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Abstract

Large Language Models (LLMs) have demon-
strated strong performance across various nat-
ural language processing tasks, yet their profi-
ciency in mathematical reasoning remains a key
challenge. Addressing the gap between natural
and mathematical language requires advanced
reasoning capabilities, approaching those of Ar-
tificial General Intelligence (AGI). However,
the evaluation remains challenging, as per-
fectly representing reality is inherently elusive,
and traditional methods like manual or direct
comparison of mathematical statements (Ra-
mamonjison et al., 2023) are insufficient for
assessing true modeling ability. We propose a
process-oriented framework to evaluate LLMs’
ability to construct mathematical models, us-
ing solvers to compare outputs with ground
truth. Introducing Mamo, a benchmark with
1,209 questions covering ordinary differential
equations, linear programming, and mixed-
integer linear programming, we enable auto-
matic evaluation of modeling accuracy. The
results show that existing LLMs struggle with
complex mathematical modeling tasks, with
larger models demonstrating superior perfor-
mance, while open-source models remain com-
petitive in simpler cases but still fall short of
proprietary models in more challenging prob-
lems.

1 Introduction

Recent advancements in Large Language Models
(LLMs) have garnered widespread interest, demon-
strating remarkable capabilities across a broad spec-
trum of natural language processing tasks (Ouyang
et al., 2022; OpenAI, 2023; Nijkamp et al., 2022;
Tang et al., 2024). However, the domain of mathe-
matical reasoning remains a critical aspect of the
LLM evaluation (Wei et al., 2022). This focus
gauges LLMs’ proficiency in solving mathematical
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challenges and reveals their underlying abilities in
abstract reasoning and logic.

Natural language reflects the complexity and
subtlety of human communication, while mathe-
matical language provides accuracy and is ideal
for representing the natural world (Giordano et al.,
2013). Bridging their gap requires high-level cog-
nitive skills akin to Artificial General Intelligence
(AGI), a task at which LLMs show promise. Recent
studies have already combined LLMs with solvers
(Feng et al., 2023; Pan et al., 2023). In the field of
optimization, AhmadiTeshnizi et al. (2023) intro-
duced OptiMUS, an LLM-based agent that uses a
solver to address optimization problems. The key
task for LLM in OptiMUS involves first generating
a mathematical formulation of a real-world prob-
lem, followed by writing Python code to invoke a
solver. This implies the potential for testing LLM’s
modeling capabilities. However, the challenge lies
in the evaluation of modeling, as perfectly repre-
senting reality may be inherently elusive.

To address this, we propose a new benchmark-
ing strategy that evaluates mathematical modeling
by utilizing solvers and answer verification. The
core philosophy is to use solvers to resolve mathe-
matical models and assess their accuracy by com-
paring the solver’s output with the ground truth.
Additionally, we introduce Mamo, a novel bench-
mark designed to assess the mathematical modeling
capabilities of LLMs, leveraging solvers to shift
the focus from conventional outcome-based evalu-
ations to a more process-oriented approach. This
strategy is particularly rational because it allows
us to isolate and scrutinize the entire modeling
process, from formulation to solution, providing a
more holistic and rigorous evaluation of an LLM’s
mathematical reasoning abilities.

The contributions of this paper are as follows:

• We introduce an automatic evaluation frame-
work to assess mathematical modeling
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through solvers, enabling exact answer match-
ing.

• We have developed a new benchmark, named
Mamo, specifically tailored for the evaluation
of mathematical modeling capabilities. Mamo
encompasses a wide array of modeling ques-
tions (with a total of 1,209 meticulously cu-
rated questions), including ordinary differen-
tial equations (ODEs) and optimization prob-
lems within linear programming and mixed-
integer linear programming frameworks.

2 An Evaluation Framework for
Mathematical Modeling

2.1 Definition: Mathematical Modeling
Mathematical modeling is widely considered an
advanced skill typically possessed by experts. Ac-
cording to Giordano et al. (2013), mathematical
models act as intermediaries that convert real-world
problems into structured mathematical forms, facil-
itating the discovery of solutions. As illustrated in
Figure 1, we aim to map a natural language ques-
tion Q into a mathematical model M , which is
expressed in mathematical language as follows:

f : Q → M.

By solving this model, we can obtain an answer
A to the original problem Q. Traditional mathe-
matical modeling is a labor-intensive, highly spe-
cialized process that depends heavily on human
expertise.

2.2 Gap between Natural and Mathematical
Languages

Natural language captures the complexity and nu-
ance of human thought, while mathematical lan-
guage excels in precision and in modeling natural
phenomena (Giordano et al., 2013). A single state-
ment in natural language may correspond to differ-
ent mathematical representations, and conversely,
distinct natural language statements may map to
the same mathematical formulation.

For example, consider the natural language state-
ment: The car starts with an initial velocity of zero.
This can correspond to at least two different mathe-
matical representations:

Mathematical formulation 1: y′(0) = 0
Mathematical formulation 2: v(0) = 0.
Conversely, these two mathematical expressions

may also correspond to natural language 2: The
population growth rate is initially zero.

Bridging the gap between natural language and
mathematical language requires advanced cogni-
tive abilities, a task where LLMs have shown sig-
nificant potential. However, evaluating the effec-
tiveness of mathematical modeling remains chal-
lenging, as achieving a perfect representation of
reality through models is often unattainable.

Figure 1: Q is the natural language problem, while
M1,M2 are different mathematical models.

Challenges in Evaluation Due to the complex
mapping between natural language and mathemat-
ical language, a real-world problem Q may corre-
spond to multiple equivalent mathematical models,
such as M1,M2,M3, . . . . As illustrated in Figure
1, for a given problem Q, we have two distinct
mathematical models, M1 and M2, both of which
correctly describe the same real-world problem and
are considered equivalent in the context of Q. Tra-
ditionally, the evaluation of mathematical models,
including determining their equivalence, has been
performed by human experts, a process that is both
labor-intensive and time-consuming. In optimiza-
tion modeling area, Ramamonjison et al. (2023)
directly compare mathematical statements by stan-
dardizing variable names and evaluating accuracy
based on declaration matches. While this approach
addresses differences in variable naming, the ab-
straction of variables from natural language context,
which is critical in mathematical modeling, was not
examined.

2.3 Evaluating Modeling Using Solvers and
Answer Matching

The Evaluation Framework To facilitate the
automatic evaluation of mathematical models, we
propose an evaluation framework for mathematical
modeling based on exact answer verification using
solvers, as illustrated in Figure 2. A solver is an
algorithmic tools designed to find solutions to vari-
ous classes of problems. For instance, Gurobi is a
well-known optimization solver (Gurobi Optimiza-
tion, LLC, 2024), while Python packages (Virtanen
et al., 2020) and MATLAB (Inc., 2022) are com-
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Figure 2: The pipeline to use exact answer verification via an additional solver.

monly used for solving ODEs. Solvers are essential
for operationalizing abstract models, denoted as M̂ ,
generated by large language models (LLMs), trans-
lating them into concrete solutions Â that can be
analyzed and validated against real-world data. For
a given real-world problem and its corresponding
answer pair (Q,A), LLMs generate a mathematical
model, denoted M̂ . The solver resolves this model,
producing a solution Â, which is then compared to
the correct answer A. This framework directly eval-
uates the LLM’s problem-solving capability, with
any inaccuracies in M̂ typically leading to incor-
rect solutions Â. By focusing on the final output,
we avoid additional computational steps that could
obscure the evaluation of the LLM’s performance.

The Philosophy The philosophy behind our eval-
uation framework is goal-driven, based on the idea
that the ultimate aim of mathematical modeling is
to produce accurate solutions to real-world prob-
lems. We prioritize the correctness of the solution
Â over the intermediate steps of model formulation.
By comparing the solver’s output with the correct
answer, we evaluate the effectiveness of the LLM’s
generated model M̂ . The assumption here is that
if the model is well-constructed, it will lead to an
accurate solution.

Despite its goal-driven structure, the framework
retains a process-oriented emphasis on the model-
ing capability of LLMs. Unlike traditional bench-
marks that treat answer correctness as an isolated
metric, our approach explicitly evaluates the inter-
mediate step of model formulation. The evaluative
focus lies on whether the LLM constructs a mathe-
matical model M̂ that faithfully translates the real-
world problem into mathematical language. Thus,
while the solver’s answer validates the outcome,
the core objective remains to assess the modeling
process.

This dual perspective allows us to maintain
a scalable yet principled evaluation framework.

While the solver’s output remains the validation
mechanism, the primary objective is to assess the
LLM’s ability to conceptualize and formulate math-
ematical problems rather than simply solving pre-
defined mathematical tasks (more discussions are
provided in Appendix M).

3 Mamo Benchmark

To implement this framework, we developed a new
benchmark, Mamo, specifically for mathematical
modeling.

3.1 Scope of Mamo Benchmark
Given the broad spectrum of mathematical model-
ing (Giordano et al., 2013) (see Appendix G) and
the availability of specific solvers, our benchmark
is meticulously designed to encompass domains of
ODEs and linear programming problems. This sec-
tion outlines the rationale behind our focus on these
areas, driven by the criteria of solver availability
and result verifiability.

Availability of Sophisticated Solvers: Ad-
vanced optimization solvers, such as COPT (Ge
et al., 2023), along with Python libraries for solv-
ing ODEs, offer a strong foundation for testing the
capabilities of LLMs. These tools enable a detailed
and automated evaluation of the LLMs’ abilities to
abstract, formulate, and accurately solve mathemat-
ical problems within these specific domains.

The Straightforward Verifiability of Results
While calculators address basic problems in these
areas, the absence of a structured modeling ap-
proach hinders the assessment of LLMs’ ability to
create solvable mathematical models.

Building on these considerations, we developed
a benchmark focused on optimization and ODE,
given the lack of universal PDE solvers. Com-
pared to NLP4LP, introduced by (AhmadiTeshnizi
et al., 2023) and focusing exclusively on optimiza-
tion, our benchmark includes a larger number of
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problems, with potential expansions into nonlinear
optimization, probabilistic modeling, and PDE as
new solvers emerge.

3.2 Data Selection

Our benchmark dataset comprises manually se-
lected and GPT-generated questions, curated by a
team with advanced mathematical education, in-
cluding Ph.D. holders, and an average GPA of
3.89/4.0, ensuring strong analytical expertise. De-
tails on the collectors’ qualifications are provided
in Appendix C.

Source Reliability For manual selection, we ref-
erenced textbooks and solutions in ODE and opti-
mization (Thomas et al., 2016; Stewart et al., 2014;
Lial et al., 2017; Braun, 1993; Boyce and DiPrima,
2012; Giordano et al., 2014; Zill, 2013; Bertsimas
and Tsitsiklis, 1997; Hurlbert, 2010). We focused
on deriving mathematical models and assigning re-
alistic scenarios, ensuring answer accuracy. Each
question was adapted to meet the benchmark crite-
ria (Section 3.3) by adjusting scenarios or solutions
as needed.

Question Formulation and Verification Data
synthesis starts by creating mathematical constructs
with random parameters, followed by answer com-
putation to establish ground truth. GPT-4 then gen-
erates real-life scenarios, translating these models
into context-rich problems, testing both mathemati-
cal reasoning and real-world contextualization. See
the example in Appendix N.

3.3 Guidance of Data Collection

Figure 3: Q is the natural language problem (may be
ODE problem or optimization problem), where y is a
solution function in ODE problems.

Our benchmark dataset follows specific criteria
to ensure the problems are suitable for automated
verification. Figure 3 provides examples of these
criteria, with further explanations presented in Ap-
pendix T.

Property 1. Final-State Approach Solvabil-
ity Problems should be structured so that a solver
can directly compute the solution once the LLM
formulates the mathematical model. For example,
asking for the optimal value of an optimization
problem is solvable using a ’final-state approach’,
whereas transforming an ODE solution requires
extra steps and is not solvable this way.

Property 2. Unified and Numerical Answers
For ODEs, questions should seek the function’s

value at a specific time t0, and for optimization
problems, the optimal value, ensuring a unified and
numerical answer for clear comparison with the
solver’s output.

Property 3. Significant Figures and Precision
Each question will explicitly state the required

significant figures or the level of numerical preci-
sion for the answer.

To assess the LLM’s capability to abstract math-
ematical models from real-world scenarios, we in-
troduce Property 4.

Property 4. Real-World Problem Context Ques-
tions should be framed as real-world problems with-
out explicitly stating the underlying mathematical
model.

3.4 Data Quality Checking

In the ODE section, we utilized GPT-4 to verify
the solvability of generated questions as stated in
Property 1, filtering out any invalid questions. A de-
tailed evaluation identified issues such as missing
information, incorrect answers, and unclear phras-
ing, leading to the removal or correction of prob-
lematic questions and resulting in a refined dataset.
In the optimization section, specifically in the
Easy_LP part, invalid questions were eliminated,
and those with incorrect answers or misleading de-
scriptions were corrected. For the Complex_LP
section, questions involving incorrect mathemat-
ical models were revised (see an example in Ap-
pendix J). A summary of the review process is
provided in Table 1.

For the cross-review process, 50 questions from
the ODE dataset were selected for in-depth anal-
ysis by four independent reviewers 1. Reviewers
were chosen based on their qualifications, including
an average GPA of at least 3.5/4.0 in fundamental

1The hourly wage is approximately 20 US dollars, with
total compensation of around 473 US dollars.
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Category Initial Questions Filtered Corrected Final Questions

ODE 383 37 41 346
Easy LP 688 36 8 652
Complex LP 211 0 40 211

Table 1: Summary of the review process.

Reviewer Reviewer 1 Reviewer 2 Reviewer 3 Reviewer 4

Reviewer 1 - 0.67 0.71 0.56
Reviewer 2 0.67 - 0.65 0.50
Reviewer 3 0.71 0.65 - 0.52
Reviewer 4 0.56 0.50 0.52 -

Table 2: Inter-reviewer Cohen’s Kappa scores.

Reviewer Accuracy Rate (%)

Reviewer 1 90.0
Reviewer 2 84.0
Reviewer 3 88.0
Reviewer 4 74.0

Table 3: Accuracy of reviewers.

math courses, completion or enrollment in the Or-
dinary Differential Equation course, and meeting
English proficiency standards.

Reviewers evaluated the questions, classifying
responses as either numerical answers or "error"
if the question was problematic. The effectiveness
of this review was assessed using Cohen’s Kappa
to measure inter-rater reliability, along with indi-
vidual accuracy rates. As shown in Table 2, the
pairwise Cohen’s Kappa scores had an average of
0.60, reflecting moderate to substantial agreement
among reviewers, with individual scores ranging
from 0.50 to 0.71. Accuracy rates were moderately
high, as detailed in Tables 3. For additional details
on the review, see Appendix B.

3.5 Data Statistics

In the section on Ordinary Differential Equa-
tions, we present a total of 346 problems: 196
are based on first-order equations, 110 on second-
order equations, and 40 on systems of equations,
offering a comprehensive exploration across dif-
ferent levels. The optimization section is divided
into two segments: Easy_LP, featuring 652 high
school-level Mixed Integer Linear Programming
(MILP) problems, and Complex_LP, comprising
211 undergraduate-level problems that integrate
both LP and MILP. See the category statistics
and the word cloud of the combined data in Ap-
pendix O.

4 Evaluation

4.1 Evaluation Protocol

4.1.1 Evaluation Details
Our evaluation protocol follows the methodology
outlined in Section 2.3. First, the LLMs were
prompted to generate formalized code (in each do-

main) to represent a mathematical model, denoted
as M̂ . This code was then executed by a solver,
and the result, Â, was compared with the ground
truth answer, A.

For ODE problems, the LLM was prompted to
generate Python code based on a natural language
description. The generated code was executed, and
the output was compared to the correct solution to
assess its accuracy. For optimization problems, the
LLM was asked to express the model in .lp for-
mat, after which an optimization solver COPT (Ge
et al., 2023) was employed to find the optimal value
for comparison with the correct answer. This pro-
cess is independent of the specific solver used; for
instance, MATLAB (Inc., 2022) can be used as
an ODE solver, and Gurobi (Gurobi Optimization,
LLC, 2024) can serve as an alternative optimization
solver.

Benchmarking Models Our evaluation2 in-
cludes both proprietary and open-source LLMs.
The proprietary LLMs consist of the GPT-4 se-
ries (OpenAI, 2023), the Claude series3, and the
Gemini series4. The open-source LLMs include
the DeepSeek series (Shao et al., 2024; DeepSeek-
AI, 2024), Llama-3.1 models (Dubey et al., 2024),
Qwen-2.5 (Team, 2024), and Mixtral (Jiang et al.,
2024).

Model Output We prompted the LLMs to gen-
erate Python code that called solvers (such as
solve_ivp and odeint in SciPy, and dsolve in
NumPy). In the optimization sections, the LLMs
were asked to generate a standard .lp file. Com-
pared to the testing methodology in NLP4LP (Ah-
madiTeshnizi et al., 2023), which involved prompt-

2See the settings in Appendix Q
3https://www.anthropic.com/news/claude-3-family
4https://deepmind.google/technologies/gemini/
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ing the model to output Python code for invok-
ing the optimization solver, the .lp format more
closely aligned with the standard optimization
form, making it more readable. Optimization
solvers like COPT (Ge et al., 2023) could directly
read and solve the .lp file. To better adhere to this
format, we conducted tests using 3-shot learning.
Detailed information about the number of few-shot
samples used in our experiments and the results
can be found in Appendix K and Appendix R. Ad-
ditionally, at the start of the testing process, we
performed an initial cleaning of the code, remov-
ing strings such as ˋˋˋ python ˋˋˋ that would
have affected our testing.

4.1.2 Evaluation Metrics
According to Property 2 and Property 3, both the
ground truth answer A and the answer Â, de-
rived from solving the LLM’s output mathemat-
ical model M̂ , are numerical values with specified
significant figures. To account for minor discrepan-
cies, we apply the following comparison rule:

General Comparison Criterion : Let n denote
the number of decimal places in A (n = 0 if A is
an integer). The answer Â is considered correct if:
∣∣∣∣∣
Â−A

A

∣∣∣∣∣ < 10−4 or |Â−A|< min{10−n, 10−2}.

Figure 4: Examples illustrating the application of the
General Comparison Criterion

This rule accounts for precision errors and en-
sures an accurate evaluation of Â while allow-
ing for slight computational variations. Figure 4
demonstrates the application of this criterion with
examples, illustrating how discrepancies between
the correct and generated answers are assessed. For
further details, see Appendix P and the case study
in Appendix E.

4.2 Benchmarking Results

Table 4 presented the evaluation results (accuracy
rate) of different language models on the Mamo

Benchmark. The performance of these models was
assessed both in their original form and when en-
hanced by the language model (i.e., code modifier)
itself to rectify syntax errors (with improvements
indicated by the subscript). Appendix A provided
results when GPT-4-0613 was used as the code
modifier, and Appendix F presented the error anal-
ysis.

Mamo is Challenging As the results in Table 4
indicate, even state-of-the-art models struggled
with complex tasks such as second-order ODEs,
systems of ODEs, and Complex_LP. This is due to
the increasing number of variables and the more
intricate relationships among these variables com-
pared to easier tasks like Easy_LP.

Take-away 1. Existing LLMs struggle with com-
plex tasks in mathematical modeling.

The Performance of o1 Interestingly,
o1-preview, although it excelled in com-
plex tasks such as second-order ODEs and
Complex_LP, did not outperform (and was
even worse than GPT-3.5-Turbo) in Easy_LP
tasks, which consist of high-school-level linear
programming modeling problems. As shown in
Table 6, the execution success rates of o1-preview
in each category were nearly 100% across all
methods (raw, self-modified, or GPT-4-modified),
indicating that this underperformance was not due
to limitations in coding ability.

Take-away 2. o1 excelled in complex tasks but
underperformed in easy tasks.

Open-source Models vs. Proprietary Models
One of the most notable aspects of this bench-
mark is the emergence of open-source models
as serious competitors to closed-source models.
The Llama-3.1-405B, in particular, achieved the
best overall score across both evaluation cate-
gories. The Llama-3.1 series, Qwen series, and
DeepSeek-v2.5, despite being open-source mod-
els, demonstrated remarkable performance, even
surpassing highly regarded commercially devel-
oped models such as GPT-4 and Claude-3 in cate-
gories like second-order ODEs and Optimization.

Take-away 3. Open-source models are competitive
in simpler tasks, but there is still a gap compared
to closed-source models in more complex tasks.

Effectiveness of Scaling The evaluation demon-
strates a correlation between model size and per-
formance across almost all tested categories. As
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Models
ODE Optimization

Overall (%)First Second System Easy Complex
order (%) order (%) (%) LP (%) LP (%)

Proprietary Models
o1-preview 71.43 +0.00 50.00 +0.00 45.00 +0.00 80.21 +0.00 36.02 +3.79 67.60 +0.66

GPT-4o 67.86 +0.51 36.36 +0.91 40.00 +0.00 87.27 +0.15 22.75 +8.53 66.67 +1.73

GPT-4-turbo 64.80 +1.02 32.73 +0.91 40.00 +0.00 87.88 +0.00 23.22 +6.64 66.34 +1.41

GPT-4 59.18 +1.02 28.18 +0.91 40.00 +2.50 86.50 +0.46 21.08 +3.09 63.81 +1.12

GPT-3.5-turbo 16.33 +6.12 7.27 +4.55 10.00 +5.00 81.29 +3.53 9.48 +0.00 49.13 +3.48

Claude-3-opus 55.61 +3.57 33.64 +1.81 45.00 +2.50 83.74 +0.31 9.48 +0.47 60.38 +1.08

Claude-3-sonnet 52.04 +2.04 24.55 +0.90 27.50 +5.00 83.59 +0.61 24.64 +0.48 60.96 +0.99

Claude-3-haiku 41.33 +9.18 23.64 +0.91 17.50 +2.50 78.53 +7.36 17.54 +1.42 54.84 +5.87

Gemini-1-pro 25.00 +8.16 13.64 +0.00 2.50 +2.50 78.83 +1.08 14.69 +0.00 50.45 +1.99

Gemini-1.5-pro 64.80 +1.02 30.00 +0.00 45.00 +5.00 85.28 +0.00 30.81 +5.21 66.09 +1.24

Open-source Models
DeepSeek-v2.5 67.86 +0.00 36.36 +0.00 32.50 +0.00 86.20 +1.99 13.33 +0.00 65.27 +1.07

DeepSeek-math-7B-base 3.57 +0.00 2.73 +0.00 2.50 +0.00 49.39 +1.22 6.64 +0.00 28.70 +0.66

DeepSeek-math-7B-rl 1.02 +0.51 1.82 +0.00 5.00 +0.00 20.55 +0.62 0.00 +0.47 11.58 +0.50

Llama-3.1-8B-instruct 30.61 +1.53 4.55 +1.81 10.00 +2.50 74.39 +2.60 13.27 +0.00 48.14 +1.90

Llama-3.1-70B-instruct 62.24 +0.52 33.64 +5.45 32.50 +0.00 85.74 +0.36 22.75 +1.42 64.44 +1.02

Llama-3.1-405B-instruct 66.84 +1.02 40.00 +0.00 30.00 +0.00 86.20 +0.76 34.12 +4.74 67.91 +1.40
Qwen-2.5-32B-instruct 60.71 +0.51 38.18 +0.00 35.00 +0.00 84.05 +0.00 12.32 +1.42 61.95 +0.33

Qwen-2.5-72B-instruct 60.71 +0.00 37.27 +0.91 32.50 +0.00 89.42 +0.15 11.43 +1.90 64.53 +0.50

Mixtral-8x7B-instruct 23.47 +4.59 4.55 +1.81 10.00 +0.00 67.79 +2.15 9.95 +0.00 42.85 +2.06

Mixtral-8x22B-instruct 52.04 +1.53 11.82 +1.82 20.00 +0.00 81.90 +2.61 19.91 +1.42 57.82 +2.06

1 Here GPT-4-turbo denotes GPT-4-turbo-2024-04-09; GPT-4o denotes GPT-4o-2024-05-13; GPT-4 refers
to GPT-4-0613; GPT-3.5-turbo denotes GPT-3.5-turbo-0125.

Table 4: Evaluation Results on the Mamo Benchmark. The subscript denotes improvement using the original LLM
as a code modifier, which corrects syntax errors without changing the underlying logic, differentiating modeling
from formatting errors (see Section 4.3). The "Overall" score represents the weighted average of correct rates,
weighted by question count. The highest score in each category is marked in boldface; an underline signifies the
top score with the LLM itself as code modifier. The score after using LLM as code modifier is computed as the sum
of the original score and the value in the subscript.

Models ODE (%) Optimization (%)
raw self-modified GPT-4-modified raw self-modified GPT-4-modified

Proprietary Models
o1-preview 99.71 100.00 100.00 97.80 99.65 98.73
GPT-4o 96.82 99.42 99.42 92.93 97.91 97.91
GPT-4-turbo 96.82 99.13 98.84 93.86 97.80 97.56
GPT-4 94.51 97.69 97.69 90.96 95.13 95.13
GPT-3.5-turbo 37.28 65.03 93.93 87.95 89.80 96.76
Claude-3-Sonnet 84.68 93.06 97.40 91.89 93.97 96.76
Claude-3-Haiku 78.03 92.77 98.27 82.61 92.58 96.29
Claude-3-Opus 88.73 96.82 97.98 90.38 93.40 95.94
Gemini-1.0-pro 56.36 69.94 88.73 88.06 89.11 94.21
Gemini-1.5-pro 93.64 98.27 98.84 95.48 98.73 96.87

Open-source Models
DeepSeek-v2.5 97.69 99.13 99.13 90.36 93.83 97.55
DeepSeek-math-7B-base 28.90 29.77 79.77 55.50 58.40 75.67
DeepSeek-math-7B-rl 5.20 6.64 80.64 19.93 21.55 55.97
Llama-3.1-8b-instruct 57.51 72.97 92.20 80.99 88.30 94.55
Llama-3.1-70b-instruct 92.48 98.27 97.98 92.93 96.99 97.34
Llama-3.1-405b-instruct 98.84 99.71 99.71 92.58 98.03 95.48
Qwen-2.5-32B-instruct 97.69 98.84 99.13 93.17 96.29 94.67
Qwen-2.5-72B-instruct 97.40 97.69 97.98 90.80 94.06 91.15
Mixtral-8x7B-instruct 50.87 69.08 91.62 84.13 87.83 96.29
Mixtral-8x22B-instruct 80.92 88.73 96.24 87.72 93.51 96.29

Table 5: Execution Success Rates for Raw, Self-Modified, and GPT-4 Modified Methods, denoting scenarios without
code modifiers, utilizing the LLM as a code modifier, and employing GPT-4-0613 as the code modifier. This table
highlights the success rates of file execution (correct format) across these three scenarios, differing from the Table 4
which shows the correctness rate.
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Figure 5: The testing pipeline involving code modifier.

indicated by the results of the Llama-3.1, Qwen,
and Mixtral series, for models with the same
architecture but different parameter scales (e.g.,
Llama-3.1-7B vs. Llama-3.1-405B), larger mod-
els tended to outperform their smaller counter-
parts. This observation highlights the effectiveness
of scaling in the mathematical reasoning tasks of
LLMs. However, the effectiveness of scaling may
plateau on easier tasks, such as Easy_LP problems.

Take-away 4. Larger LLMs perform better in
mathematical modeling.

4.3 On the Impact of Format Errors
Mitigation of Formatting Errors It is impor-
tant to differentiate between errors in modeling and
those related to coding or file formatting (See Ap-
pendix I). When the LLM output contains syntax
errors in Python or .lp code, these errors must be
corrected without altering the logic of the code to
ensure that the evaluation focuses solely on model-
ing. To address syntax issues, we employ a code
modifier, as the pipeline shown in Figure 5 (More
details are discussed in Appendix D). In our ex-
periments, we used the original language model
and GPT-4-0613 as code modifiers, with the for-
mer selected for reproducibility and the latter for its
superior coding proficiency and stability. A com-
parison of results from different code modifiers
is provided in Section 4.2 and Appendix A, with
prompts detailed in Appendix R.

Setting The testing pipeline is shown in Fig-
ure 5. As mentioned in Section 4.1.1, we selected
the original LLM and GPT-4-0613 as code mod-
ifiers. The data presented in Table 5 provides a
comparison of the performance (rate of correct for-
mat) of various models using different modification
methods: i) no modification, ii) self-modification,
and iii) modification provided by GPT-4-0613.

Observation Combining Table 4 and Table 5,
the improvement can be attributed to misjudg-

ments caused by the LLM’s coding ability. For
LLMs with a lower initial correct format rate (such
as GPT-3.5-Turbo and Llama-3.1-8B in ODE
tasks), the relative improvement is higher. This
is because, in several cases, their output codes,
initially judged as "Error" due to compile errors,
actually represent correct mathematical models. It
is also worth noting that the improvement has little
effect on the ranking, indicating that the influence
of different coding abilities on our benchmark is
minimal.

Take-away 5. Format errors have minimal impact
on mathematical modeling.

5 Related Work

Recent studies have advanced the use of large lan-
guage models (LLMs) in mathematical problem-
solving by introducing new datasets and solver
methodologies. For example, Frieder et al. (2024)
and Yuan et al. (2023) developed datasets to test
LLMs on various mathematical problems and arith-
metic expressions. Lewkowycz et al. (2022) fo-
cused on training models using natural language
paired with LaTeX-formatted math from arXiv. To
address complex computational tasks, Zhang et al.
(2024) introduced the CARP dataset, while He
et al. (2024) presented OlympiadBench, a bilingual
benchmark for competition-level math reasoning.
Liu et al. (2024) also developed MathBench, struc-
tured to assess LLMs’ theoretical knowledge. Ad-
ditionally, Mirzadeh et al. (2024) proposed GSM-
Symbolic, a benchmark that generates symbolic
variants of GSM8K questions. Their study also
introduced GSM-NoOp, a dataset containing irrel-
evant but seemingly related information to assess
model robustness, demonstrating that while LLMs
exhibit sensitivity to numerical variations, they re-
main resilient to superficial modifications.

In solver development, efforts have focused on
integrating LLMs into novel problem-solving ap-

2685



proaches. Yang et al. (2023) explored LLMs
as direct solvers, highlighting their autonomous
problem-solving potential. He-Yueya et al. (2023)
introduced a hybrid method that combines LLMs
with external symbolic solvers for equation solving,
while Pan et al. (2023) developed LOGIC-LM, a
framework blending LLMs with symbolic solvers
to tackle logical problems. AhmadiTeshnizi et al.
(2023) contributed to both dataset development and
solver integration by creating NLP4LP, a bench-
mark for LP and MILP problems, and OptiMUS, an
LLM-based agent for optimization problem solv-
ing. In line with these developments, Lyu et al.
(2023) introduced Faithful-CoT, a two-stage frame-
work that translates natural language into symbolic
reasoning chains (represented as code) before solv-
ing the problem using corresponding solvers. This
approach aligns closely with our benchmark’s ob-
jective of assessing the faithful translation of prob-
lems into structured mathematical formulations.

6 Conclusion and Future Directions

Mathematical modeling is a crucial yet challeng-
ing aspect of mathematical reasoning. Evaluating
LLMs’ ability to handle modeling is essential, as
their performance will continue to improve over
time, making specialized benchmarks in specific
areas necessary to accurately assess and push their
capabilities. Due to the complexity of mathemati-
cal models, assessment is difficult. To address this,
we introduce the Mamo benchmark, which incor-
porates solvers to validate answers and assess the
correctness of the modeling process. Mamo demon-
strates that LLMs can be effectively evaluated on
complex reasoning tasks, where the correct answer
may vary but remains equivalent in principle. This
approach paves the way for further research into
LLMs’ reasoning capabilities.
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Limitations

While the current benchmarking methodology ne-
cessitates LLMs to generate Python code for ODEs
and .lp files for optimization problems, it opens up
exciting avenues for future research. The process,
while effective, may inadvertently influence the
LLMs’ focus towards formalization over the con-
ceptual modeling, potentially affecting the depth
of mathematical reasoning. This opens the door
for benchmarks that better distinguish between an
LLM’s modeling skills and formalization abilities.
Future work could focus on assessing LLMs’ math-
ematical modeling directly, bypassing formaliza-
tion for a more nuanced evaluation.

Ethics Statement:

The benchmark is designed with a stringent ethical
framework to ensure that all problems are socially
responsible and do not perpetuate or encourage
harmful biases or stereotypes. Questions are metic-
ulously reviewed to avoid any content that could
lead to the dissemination of misinformation, sup-
port unethical practices, or cause harm to individ-
uals or groups. This includes but is not limited
to issues of privacy, security, and the potential for
misuse of the model. Furthermore, the benchmark
abstains from any problem that could indirectly
endorse unethical behaviors or decisions in real-
world scenarios, upholding the highest standards
of academic integrity and social responsibility.
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A GPT-4-0613 as Code Modifier

Selecting GPT-4 as a code modifier generally re-
sults in better performance than using the LLM it-
self for self-improvement. For instance, DeepSeek-
v2’s accuracy in ODE tasks improves from 36.41%
with self-modification to 48.80% when GPT-4 is
used as the code modifier. This pattern indicates
that GPT-4 is a more effective code modifier, en-
hancing the accuracy and performance of various
models more reliably than self-improvement.

B Cross Review

In ODE part, we have the following review process:

1. We employed GPT-4 to confirm that the newly
generated questions are amenable to being
solved by solvers using the final-state ap-
proach. There were only 10 out of 383 ques-
tions are invalid. All were filtered, 373 ques-
tions were left.

2. Then we conducted a thorough evaluation of
the questions. Our dataset initially comprised
373 questions. We identified 29 questions
that lacked sufficient information, 21 that had
incorrect answers, and 18 that featured un-
clear statements. Following our assessment,
27 questions were deleted, and 41 were cor-
rected to ensure clarity and correctness.

Finally, we have 346 problems in ODE part.
We have also conducted the cross-review pro-

cess. See the details in Appendix B.1 and the re-
sults on Appendix B.1.1.

In the optimization section, particularly with
easy LP part, out of 688 entries, 12 were found
to be completely invalid (not meeting the criteria),
26 had incorrect answers, and six had misleading
descriptions. All invalid entries were filtered out,
and the remaining issues were corrected manually.
Among them, eight of them were corrected and
others (36 questions) were filtered out. In complex
LP part, for the original 211 questions, 40 were
found formulated by wrong mathematical models.
All of them were corrected.

B.1 Cross-Review Process

Furthermore, adhering to the scaling law evident in
the dataset’s distribution, we selected 50 questions
from the ODE parts in our dataset for a deeper
analysis. Four independent reviewers (see their

qualification in Section C) were tasked with as-
sessing 50 questions each 5. The responses could
either be numeric or labeled as “error” if a question
was deemed problematic. This section outlines the
metrics used to evaluate the reviewers’ responses
against pre-defined correct answers, which also in-
clude the “error” label for any flawed questions.
We use the same metric as described in Subsec-
tion 4.1.2. Here are our results:

B.1.1 Results
The effectiveness of the review process was quanti-
fied using the metrics defined in Subsection 4.1.2,
focusing on the accuracy and inter-rater reliabil-
ity among reviewers. The statistical outcomes are
summarized as follows:

• Average Cohen’s Kappa: The average Co-
hen’s Kappa across all reviewer pairs was
0.60, indicating a moderate to substantial
agreement. This suggests that reviewers gen-
erally agreed on the classification of answers,
though there were variations in some cases.

• Minimum and Maximum Cohen’s Kappa:
The minimum Kappa value recorded was 0.50,
and the maximum was 0.71. The spread in
these values highlights areas where alignment
and training could potentially enhance consis-
tency.

• Accuracy Rates: The individual accuracy
rates were as follows:

– Reviewer 1: 90.0%
– Reviewer 2: 84.0%
– Reviewer 3: 88.0%
– Reviewer 4: 74.0%

These rates reflect the precision with which
each reviewer matched the standard answers,
including their recognition of problematic
questions correctly labeled as “error.”

These results provide insights into the overall ef-
fectiveness and areas of improvement for the cross-
review process, particularly in terms of aligning
understanding and interpretation of the evaluation
criteria among reviewers.

5The hourly wage is approximately 20 US dollars (equiva-
lent in local currency), with a total participant compensation
of around 473 US dollars (equivalent in local currency).
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Models
ODE Optimization

Overall (%)First Second System Easy Complex
order (%) order (%) (%) LP (%) LP (%)

Proprietary Models
o1-preview †† 71.43 50.00 45.00 80.21 37.91 67.49
GPT-4o †† 68.37 37.27 40.00 87.42 29.38 68.07
GPT-4-turbo †† 65.82 33.64 40.00 88.19 27.96 67.58
GPT-4 †† 60.20 29.09 42.50 86.96 24.17 64.93
GPT-3.5-turbo †† 44.90 20.00 20.00 85.43 9.48 57.48
Claude-3-Opus †† 59.18 36.36 47.50 84.20 14.22 62.37
Claude-3-Sonnet †† 56.63 26.36 32.50 85.12 27.96 63.44
Claude-3-Haiku †† 51.53 25.45 22.50 86.81 18.96 61.54
Gemini-1-pro †† 40.31 18.18 10.00 80.21 15.64 54.51
Gemini-1.5-pro †† 65.82 30.91 50.00 85.28 34.12 67.08

Open-source Models
DeepSeek-v2.5 †† 67.86 36.36 32.50 86.20 13.33 64.20
DeepSeek-math-7b-base †† 13.78 9.09 5.00 59.05 9.48 36.72
DeepSeek-math-7b-rl †† 13.78 7.27 7.50 47.70 1.90 29.20
Llama-3.1-8b-instruct †† 33.67 8.18 15.00 82.06 13.27 53.27
Llama-3.1-70b-instruct †† 62.76 39.09 32.50 86.81 23.70 65.76
Llama-3.1-405b-instruct †† 67.86 40.00 30.00 86.66 34.60 68.40
Qwen-2.5-32b-instruct †† 61.73 38.18 35.00 84.05 13.27 62.28
Qwen-2.5-72b-instruct †† 60.71 37.27 32.50 89.57 11.43 64.61
Mixtral-8x7b-instruct †† 32.14 11.82 20.00 75.46 9.95 49.38
Mixtral-8x22b-instruct †† 55.10 17.27 22.50 85.43 22.27 61.21

Table 6: Evaluation result on Mamo Benchmark. The remark †† indicates it additionally uses the GPT-4-0613 to
rectify syntax error of the code and .lp file generated by the corresponding LLM.

C Collector Qualifications

The benchmarking process benefits from the exper-
tise of reviewers with robust backgrounds in mathe-
matics, underscored by their academic accomplish-
ments. The team is composed of individuals whose
education encompasses critical mathematical disci-
plines, including calculus (I and II), linear algebra
(both introductory and advanced levels), optimiza-
tion, probability, and ordinary differential equa-
tions. The average Grade Point Average (GPA)
across these foundational courses is approximately
3.89 out of a 4.0 scale. This high level of academic
achievement demonstrates the reviewers’ strong
grasp of essential mathematical concepts and their
application. Furthermore, the team is enriched by
members who hold Ph.D. degrees in mathematics,
further solidifying the depth of expertise and analyt-
ical skills available for the benchmarking process.

C.1 Qualification of Reviewers

We select the reviewers mentioned in Appendix B.1
based on the following criteria:

1. Undergraduate students who have taken fun-
damental mathematical courses (Calculus and
Linear Algebra) and have an average GPA of
at least 3.5/4.0.

2. Have completed or are currently taking
courses in Ordinary Differential Equations
(ODE).

3. Meet one of the following English proficiency
requirements: TOEFL > 80, IELTS > 6.5, a
minimum grade of B+ in all English classes,
or a Gaokao English score > 120.

These criteria ensure their ability to read questions
in English and solve ODE problems.

D Understand Code Modifier

Figure 5 shows the evaluation process involving the
code modifier. The introduction of code modifiers
is to maintain the fairness of the evaluation: we
try to reduce conditions when the LLM outputs
the code with a correct mathematical model, but
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the code ends with a compile error due to the limit
of coding ability. We concider two factors when
applying code modifier:

(a) How often does a format error occur?

(b) How many passes on average are needed?

The factor (a) is exactly the Table 5. As for (b),
the number of passes required to fix format errors
depends on the code modifier chosen. To study the
factor (b), To study factor (b), we applied GPT-4-
0613 as a code modifier on the chosen format error
files and iteratively called it until the code was exe-
cuted successfully. Table 7 displays the distribution
of the number of pass the code modifier was called
until the errors were fixed. The chosen files were
generated by GPT-4o and DeepSeek-v2.5, repre-
senting a close-source and an open-source model,
respectively.

1 2 3 4 ≥5 all
LP 74 35 10 6 11 136

ODE 88 3 1 1 9 112

Table 7: Number of pass to apply code modifier

On average, 1.68 passes were needed to correct
format errors when using GPT-4-0613. We found
that a single pass was sufficient to correct the ma-
jority of format errors. To balance efficiency and
accuracy, we only applied a single pass for the code
modifier throughout our experiments.

E Metric

The comparison process is as the following:

C
A,Â

=





1,

if

∣∣∣∣∣
Â−A

A

∣∣∣∣∣ ≤ 1× 10−4 (1)

or

|Â−A|< 1×min{10−n, 10−2} (2),

0, otherwise.

Our consideration: (1) The difference is much
less than the Answers, so can be omitted.
(2) The only difference lies in the last few digits of
the required significant figure of the answer. By se-
lecting different thresholds ξ ×min{10−n, 10−2},
we can adjust the tolerance for the discrepancy,
ensuring that |Â − A|< ξ × min{10−n, 10−2}.
We have explored the relationship between various
thresholds and the accuracy of GPT-4o.

Figure 6 plots the results. In our metric, we
choose strict ξ = 1.

F Error Analysis

In this section, we will analyze some typical errors.

F.1 Deviation from Instruction

It is common for some models that show a low ca-
pability of few-shot learning, especially for small
models. For example, in a case Llama-3-8B out-
put ‘I wish you good luck’ when prompting
with some few-shot demonstrations in mathemati-
cal modeling.

F.2 Syntax Error

In ODE parts, the syntax errors is obviously the
syntax errors in the reponsed python code. In Opti-
mization part, the .lp file require more strict syntax
than the universal optimization formulation. The
Figure 7 and 8 show the typical syntax errors in .lp
format.

F.3 Modeling Error

One of the most common errors in modeling is the
lack of recognition of decision variable types. The
types of decision variables in optimization prob-
lems are divided into discrete (sometimes integer,
sometimes binary) and continuous. Figure 9 is an
example.

G Scope of Mamo

The scope of Mamo is chosen under the considera-
tion in Section 3.1. As Table 9 shows, Mamo focus
on the ODE and Optimization areas.

H Examples of Different M̂

Different models will typically lead to different
final answers after solving by the solvers. For
example, in ODE part:

M̂1 : y
′ + y = 0

and

M̂2 : y
′ + 2y = 0

Suppose we ask for y(1), then we have Â1 = e−1

and Â1 = e−2,they have different values.
Then for the optimization,

2693



Table 8: Accuracy at various thresholds for different categories(%), where ξi = i

ξ 0 1 2 3 4 5 6 7 8 9

ODE 48.55 50.87 54.62 56.36 57.51 58.96 59.83 60.12 60.69 61.85
Easy LP 87.27 87.27 87.27 87.27 87.27 87.27 87.27 87.27 87.27 87.27

Complex LP 22.75 22.75 22.75 22.75 22.75 22.75 22.75 22.75 22.75 22.75

Figure 6: Accuracy of different threshold in different category

M̂1:
max
x,y

x+ y

subject to x+ y ≤ 20,

x− y ≥ 0,

0 ≤ x ≤ 10,

0 ≤ y ≤ 5,

x, y ∈ Z.

M̂2:
max
x,y

x− y

subject to x+ y ≤ 20,

x− y ≥ 0,

0 ≤ x ≤ 10,

0 ≤ y ≤ 5,

x, y ∈ Z.

the optimal value of M̂1 is Â1 = 10, while the
optimal value of M̂2 is Â2 = 0.
The minor difference in the mathematical models
will result in different final values.

I Examples of Syntax Errors

Some outputs of LLM contain the correct model
but not follow the syntax of solvers. For examples,
the standard .lp file for

max
x,y

x+ y

subject to x+ y ≤ 20,

x− y ≥ 0,

0 ≤ x ≤ 10,

0 ≤ y ≤ 5,

x, y ∈ Z.

is

Minimize
obj: x + y
Subject To

c1: x + y <= 20
c2: x - y >= 0

Bounds
0 <= x <= 10
0 <= y <= 5

Generals
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Figure 7: The syntax error is
caused by the constraint, in .lp for-
mat, the variables should be placed
on the left hand side of the inequal-
ity Figure 8: Same type of syntax error as Figure 7

x
y

End

However, if we replace the constraint c1 with
x <= 20 - y, the code will be reported as an
error, even if the two constraints are equivalent. To
specifically test the modeling ability of the LLMs,
we apply code modifier to fix the syntax errors.
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Figure 9: In this TSP problem, the decision variable should be binary, instead of "General", which means “integer”

Category In Mamo

Changes and Differences ✗
Proportionality and Geometric Similarity ✗
Optimization Problem Modeling ✓
Differential Equations ✓
Probabilistic Modeling ✗

Table 9: The taxonomy of mathematical modeling. In Mamo benchmark, we only include the categories where
sophisticated Solvers is available.
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J Example of Mathematical Model
Correction

In Figure 10, we display an example of correc-
tion of the mathematical model in Complex_LP.
In the optimization model of the max flow prob-
lem, variables were initially set in the wrong
signs in two constraints(C1, C3). The corrected
constraints(C ′

1, C
′
3) are also displayed.
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Maximum Flow Problem:
The network consists of n nodes connected by m edges. The goal is to maximize the total flow from the
source node (node 0) to the sink node (node n− 1), subject to the following constraints:

Maximize: c
Subject to:

C1 :
n−1∑

j=1

xj0 −
n−1∑

j=1

x0j−c = 0 (Inflow Conservation at Source)

C2 :
n−1∑

j=0
j ̸=i

xji −
n−1∑

j=0
j ̸=i

xij = 0 ∀ i ∈ {1, 2, . . . , n− 2} (Intermediate Nodes)

C3 :
n−2∑

j=0

xjn−1 −
n−2∑

j=0

xn−1j+c = 0 (Outflow Conservation at Sink)

C4 : 0 ≤ xij ≤ capacity(i, j) ∀ (i, j) ∈ Edges (Capacity Constraints)

In the Inflow Conservation and Outflow Conservation part, the correct constraints should be:

C ′
1 :

n−1∑

j=1

xj0 −
n−1∑

j=1

x0j+c = 0

C ′
3 :

n−2∑

j=0

xjn−1 −
n−2∑

j=0

xn−1j−c = 0

Figure 10: The example of model correction
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K Few-shot Experiment

To test the sensitivity of different models to the
number of prompts, we conducted a sensitivity
analysis using the scaling law to examine the effect
of the number of shots on model performance. In
our analysis, we tested the performances of 11 mod-
els on ODE problems using prompts with 0 shot,
1 shot, 3 shots, 5 shots, and 10 shots. The results,
shown in Figure 11, illustrate the ODE problem-
solving accuracy of different models under varying
numbers of shots. Similarly, we performed sensi-
tivity tests on optimization problems, assessing the
accuracy of 10 models with prompts of 0 shot, 1
shot, 3 shots, and 5 shots. The results are depicted
in Figure 12.

Additionally, we specifically tested the 0-shot
performance of GPT-4-0613 on all questions in
Easy LP and Complex LP categories. The accu-
racy of GPT-4-0613 was 66.56% in Easy LP and
14.69% in Complex LP, resulting in an overall LP
accuracy of 53.65%, consistent with the results
obtained from sampling.

L Testing Process

We use 3-shot learning in testing; see examples in
Appendix R. The examples of testing process in
ODE and optimization is shown in Figure 13 and
Figure 14.

M Probability of Getting Correct Â from
Wrong M̂

There are chances for the wrong mathematical
model M̂ to lead to correct answer Â. However, the
probability is low due to the wide spread of the con-
tinuous answer space and lack of prior knowledge.
We examined the distribution of all the answers
in Mamo dataset. The probability of guessing an
ODE answer within a 0.01 interval is about 2.9%,
and for LP, it’s around 7.3%. These low probabil-
ities highlight the difficulty of correctly guessing
the answer without proper modeling.
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Figure 11: Results of models accuracy and shots on ODE problems

Figure 12: Results of models accuracy and shots on optimization problems
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Figure 13: Example of testing process in optimization

Figure 14: Example of testing process in ODE
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N Question Formulation

Figure 15 shows the example of synthesis pro-
cess in ODE. The process of synthesizing data
starts with the creation of typical mathematical
constructs, into which random parameters are intro-
duced to give them specificity. This is followed by
the computation of answers to establish a ground
truth. Subsequently, GPT-4 is employed to craft
real-life scenarios based on these predefined mod-
els, effectively translating abstract mathematical
concepts into tangible, context-rich problems.

O Data Description and Word Cloud

We present a comparative table showcasing the
number of scenarios across various categories,
from manufacturing to natural science, in Table 10.
We also make the word cloud of the combined data
in Figure 16
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Figure 15: Example of synthesis process in ODE

Category Manufacturing Environment Business Daily Life Natural Science Others
LP 75 114 265 258 44 77
ODE 85 74 54 22 109 2

Table 10: Comparison of ODE and LP dataset of different categories

Figure 16: The word cloud of the data after filtering the requirement words such as ’significant figures’, ’rounded’

2703



P Evaluation script

The evaluation script is as following:

def comp(output, standard_answer):
dif = abs(float(output) - float(standard_answer))
if float(standard_answer) == 0:

rate = dif * 1e-4
else:

rate = dif / float(standard_answer)
if abs(rate) < 1e-4:

return 1
else:

return 0

def compare_output_with_standard(output, standard_answer):
try:

float_output = float(output)
except ValueError:

return False

if '.' in standard_answer:
digit = len(standard_answer.split('.')[1])

if digit <= 2:
digit = 2

s_ans = float(standard_answer) * 10 ** digit
ans = float_output * 10 ** digit

return (abs(ans - s_ans) < 1 or comp(output, standard_answer))
else:

digit = 2
s_ans = float(standard_answer) * 10 ** digit

ans = float_output * 10 ** digit
return (abs(ans - s_ans) < 1 or comp(output, standard_answer))

Q Settings

We have the following settings:

• We tested the following models by calling
API: All the closed source models except o1-
preview, DeepSeek-V2.5, Llama-3.1 series,
Qwen-2.5 series with temperature=0.8. o1-
preview was called under default tempera-
ture since the change of temperature is not
allowed.

• Other models was deployed and inference us-
ing VLLM (Kwon et al., 2023) on machine in
slurm cluster with 8 * A100, with temperature
0.8 and max_length 4096 tokens.
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R Prompts

The following figures show the prompts we use
in the benchmarking. Figure 17,18 display the
prompt we use in the evaluation process, while
Figure 19,20 list the prompts we use for calling
code modifiers. As shown in Figure 19,20, the
code modifier is prompted to adjust the code based
solely on the code and error information during
execution, without any information about the prob-
lem itself. This ensures that the code modifier does
not alter the underlying mathematical model based
on problem details.
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[Instruction]
Assume you are a virtual assistant with expertise in optimization, specifically in creating .lp files for linear programming problems. Your task is to translate
given natural language problems into optimization models, formatted as .lp files.When you receive a question, it might include mathematical expressions
in LaTeX format. Your job is to interpret these expressions accurately and model the problem in .lp format. Your response must adhere to the following
guidelines:
- The optimization model must be written in .lp format, adhering to the conventions and syntax appropriate for linear programming problems.
- The model should be designed so that solving it yields the optimal value, which directly answers the question posed.
- Your response should be an entire .lp file, ready to be processed by a linear programming solver. Ensure that the file contains no comments or extraneous
content beyond the model itself.
- Handle LaTeX expressions with care to ensure that the mathematical aspects of the problem are accurately represented in the .lp model.
- If the solution needs to be rounded to an integer, make use of the ’General’ integer constraint in the .lp file to specify integer variables, please do not use
’General’ if there are not requirement for the integer variables.

Here comes the examples:
[Example_1:]

(the input)
A manufacturing company produces two types of products: X and Y . The production cost for each unit of product X is
50, while the cost for each unit of product Y is
10. There are constraints in the production process, such that twice the number of units produced from product X , plus the number of units from product Y ,
cannot exceed 200 due to resource limitations. In addition, to meet market demand, four times the number of units produced from product X , plus the number
of units from product Y , must be at least 50.
Considering these constraints and given that both products can only be produced in whole numbers due to their physical nature, what is the minimum total cost
needed for producing these items while satisfying all conditions? Provide your answer rounded to the nearest dollar.
Your response:
Minimize
obj: 50 x + 10 y

Subject To
c1: 2 x + y <= 200
c2: 4 x + y >= 50

Bounds
x >= 0
y >= 0

Generals
x
y

End

[...]

Please craft the .lp file according to these instructions, focusing on delivering a model that is directly solvable to obtain the answer.
And Please follow the syntax like examples to write the .lp file.

Here comes the question:
[question]

Generate the contents of an .lp file for this problem, starting with the objective function and followed by the constraints, without any additional sentences. The
constraints should be formatted as ’variable + variable >= number’ for inequalities, all the variables shoule on the left hand side of the inequality . Ensure there
is a space between variables and their coefficients.

Your response:

Figure 17: The prompt for testing in optimization part. [question] refers to a question in the benchmark. [...]
refers to the examples. We use 3-shot in testing
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S Licensing Information

This content(incolding benchmark) is licensed un-
der the Creative Commons Attribution-ShareAlike
4.0 International (CC BY-SA 4.0) license.
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[Instruction]
Assume you are a virtual assistant with expertise in ordinary differential equations (ODEs), particularly in formulating ODE models from natural language
descriptions and solving them using Python’s ‘solve_ivp‘, ‘odeint‘ from SciPy, and ‘dsolve‘ from SymPy. Your primary task is to convert the given
natural language problems into ODE models and then apply ODE solvers to find the solutions.

When you receive a question, it will often contain mathematical expressions in LaTeX format, which you need to interpret accurately. Your response must be
in the form of Python code that directly outputs the final solution to the problem upon execution. This Python code should adhere to the following criteria:

1. The output should only display the final answer of the problem. 2. Utilize a ’final-state-approach’ where the code immediately prints the solution after
solving the ODE, without showing any intermediate steps.
3. Ensure the answer is rounded to the specified number of significant figures or decimal places. Use Python’s ‘round‘ function for decimal rounding. For
significant figures, include and use the following function in your code:

``` python
def round_to_significant_figures(num, sig_figs):
if num != 0:
return round(num, -int(math.floor(math.log10(abs(num))) + (1 - sig_figs)))
else:
return 0 # Handles the case of num being 0
```

4. Your response should be entirely in Python code, formatted to run directly without modifications.
5. Handle LaTeX expressions in the problem statement carefully to ensure accurate modeling and solution.

Here comes the examples:
[Examples]

[...]

Please process the problem according to these instructions, focusing solely on delivering the Python code that meets these requirements. And Please directly
generate the code without any explaintion(except the comments in the code).
the following lines are forbidden:
“
Here’s the Python code that solves the given problem and meets the specified requirements:
``` python

```
This code uses the ‘solve_ivp’ function from SciPy to solve the initial value problem for the given differential equation. The ‘round_to_significant_figures’
function is included to round the final answer to the specified number of significant figures. Upon execution, the code will directly output the amount of
pollutant left in the tank after 5 minutes, rounded to five significant figures.
”
Please avoid the above sentences.

Take a deep breathe before answering the question. This is a piece of cake to you.

Here comes the question:
[question]

Your response:

Figure 18: The prompt for testing in ODE part. [question] refers to a question in the benchmark. [...] refers to
the examples.
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[Instruction]

You are experienced python engineer, the following codes may have some errors (in syntax), with the error information [error_info] , please fix the errors to
make sure the code can run successfully.
If there is no error, please return the original code.
And please do not change the original logic of the code. Your response should be entirely in Python code, formatted to run directly without modifications.
Take a deep breathe before answering the question. This is a piece of cake to you.
PLEASE do not response anything except the code, No other comments outside the code are allowed.

The followings are forbidden:
“
The code is almost correct, but there is a syntax error in the function ‘round_to_significant_figures‘. The round function is missing a closing parenthesis. Here
is the corrected version:

``` python
```

”

Please avoid resposing above sentences.
Please output only the corrected code, with no additional text or explanations.
Here comes the code:
[code]

The correct code is:

Figure 19: The prompt for fixing syntax error in ODE. [error] refers to the message when executing the Python

code. While [code] refer to the code which contains syntax error

[Instruction]
You are experienced engineer in optimization, please fix the errors to make sure the code can run successfully.
If there is no error, please return the original code.
And please do not change the original logic of the lp file. Your response should be entirely in .lp format, formatted to run directly without modifications.
Take a deep breathe before answering the question. This is a piece of cake to you.
PLEASE do not response anything except the code, No comments are allowed.
The followings are forbidden:

“
This is the correct .lp file:
``` lp
```

”

Please avoid resposing above sentences.
Please output only the corrected code, with no additional text or explanations.
Here comes the lp:
[lp_code]

Generate the correct .lp format, starting with the objective function and followed by the constraints, without any additional sentences. The constraints should
be formatted as ’variable + variable >= number’ for inequalities, all the variables shoule on the left hand side of the inequality. For example, make a + b + c <=
d into a + b + c - d <= 0. Ensure there is a space between variables and their coefficients (coefficients should be numerical).
The correct lp code is:

Figure 20: The prompt for fixing syntax error in LP. [lp_code] refer to the lp code which contains syntax error
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T Explanation of Criteria

In this section, we explain the reasoning behind the
validation of each proposition shown in Figure 3,
based on the properties outlined in our benchmark
dataset.

T.1 Property 1: Final-State Approach
Solvability

Property 1 states that problems should be solvable
directly, using a ’final-state approach’. This means
that once the model is formulated, the solver should
be able to compute the final answer without re-
quiring additional transformations. We assess two
propositions based on this property:

• Proposition 1: A = y(t0) is valid as it asks
for the value of the solution function y(t) at a
specific time t0, which is a final-state solution.
A solver can compute this directly.

• Proposition 1: A = a×y(t0)+b is invalid be-
cause it requires an additional transformation
(i.e., multiplying by a and adding b), which
does not adhere to the final-state solvability
approach.

T.2 Property 2: Unified and Numerical
Answers

Property 2 requires the answer to be a unified and
numerical value, particularly for ODE problems
where the function’s value at a specific time is
sought. For optimization problems, the optimal
value should be clear.

• Proposition 2: A = max(x+y) for x, y ≤ 0
= 0.0 is valid as it yields a clear numerical re-
sult, specifically the maximum of x+y within
the defined constraints.

• Proposition 2: A =
√
3 is invalid because

while
√
3 represents a number, it is not ex-

pressed as a numerical answer. In practice,
this could lead to ambiguities if different
solvers provide decimal approximations (e.g.,
1.732) instead of the exact expression.

T.3 Property 3: Significant Figures and
Precision

Property 3 mandates that each question specifies
the required precision or number of significant fig-
ures for the answer.

• Proposition 3: A = 6.66 is valid because it
presents the number to three significant fig-
ures, which is explicitly required.

• Proposition 3: A = 6.7 is invalid as it is
given only to two significant figures, which
does not meet the required precision.

T.4 Property 4: Real-World Problem Context
Finally, Property 4 introduces the need for real-
world context in problem framing, without explic-
itly stating the mathematical model. This requires
the solver to abstract the appropriate mathematical
model from the problem description.

• Proposition 4: "In a company..." aligns with
this property, as the problem is framed as a
real-world scenario. The mathematical model
is not explicitly given, challenging the solver
to formulate it based on the provided context.
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