang et al., 2024b), while their focus
differs from ours.

Initially, we employ a set of n LLMs, denoted
as My, Mo, -+, M, to perform inference on the
unlabeled dataset Dyprabeled, Where n is 4 by de-
fault and will be discussed in Section 4.3.2. Each
model is configured with different inference con-
texts and settings, providing diverse perspectives
and yielding more comprehensive results. For each
unlabeled sample ¢; € Dyglabeled, We obtain multi-
ple predictions:

{y"} = {Mm ()}, - )

Subsequently, we implement a self-justification
process using LLMs. This step synthesizes the
inferences from various models to select and sum-
marize the most accurate response ¥; :

i = Self-ustify ({y"}"_ ) . )

where the Self-Justify operator is implemented via
prompting M- by natural language instruc-
tions. In summary, our LLM-specific collaborative
learning framework harnesses multiple differently
configured LLMs for multi-perspective inference.
By utilizing the LLMs’ inherent abilities to self-
Jjustify, we effectively mine unlabeled data, and
generate high-confident pseudo-responses.

3.4 Knowledge Adaptive Selection

While the pseudo-responses y; generated through
the collaborative learning framework enrich the
training data, they may still contain noise or
low-quality information that could misguide the
model’s learning. To address this issue, we de-
sign an adaptive data selection approach within the
SEMIEVOL framework. Specifically, we measure
the confidence of the responses y; for the unlabeled
data selection.

We use the entropy of the LLM’s responses to
measure the model’s confidence in the answers.
Since LLMs generate responses token by token,
we calculate the per-token negative log-likelihood,
which serves as an approximation of the entropy.
For each data sample ¢; € Dypapeled, the entropy
H (y;) is computed on pseudo-response §; after
Eq. 5 as:

L.
- 1 «

H () = =1 ) log P (7"}“ | twf’“) , (6
J k=1

where L; is the length of the response r; generated
by Muyarm, rf is the k-th token in the response,

T<k:{1 2 ... .k

; S TETRRR } are the preceding tokens
of g, and P (rf | tj, rfk) is Myarm’s predicted
probability of token rf at position k.

For the unlabeled data, we compute the entropy
H (g;) for each pseudo-response ¢/; corresponding
to task t; € Dynlabelea- We then use the 6 percentile
of the entropy values from the labeled data to es-
tablish a dynamic threshold 7:

T = Percentiley ({H (@j)}jj\i1) ; )

where M is the amount of unlabeled samples, and
0 is default to 50% and will be investigated in Sec-
tion 4.3.2.

Using this dynamic threshold, we select confi-
dent samples from the unlabeled data. In formula,

Dselected = {(tja g]) ’ H (g]) < T} . (8)
We filter the pseudo-responses obtained previously,
resulting in the refined dataset Dielected-

Finally, we combine the selected pseudo-labeled
data with the original labeled data to fine-tune the
base model, which can enhance its performance
and adaptability on the target task:

Mevol =FT (MbaseaDselected U Dlabeled) ) (9)

where My, is the pre-trained LLM, and F'T" de-
notes the fine-tuning process.

By leveraging both high-quality pseudo-labeled
data and original labeled data, we enhance the
model’s performance and adaptability on the tar-
get task while reducing the influence of noisy or
erroneous information.

3.5 Summary

SEMIEVOL enhances the performance and adapt-
ability of LLMs in target tasks through a two-stage
knowledge mining process, combining labeled and
unlabeled data for model evolution. Firstly, we
leverage a small amount of labeled data to enhance
knowledge propagation across unlabeled data. Sec-
ondly, we employ knowledge mining and adap-
tive selection. This strategy effectively integrates
both labeled and unlabeled data, culminating in the
evolved model Mey).

4 Experiment

4.1 Experiment Setup
4.1.1 Datasets

We employed both general-purpose and domain-
specific evaluation datasets to provide a compre-
hensive assessment. These datasets encompass a
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Model and Strategy MMLU MMLU Pro ARC

FPB USMLE PubMedQA ConvFinQA

GPT-d0-mini 77.4 57.8 91.5 934 738 715 63.9
Vanilla

GPT-40-mini 77.8 58.8 903 98.0  75.0 7715 88.8
SFT

GPT-40-mini

SEMTEVOL 79.9 60.8 927 989 772 79.5 89.2
Llama3.1-8B 66.4 47.1 811 817 702 73.5 51.1
Vanilla

g}f‘;“a‘?"l‘gB 67.9 498 818 962 708 75.0 813
AdaptLLM - - 497 315 276 30.9
InstructPT - - - 761 474 445 552
MemoryLLM 56.4 31.8 563 577 378 55.5 37.2
RAG (BM25) 66.6 37.4 80.8 837 69.3 69.0 63.4
RAG (FAISS) 66.5 38.8 813 825 69.1 715 64.6
Hermes-3 63.6 37.9 749 739 545 68.5 54.9
Reflection-Llama 65.5 375 822 808 67.4 775 40.8
Llama3.1-8B

et 68.8 50.3 834 962 716 76.0 82.4

Table 1: Performance comparison across different models on various datasets.

variety of tasks, including multiple-choice ques-
tions, reasoning, numerical computations, efc..
Specifically, our general evaluation datasets in-
clude MMLU (Hendrycks et al., 2020), MMLU-
Pro (Wang et al., 2024d), and ARC (Clark et al.,
2018), while domain-specific datasets comprise
FPB (Malo et al.,, 2014), USMLE (Jin et al.,
2021), PubMedQA (Jin et al., 2019), and Con-
vFinQA (Chen et al., 2022), covering various fields
such as finance and healthcare. This diverse selec-
tion enables a thorough evaluation of the model’s
performance across different task types and knowl-
edge domains.

4.1.2 Backbones and Baselines

Base Models. To demonstrate the generaliza-
tion capability of SEMIEVOL, we employed a di-
verse range of leading models, encompassing both
commercial and open-source and LLMs, includ-
ing GPT-40-mini and Llama-3.1-8B (Dubey et al.,
2024).

Baselines. We evaluated our method against
baselines from several categories: (/) Vanilla,
which involves testing solely through API calls
or using the original model; (2) Supervised Fine-
tuning (SFT) (Hu et al., 2021; Wei et al., 2021),
which adapts the model to the target task using
the labeled data; (3) Self-Evolution Methods (Self-
Evol), which enhance LLM capabilities using addi-
tional unlabeled data. We compare with Reflection-

Llama (Li et al., 2024)! and Hermes-3 (Teknium
etal., 2024)2, both of which evolve from the Llama-
3.1-8B model; (4) Domain Adaptation Methods,
including AdaptLLM (Cheng et al., 2024b) and
InstructPT (Cheng et al., 2024a), utilize domain-
specific data (e.g., finance and medical). We select
models adapted to corresponding domains for test-
ing, all with comparable parameter counts of 8B;
(5) Inference-time enhancement methods, such as
Retrieval Augmented Generation (RAG) (Lewis
et al., 2020), including BM25 (Jones et al., 2000)
and FAISS (Douze et al., 2024) algorithms. We also
compare with MemoryLLM (Wang et al., 2024c¢),
with the nearest labeled sample as memory;

This comprehensive comparison allows us to
assess the effectiveness of our proposed method
across various state-of-the-art approaches in LLM
fine-tuning and adaptation.

4.1.3 Implementation Details

For the setting of semi-supervised fine-tuning of
LLMs, we have Diapeleds Duntabeled and Diege. The
data proportion in our experiments is labeled :
unlabeled : test = 2 : 6 : 2 and will be further
discussed in Section 4.3.6. The answer informa-
tion for Dyplabeled 1S inaccessible in our setting. We
fine-tuned Llama-3.1-8B using Low-Rank Adap-

"https://huggingface.co/Solshine/reflection-llama-3.1-8B
Zhttps://huggingface.co/NousResearch/Hermes-3-Llama-
3.1-8B
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tation (LoRA) (Hu et al., 2021) and applied fine-
tuning with the official API for GPT-40-mini>. All
fine-tuning processes take 2 epochs. n is set to
4 and 6 is set to 50%, with further investigation
planned in subsequent experiments. Our dataset is
publicly available at Hugging Face*.

We evaluated all methods using the test sets Dieg;.
Model inference followed default settings for each
approach. Codes are available in our GitHub repos-
itory”.

4.2 Main Result

We present the main results of SEMIEVOL in Ta-
ble 1. We can draw the following insights. Firstly,
the tasks are generally challenging. Off-the-shelf
LLMs perform poorly on these tasks, highlighting
the necessity of leveraging scenario data to enhance
model performance. Secondly, SEMIEVOL con-
sistently improves both commercial and open-
source models. Notably, SEMIEVOL is one of
the few approaches that demonstrably enhances
state-of-the-art commercial models, underscoring
its practical value. Thirdly, SFT yield modest
improvements, demonstrating the effectiveness of
labeled data. Given the high cost of data label-
ing, SEMIEVOL effectively utilizes unlabeled data
to complement this approach. Fourthly, the self-
evolution method fails to achieve consistent im-
provements, showing limited improvement or even
adverse effects on most datasets. Fifthly, adap-
tive fine-tuning methods can enhance perfor-
mance only on specific tasks (e.g., ConvFinQA).
Also, these methods may compromise the model’s
instruction-following ability, leading to significant
performance drops in some tasks (e.g., USMLE
and PubMedQA). Lastly, SEMIEVOL consistently
outperforms SFT methods, which demonstrates
the effectiveness of incorporating unsupervised
data and leveraging labeled data to fully utilize
unsupervised data. Even when base models per-
form poorly (e.g., MMLU-Pro and ConvFinQA),
SEMIEVOL can still achieve substantial improve-
ments in model performance.

4.3 Analysis and Discussions
4.3.1 Ablation Study

To evaluate the effectiveness of different com-
ponents, we conducted an ablation analysis on

3https://platform.openai.com/finetune.

4https://huggingface.co/datasets/luojunyu/
SemiEvol

Shttps://github.com/luo-junyu/SemiEvol

Variant MMLU MMLU-Pro ARC

Llama3.1-8B oo o 50.3 83.4
SEMIEVOL

w/o IWP 67.8 48.8 82.4

w/o ICP 68.0 494 83.0

w/o CL 67.0 49.2 82.4

w/o AS 67.9 49.0 82.1

Table 2: Ablation study via performance comparison
of different variants on SEMIEVOL.
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Figure 3: Sensitivity analysis of SEMIEVOL’s perfor-
mance under different n and 0 on variant datasets.

SEMIEVOL, with results presented in Table 2. The
findings reveal several key insights: (1) The full
model consistently outperforms all other config-
urations across the three datasets, demonstrating
its comprehensive effectiveness. (2) In terms of
knowledge propagation, both In-weight Propaga-
tion (IWP) and In-context Propagation (ICP) con-
tribute significantly to the transfer of knowledge
from labeled to unlabeled data and subsequent
model evolution. In-weight Propagation, in partic-
ular, shows a more pronounced impact. (3) Remov-
ing Collaborative Learning (CL) negatively affects
model performance. This suggests that Collabora-
tive Learning effectively leverages predictions from
multiple LLMs to autonomously identify more ac-
curate answers, thereby enhancing the prediction
quality on unlabeled data. (4) The absence of Adap-
tive Selection (AS) also leads to decreased model
performance. This indicates that AS successfully
selects more confident samples, thus improving
the accuracy of unlabeled data and enhancing the
model’s evolutionary process.

4.3.2 Sensitivity Analysis

We analyze the number of collaborating models (n)
and the data selection ratio (6), with results illus-
trated in Figure 3. From the results, we have the
following observations. (1) Our method demon-
strates robust performance across various settings,
indicating low sensitivity to these parameters. (2)
Model accuracy generally increases with n, as

2800


https://huggingface.co/datasets/luojunyu/SemiEvol
https://huggingface.co/datasets/luojunyu/SemiEvol
https://github.com/luo-junyu/SemiEvol

MMLU Prediction Entropy MMLU Pro Prediction Entropy

Vanilla Vanilla
8 SFT 6 SFT
SemiEvol SemiEvol
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Entropy Entropy

Figure 4: Entropy distribution indicates SEMIEVOL
can enhanced response confidence. Lower entropy val-
ues indicate more confident predictions.
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Figure 5: Stability analysis via mean performance and
standard deviation across multiple inference prompts.

more collaborating LLMs enhance prediction accu-
racy. However, this also introduces additional com-
putational overhead. We chose n = 4 as the default.
(3) Accuracy initially increases with § but subse-
quently decreases, suggesting that introducing ex-
cessively noisy data is detrimental to model evolu-
tion. Consequently, we empirically set = 50%
as the default value. It is noteworthy that we did
not conduct extensive hyperparameter searches, as
our primary focus was on validating the overall
framework’s effectiveness.

4.3.3 Response Entropy Analysis

We present the entropy distribution of different
methods on the test set, as illustrated in Fig-
ure 4. Lower entropy indicates more confident re-
sponses. Compared to the Vanilla and SFT model,
SEMIEVOL demonstrates a significant improve-
ment in response confidence. This observation
substantiates the effectiveness of SEMIEVOL in
producing more decisive and assured outputs. This
signifies that SEMIEVOL not only improves accu-
racy but also enhances the model’s ability to gener-
ate more confident and reliable responses.

MMLU Pro Accuracy (Llama-3.1 8B)

economics computer science

engineering chemistry

health business

history biology

psychology

physics

other philosophy

Vanila SFT  —— SemiEvol

Figure 6: Category-wise performance of SEMIEVOL.

4.3.4 Category-wise Performance Analysis

We conducted an in-depth investigation into the
differential impact of SEMIEVOL across various
categories in MMLU-Pro, as illustrated in Fig-
ure 6. We find that (1) SEMIEVOL demonstrates en-
hanced performance across the majority of domains
compared to both SFT and Vanilla approaches.
This broad-spectrum improvement underscores the
method’s versatility and effectiveness across di-
verse subject areas. (2) SEMIEVOL achieves sub-
stantial gains in specific fields such as Law, En-
gineering, and Philosophy. This notable improve-
ment suggests that knowledge in these domains
is underrepresented in common knowledge bases,
highlighting the necessity for targeted adaptation.

4.3.5 Stability Analysis

We evaluate the inference stability of different mod-
els by utilizing diverse prompts. Specifically, we
employed GPT-4o0 to rephrase the instructions and
conducted 5 tests on each model, reporting the av-
erage performance and standard deviation. As illus-
trated in Figure 5, changing the inference prompts
had minimal impact on the various models. No-
tably, SEMIEVOL even demonstrated a slight im-
provement in model stability.

4.3.6 Discussion on Continuous Evolution

In real-world scenarios, unlabeled data often ac-
cumulates continuously, altering the ratio between
labeled and unlabeled data. Table 3 illustrates the
impact of various data proportions on SEMIEVOL’s
performance. As illustrated, model performance
consistently improves with an increase in unsu-
pervised data across different base models. This
validates SEMIEVOL’s effectiveness in addressing
real-world scenarios, where model performance in
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Base Model

MMLU (Duniabeied ! Piabied)

MMLU-Pro (Duniabeted ! Prabied)

50% 100 % 200% 300% 50% 100 % 200% 300%
GPT-40 mini 78.2 78.6 79.3 79.9 58.9 59.5 60.1 60.8
Llama3.1-8B 67.6 67.9 68.6 68.8 49.8 49.8 50.0 50.3

Table 3: Performance of continuous evolution with varying amounts of unlabeled data.
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&
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673 1 2 3 748

Iteration

Figure 7: Iterative evolution performance, each itera-
tion means perform a round of SEMIEVOL.

specific domains can be progressively enhanced as
more unsupervised data accumulates.

4.3.7 Discussion on Iterative Evolution

We verify the model’s iterative evolution capa-
bility, as illustrated in Figure 7. After apply-
ing SEMIEVOL, we utilized the labeled data and
pseudo-response data as new labeled data, initiat-
ing a fresh round of SEMIEVOL on the previously
filtered unlabeled data. By the fourth iteration, we
had utilized most of the unlabeled data, resulting
in further performance improvements in the target
scenario. This iterative evolution capability further
demonstrates the practicality of SEMIEVOL.

5 Related Work

5.1 Data Engineering for SFT

With the rapid advancement of Large Language
Models (LLMs) (Zhao et al., 2023), researchers
have discovered that employing suitable data for
Supervised Fine-Tuning (SFT) can enhance model
performance on downstream tasks (Taori et al.,
2023; Longpre et al., 2023; Hou et al., 2024; Luo
et al., 2024b). Some researchers focus on data se-
lection (Bhatt et al., 2024; Parkar et al., 2024; Xia
et al., 2024; Bukharin and Zhao, 2023), aiming to
improve data quality to boost model effectiveness
within limited training budgets. Others concentrate
on data synthesis (Mukherjee et al., 2023; Chung
et al., 2024; Honovich et al., 2022; Cheng et al.,
2023), attempting to enhance models’ instruction-
following capabilities through synthesized instruc-
tion data. Researchers also shifted their focus to

model self-evolution (Tao et al., 2024; Madsen
et al., 2024). These include self-instruction (Wang
et al., 2022) and self-play (Chen et al., 2024) tech-
niques that enable models to acquire task-specific
capabilities without extensive annotated data. Com-
plementary to these approaches, SEMIEVOL fo-
cuses on LLMs’ ability to continuously evolve in
real-world semi-supervised fine-tuning (SemiFT)
scenarios, relying solely on their inherent capabili-
ties. It effectively utilizes small amounts of labeled
data to improve model evolution performance.

5.2 Semi-supervised Learning

Semi-supervised learning aims to reduce the an-
notation cost during model training (Zhu, 2005;
Tarvainen and Valpola, 2017; Ju et al., 2024; Yang
et al., 2024; Feng et al., 2024), which has received
increasing attention in various fields such as text
classification (Duarte and Berton, 2023; Thangaraj
and Sivakami, 2018; Linmei et al., 2019) and neu-
ral machine translation (Cheng et al., 2016; Pham
et al., 2023). Current semi-supervised learning
approaches can be mainly divided into two types,
i.e., pseudo-labeling (Lee et al., 2013) and consis-
tency regularization (Sohn et al., 2020; Berthelot
et al., 2019). Pseudo-labeling approaches usually
add extra unlabeled data into the labeled dataset
by leveraging the labels predicted by the model.
Recent studies attempt different techniques to en-
hance pseudo-labeling such as considering adap-
tive thresholds (Zhang et al., 2024; Rhee and Cho,
2019) and class imbalance (Luo et al., 2024a; Wang
et al., 2024a). In contrast, consistency regulariza-
tion aims to encourage the consistency of predic-
tions under different perturbations. However, these
approaches focus on classification problems (Shi
et al., 2023), which cannot be applied to LLM fine-
tuning. To tackle this issue, we propose a new
framework SEMIEVOL in a propagate-and-select
manner for LLM adaptation.

6 Conclusion

We for the first time investigate the practical chal-
lenge of utilizing hybird-data (i.e., both labeled and
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unlabeled data) to enhance LLMs performance in
specific scenarios. We designed a bi-level frame-
work SEMIEVOL for knowledge propagation-and-
selection. This framework leverages in-weight
and in-context knowledge propagation from la-
beled data, while employing collaborative learn-
ing and adaptive selection to generate high-quality
pseudo-responses. We validated SEMIEVOL'’s effi-
cacy on both general and domain-specific datasets,
conducting a detailed analysis of the improve-
ments it yields. Furthermore, we demonstrated
SEMIEVOL’s capability for continuous iterative
evolution, which plays a crucial role in enhancing
LLMs’ effectiveness in real-world applications.

Limitations

One limitation of our work is that due to the limit
of computational resources, we do not evaluate our
framework on more LLMs such as GPT-40 and
Llama3.1 70B. In future work, we will attempt to
incorporate our framework into these LLMs. More-
over, although our framework is evaluated on var-
ious benchmark datasets, we do not involve more
complicated domains which require more scientific
knowledge. To solve this, we will extend our frame-
work to more advanced scientific domains such as
genomics analysis.
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A Algorithm

In Algorithm 1, we present the comprehensive algo-
rithmic process of SEMIEVOL, which incorporates
a bi-level framework for knowledge propagation
and selection. This process ultimately yields the
evolved model, M.

Algorithm 1 Algorithm of SEMIEVOL

Require: Labeled data Dj,peicq, Unlabeled data
Duniaveled» LLM M;
Ensure: Evolved LLM M_,.;

// In-Weight Knowledge Propagation
Fine-tune M on Djgpeied, Obtain Moyarm:
// Collaborative Learning
form=1,---,ndo

// In-Context Propagation

Get the prediction {y;"} as Eq. 4;
end for
Self-Justify to generate pseudo-responses;
// Adaptive Selection
Select pseudo-responses with entropy as Eq. 8,
obtain Dyejected;
11: Fine-tune on Dggjecteq, Obtain M yor;

R e A A S s

_.
4

B Experimental Settings

We will detail the experimental process, includ-
ing parameter settings, prompt configurations, and
computational resource consumption.

B.1 Parameter Settings

Inference Process For commercial methods (e.g.,
GPT40-mini), we utilize API calls. For open-
source models (e.g., Llama3.1 8B), we employ the
vLLM (Kwon et al., 2023) framework locally for
inference. The inference parameters are as Table 4.

Parameter Value
Model Name Llama3.1 8B Instruct
Computing Arch. NVIDIA A100-80GB

Max Sequence Length 4096

Table 4: Parameters configuration during inference.

In the collaborative learning process, we employ
n LLMs with diverse configurations for mutual
learning, setting their temperature to 1. These con-
figurations are sampled from the following options:
(1) Utilization of M,arm: {0, 1}; (2) Number of
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labeled samples referenced for in-context knowl-
edge propagation: {0, 1,2, 3}.

Fine-tuning Process. We use platform APIs for
commercial methods fine-tuning and LlamaFac-
tory (Zheng et al., 2024) for open-source mod-
els fine-tuning. Both of them are fine-tuned for
2 epochs. Commercial models use default set-
tings (adaptively configured by OpenAl based on
the task). For open-source models, our hyperpa-
rameter settings are as Table 5, all of which are the
default parameters from LlamaFactory.

Parameter Value
Model Name Llama3.1 8B Instruct
Computing Arch. NVIDIA A100-80GB

Fine-tuning Type LoRA
Gradient Accumulation Steps 8
Learning Rate le-4
6 in Adaptive Selection 50%

Table 5: Hyperparameter settings for fine-tuning open-
source models.

B.2 Instruction Settings

We employ concise instructions for inference as
shown in Table 6. During this process, we present
questions to the LLM and elicit responses.

We extract answers using regular expression
matching. For character-based answers, we check
for exact matches. For numerical answers, we as-
sess whether they fall within an acceptable error
margin (maximum error of le-2).

During the SEMIEVOL process, we require
additional instructions for tasks such as self-
justification and in-context knowledge propagation.
For these supplementary commands, we provide
instruction templates in a table for reference.

Instruction Template

Multiple Choice
Answer the multiple-choice question.

Your response should be in the format: *Answer:
LETTER’ (without quotes).

Question:
{question}

Options:
{options}

Free-from QA

Answer the following question.
Output the value in the format:
VALUE’ (without quotes).

’Answer:
Question:
{question}

Options:
{options}

Provide your answer on a new line after *An-
swer:’, without using a \boxed command.

Table 6: Instruction templates for different types of
questions.
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Instruction Template

Self-Justify

Here are the multiple answers to the question.
Please consider them thoroughly and give me
the correct answer. Your response should be in
the following format:

’Answer: LETTER’ (without quotes).

Question:
{question}

Options: {options}

Multiple Answers:
{answers}

Now, please give me the final correct answer:

In-context Knowledge Propagation

You are an expert in the question answering.
Below are some examples of questions and their
corresponding answer.

{reference}

Table 7: Instruction templates for SEMIEVOL process.
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