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Abstract

With the scale of Large Language Mod-
els(LLMs) and the size of the training data
continuing to expand, the computational costs
required for training or tuning have signifi-
cantly increased as well. In this work we pro-
pose an efficient and effective Large-Scale Data
Compression (LSDC) method to substantially
reduce the size of training data and thus en-
hance the training efficiency without compro-
mising the performance of LLMs through a
bifurcated quantization strategy. Specifically,
our method first segments the dataset into mul-
tiple clusters, significantly reducing the time
and memory requirements for data compres-
sion. Then, during the second phase of coreset
selection, the diversity of samples is ensured
by maximizing the submodular gain in order to
avoid performance degradation. The compara-
tive experiments showed that the performance
of LLMs fine-tuned on a 20% compressed sub-
set of the Alpaca dataset using LSDC outper-
formed those on the full dataset. Moreover,on
a domain-specific instruction dataset of mil-
lions of samples, the LLMs fine-tuned on a 10%
compressed dataset using LSDC outperformed
those on the entire dataset, which dramatically
enhances the domain-adaption capabilities of
LLMs. This provides a promising potential of
LSDC in training bigger LLMs from scratch
and supervised fine-tuning as well.

1 Introduction

Large Language Models (Touvron et al., 2023; Hui
et al., 2024) have revolutionized the field of artifi-
cial intelligence. With the generalization of models
and the increase complexity of tasks, the scale and
training data of large language models has rapidly
expanded, while facing a sharp increase in the de-
mand for model training resources. Researchers
have turned to data compression (Li et al., 2023;
Wang et al., 2018; Angelova, 2004) techniques to
address the conflict between scarce resources and

increasing demands. These methods can signifi-
cantly reduce the computational burden of training
models through reduce the size of training dataset.

Data compression methodology aims to effi-
ciently minimize the sample set size while main-
taining data integrity. Data distillation (Wang et al.,
2018) and data pruning (Angelova, 2004) are the
cornerstone techniques of data compression, play-
ing indispensable roles in optimizing data handling
processes. Data distillation (Wang et al., 2018;
Deng and Russakovsky, 2022; Nguyen et al., 2021;
Loo et al., 2022; Zhou et al., 2022; Nguyen et al.,
2020) algorithms extract the essence from exten-
sive original datasets to generate compact, represen-
tative subsets that encapsulate critical information,
considerably reducing the model’s training load
while preserving data integrity. Data pruning algo-
rithms (Paul et al., 2021; Killamsetty et al., 2021;
Zhou et al., 2023) refine the data architecture by
excising data points that offer minimal contribu-
tions to model training, enhancing both training
efficiency and model efficacy. Both methods have
been instrumental in augmenting the feasibility and
effectiveness of deep learning models within lim-
ited resource constraints.

However, existing data compression techniques
face substantial challenges in computational effi-
ciency and preservation of data diversity, hinder-
ing their applicability to large-scale data quanti-
zation scenarios. Firstly, data distillation (Wang
et al., 2018; Sachdeva and McAuley, 2023) re-
lies on model-based optimization for supervision,
which introduces significant computational chal-
lenges in the context of large-scale data processing.
Secondly, influenced by sample distribution, data
pruning (Angelova, 2004) methods tend to discard
samples from sparse regions, leading to reduced
diversity. Furthermore, the growing popularity of
LLMs and the pervasive presence of large-scale
datasets have raised performance expectations for
data compression algorithms.
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We propose a efficient and effective method,
LSDC, to address the issues of efficiency in the
compression process and the loss of diversity in
compressed data. This approach strategically bal-
ances time efficiency with compression fidelity. Ini-
tially, LSDC performs preliminary clustering of
the dataset, dividing it into several subsets. Then,
each subset is recursively partitioned into a collec-
tion of non-overlapping bins, guided by the objec-
tive of maximizing submodular gain (Iyer et al.,
2021). Ultimately, each bin undergoes uniform
sampling. This two-phase approach efficiently seg-
ments large-scale datasets into multiple smaller sets
distinguished by feature disparities, significantly
reducing the computational demands of data com-
pression. The dynamic sampling strategy aims to
minimize the loss of data diversity by adhering to
the principle of maximizing submodular gain.

Our main contributions are summarized as:

• We propose a concise and efficient and effec-
tive method LSDC for general data compres-
sion. This approach enhances compression ef-
ficiency and maintains high-quality outcomes
through adaptive clustering and dynamic sam-
pling.

• We not only conduct experiments on fine-
tuning of LLMs, but also compare our method
with others on computer vision tasks(CV), and
the results showed that LLMs fine-tuned on
only 20% LSDC quantization data can out-
perform that fine-tuned on the entire Alpaca
dataset. Moreover, the quantization perfor-
mance on the CIFAR dataset surpasses previ-
ous state-of-the-art (SOTA) methods.

• We are the first to comprehensively explore
the efficiency and quality of data compres-
sion at millions of domain-specific instruction
dataset, specifically by incorporating cluster-
ing, thereby extending the data compression
paradigm to the domain of large-scale domain-
specific instruction data compression tasks.

2 Related Work

In this section, we introduce two types of meth-
ods: data distillation (Wang et al., 2018) and data
pruning (Angelova, 2004).

2.1 Data Distillation
Data distillation (Wang et al., 2018) techniques
focus on creating compact, high-quality represen-

tations that encapsulate the essential information
of a target dataset, effectively capturing and con-
densing its most critical knowledge into smaller
data subsets (Sachdeva and McAuley, 2023). Data
distillation primarily encompasses two categories:
image distillation and instructional distillation.

Beginning with the application of data distilla-
tion (Wang et al., 2018) methods on MNIST and
CIFAR-10 datasets, a series of image distillation
techniques have been developed. Image distilla-
tion employs multiple matching strategies such as
Meta-model Matching (Wang et al., 2018; Deng
and Russakovsky, 2022; Nguyen et al., 2021; Loo
et al., 2022; Zhou et al., 2022; Nguyen et al., 2020),
Gradient Matching (Zhao et al., 2020; Zhao and
Bilen, 2021; Lee et al., 2022b), Trajectory Match-
ing (Cazenavette et al., 2022; Cui et al., 2023),
and Distribution Matching (DM) (Zhao and Bilen,
2023; Wang et al., 2022a). Additionally, a data
distillation technique based on factorization (Kim
et al., 2022; Deng and Russakovsky, 2022; Liu
et al., 2022a; Lee et al., 2022a) employs two dis-
tinct components, bases and hallucinators, to pa-
rameterize data summaries.

Recent research has explored the application of
data distillation techniques to instruction datasets.
Instruction Mining (Cao et al., 2023) utilizes natu-
ral language indicators as a measure of data qual-
ity, applying them to assess unseen datasets and
automatically select high-quality instruction data
for fine-tuning LLMs. ALPAGASUS (Chen et al.,
2023) employs a powerful Large Language Model
(such as ChatGPT) for automatic assessment, while
the "From Quantity to Quality" (Li et al., 2023)
initiative introduces the Instruction-Following Dif-
ficulty (IFD) metric for evaluation.

2.2 Data Pruning
Data pruning (Angelova, 2004), a critical method-
ology within the field of machine learning and data
science, aims at enhancing dataset quality and com-
putational efficiency by selectively removing less
informative or redundant data points. DLDD (Paul
et al., 2021) proposes the use of gradient norms
and error norms as metrics to identify and select
important samples. GLISTER (Killamsetty et al.,
2021) adopts continuous bi-level optimization with
the aim of selecting a subset of the training set
that maximizes the logarithmic likelihood on the
validation set. ALACE (Margatina et al., 2021),
Herding (Welling, 2009), DQ (Zhou et al., 2023)
aims to identify challenging and varied data points
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by analyzing their similarity. There are also some
other data pruning strategies, such as contextual
diversity-based (Agarwal et al., 2020), uncertainty-
based (Coleman et al., 2019) and forgetting dynam-
ics based (Toneva et al., 2018), etc.

3 Method

In this section, we initially delve into the features
and constraints of current technologies pertinent to
our study and offer a comprehensive overview of
our method.

3.1 Related Technologies and Limitations
The current methods for compressing training data
primarily include data distillation and data prun-
ing. While these methods perform well on some
small-scale datasets, they are difficult to apply to
large-scale datasets. The process of synthesizing
datasets through data distillation requires model-
based optimization oversight, which can fail when
using crafted datasets to train different model archi-
tectures. Simultaneously, applying data distillation
methods on large-scale datasets demands consider-
able computational resources.

Different from data distillation approaches, the
data pruning approaches select a subset of sam-
ples from the existing dataset rather than synthe-
sizing new data. Datasets compressed using the
data pruning method are versatile and can be uti-
lized to train a wide range of models. However,
current data pruning techniques still require con-
siderable computational resources when applied to
large datasets. DQ (Zhou et al., 2023) is a recent
state-of-the-art data pruning method. We examine
both its temporal and spatial complexity associated
with it. (xi, yi) denotes the i-th labeled sample of
dataset D. The objective of DQ is to extract sam-
ples from dataset D and allocate them into M bins.
The m-th bin Sm is initialized as ∅ and updated
as Sk

m ← Sk−1
m ∪ xi, where k denotes the current

total number of samples in Sk
m. Each bin ultimately

contains an equal number of samples. The most
computationally demanding segment of the DQ
process lies in the selection of samples through
maximizing submodular gain P (xi). The formula
is defined as follows.

P (xi) =
∑

p∈Si−1
m

||f(p)− f(xi)||2

−
∑

p∈D/S1∪...∪Si−1
m

||f(p)− f(xi))||2
(1)

xi ← argmax(P (xi)) (2)

Where f() denotes the feature extractor. Si−1
m

represents the first i-1 samples for the m-th bin and
D/S1∪...∪Si−1

m represents the rest of the data. For
a dataset comprising n samples, the average time
complexity for each selection operation is O(n).
Owing to the necessity for a total of n selections,
the generation process of bins incurs a time and
space complexity of O(n2).

Figure 1: The time and memory required for DQ to
process different amounts of data.

We employ DQ for our testing and document
the quantization time, as shown in Figure 1. The
required time and memory increase exponentially
with the growth of data volume. For Alpaca instruc-
tion data with 52k samples, data compression via
DQ consumes 200 minutes and requires 20GB of
memory. However, the quantization of 500k data
points would approximately demand 2000GB of
memory and 20,000 minutes of processing time,
which is manifestly unfeasible. As the training data
size increases, an efficient and effective algorithm
becomes especially critical.

3.2 Overall Framework

We propose a two-phase data compression ap-
proach as a compression framework tailored for
large-scale datasets as shown in Figure 2. This
method incorporates an initial coarse clustering
phase followed by blockwise compression, signifi-
cantly enhancing the efficiency of compressing the
dataset, while preserving the integrity and quality
of the resulting dataset. In our study, we initially
partition the dataset into K distinct subsets through
preliminary clustering. Subsequently, we apply a
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Figure 2: Overview of LSDC. (a) The original dataset is projected onto the embedding space through an encoder.
(b) The clustering phase divides the original dataset into multiple subsets based on the embedding space vector. (c)
The coreset selection phase divides subsets into equally sized bins for sampling.

coreset selection technique to sample from each of
these subsets.

Given a dataset D, initially, a cluster centroid C1

is chosen at random. Subsequently, a new cluster
centroid is selected, which is determined based on
the distance of each datum from the previously cho-
sen cluster centroids. After identifying K initial
cluster centroids denoted as [C1, ..., Ck, ..., CK ],
the dataset is segmented into clusters centered
around these centroids, followed by an iterative
refinement of the centroids based on their respec-
tive clusters. Upon completing K iterations, the
dataset D is systematically partitioned into K co-
herent subsets, represented as [S1, ..., Sk, ..., SK ].
For each subset Sk encompassing Mk data points,
we iteratively extract smaller information sets from
Sk into bins of predetermined size denoted by G,
by maximizing submodular gain. Construct a se-
ries of small bins denoted as [Sk1 , ..., Skn , ..., SkN ],
where N = MK/G, and finally uniformly sample
from each of these bins to constitute the integrated
coreset S∗, which will be utilized for training pur-
poses.

3.3 Clustering Phase
Cluster centroids initialization: In the clustering
algorithm, following the random initialization of a
cluster centroid, the subsequent cluster centroids
are chosen based on the distance of each sample
relative to the already chosen cluster centroids. Var-
ious metrics are employed to assess distance within
the data space, including but not restricted to the
Euclidean distance, Manhattan distance, and mea-
sures of angular separation such as cosine similarity.
We employ cosine similarity, which quantifies the
cosine of the angle between the samples vector and
the centroids vector, as the metric for selecting sub-
sequent cluster centroids in the clustering process.
To optimize the dispersion of cluster centroids and

hence minimize the likelihood of poor initial par-
titions, the selection strategy for the k-th cluster
centroids Ck, is formulated to maximize the dis-
tance from previous chosen centers. The specific
selection criterion is as delineates.

xi ← argmin(maxj∈[1,k)
xi · Cj

||xi|| · ||Cj ||
) (3)

Where Cj , j ∈ [1, k) represents the first k-1 clus-
ter centroids that have already been selected. The
rationale behind this initialization approach is to
approximate the true distribution of cluster cen-
troids more closely, thereby reducing the number
of iterations required in the clustering algorithm.

Cluster centroids recalculation: During the
mean clustering procedure, data points are first
partitioned into distinct clusters according to their
proximity to the respective centroids. Subsequently,
the arithmetic mean of the points within each clus-
ter is computed, serving as the updated centroids
for the ensuing iteration.In our methodology, we
employ cosine similarity to measure the angular
proximity between the samples and cluster cen-
troids. The formula employed to ascertain the clus-
ter affiliation of the sample xi is specified as fol-
lows.

k ← argmin(
xi · Ck

||xi|| · ||Ck||
) (4)

The formula for updating the cluster centroids is
delineated as follows.

Ck =
1

Mk

Mk∑

i=1

xki
||xki ||

(5)

Where Mk represents the number of samples in
the k-th cluster, and xk1 , ..., xkMk

represents the
samples in the k-th cluster.
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Algorithm 1 clustering phase

Input: original dataset D, cluster numer K.
for k = 1, ...,K do

if k=1 then
randomly initializing a cluster centroids C1

else
xi ← argmin(maxj∈[1,k)

xi·Cj

||xi||·||Cj ||),
Ck = xi, Select the sample most distant
from existing cluster centers.

end if
end for
for j = 1, ...,K do

for i = 1, ..., len(D) do
k ← argmin( xi·Ck

||xi||·||Ck||), Select the clus-
ter to which the sample xi belongs.

end for
for k = 1, ...,K do
Ck = 1

Mk

∑Mk
i=1

xki
||xki

|| , updating the cluster
centroids Ck.

end for
end for
Output: cluster S1, ..., SK

The complete algorithmic procedure of cluster-
ing phase is illustrated as Algorithm 1.

3.4 Coreset Selection Phase

Dataset bin generation: To maintain the diversity
of the sampled data points, each bin is chosen to
maximize the submodular gain. We employ a recur-
sive selection strategy for bins from the previously
divided cluster Sk, with the selection criterion for
the g-th sample in the n-th bin defined as follows.

xg ← argmax(
∑

p∈Sk/
⋃n

i=1 S
g−1
ki

p·xg−
∑

p∈Sg−1
kn

p·xg)

(6)
Where Sg−1

kn
represents the first g − 1 sam-

ples selected from cluster Sk for the n-th bin.
Sk/Sk1 ∪ ...∪ Sg−1

kn
denotes the remaining sample

data in cluster Sk after excluding the selected n
bins. During the initial bin generation process, as
there is a larger proportion of remaining samples,
the selection of samples is predominantly influ-
enced by the distance to the residual set.

Dataset bin sampling: As the generated bins
possess diverse characteristics, to obtain a varied
and information-rich subset, we uniformly sample
from the bins of cluster Sk to form the coreset S∗

k .

The formula for the composition of the coreset S∗
k

is as follows.

S∗
k = r(Sk1 , ρ) ∪ ... ∪ r(Skn , ρ) ∪ ... ∪ r(SkN , ρ)

(7)
Where r() denotes a uniform sampler, and ρ rep-

resents the sampling ratio.
The coresets S∗

k formed by each cluster Sk are
combined to obtain the final compact set S∗, and
the process is expressed as follows.

S∗ = S∗
1 ∪ ... ∪ S∗

k ∪ ... ∪ S∗
K (8)

The complete algorithmic procedure of coreset
selection phase is illustrated as Algorithm 2.

3.5 Time Complexity Analysis

We meticulously analyzed the time complexity of
LSDC, an algorithm designed for efficiently han-
dling large-scale datasets. This algorithm consists
of two phases: Clustering and Coreset Selection.
For a dataset comprised of n samples, we set the
number of clusters to K. In phase one, we select
K sample centers and iterate K times, resulting in
a time complexity of O(n ∗ K2). In the second
phase, the time complexity generated by the Core-
set Selection process is O(n2/K). The detailed
proof process is included in the Appendix A.

4 Experiments

We evaluate the performance of the model trained
on the dataset compressed via our method, simulta-
neously evaluate the compression efficiency of our
method. This section presents an overview of the
dataset used, provides details about the experimen-
tal setup, and analyzes the results obtained.

4.1 Dataset

Following the previous works (Zhao and Bilen,
2023; Zhou et al., 2023), we conduct experiments
on the the Alpaca instruction dataset (Taori et al.,
2023) and CIFAR-10 image dataset (Krizhevsky
et al., 2009). Additionally, to further validate the
efficacy of the LSDC method in addressing issues
of data imbalance and varying data quality in real-
world scenarios, we selected the Ancient Chinese
dataset (CubeNLP, 2024), which comprises over a
million samples.

Alpaca was the instruction following dataset de-
veloped by the Stanford CRFM for training and
evaluating the LLMs. This dataset contains 52k
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Algorithm 2 coreset selection phase

Input: cluster S1, ..., SK , bin number N, bin
size G, ratio ρ.
S∗ ← ∅
for k=1,...,K do
Sk1 , ..., SkN ← ∅
S∗
k ← ∅

for n=1,...,N do
for g=1,...,G do

select the g-th sample xg in the n-th bin
using Eq6
Sg
kn
← Sg−1

kn
∪xg, add xg to the n-th bin

Skn

end for
S∗
k ← S∗

k ∪r(Skn , ρ), sample from bin Skn

and incorporate into coreset S∗
k

end for
S∗ ← S∗ ∪ S∗

k , incorporate the coreset S∗
k of

each cluster Sk into the final coreset S∗.
end for
Output: final coreset S∗

high-quality instructions and corresponding out-
puts which is generated by the self-instruct method
(Wang et al., 2022b).

CIFAR-10 dataset stands as a fundamental
benchmark in the domain of computer vision re-
search, comprising 60,000 color images, each with
a resolution of 32x32 pixels. They are evenly dis-
tributed across ten distinct categories, each repre-
sented by 6,000 images. This dataset is strategically
partitioned into a training set of 50,000 images and
a test set of 10,000 images, specifically designed
to facilitate the development and evaluation of ad-
vanced image recognition algorithms.

Ancient Chinese instruction fine-tuning dataset
consists of 1,090,000 entries derived from a variety
of classical literature, poetry, and couplets written
in Classical Chinese, primarily spanning from 1000
BCE to 1600 CE across various dynasties in ancient
China. The instructions in this dataset cover poetry
composition, couplet prediction, polysemy resolu-
tion, and poetry appreciation, among other topics.
The specific distribution of data categories and data
examples are illustrated in Appendix B.

4.2 Experimental Details

For diverse datasets, we employ distinct models to
feature extraction, subsequently fine-tuning vari-
ously structured models utilizing the core sets dis-
tilled through our proprietary methodology.

We employ the semantic similarity model (Xiao
et al., 2023) to generate vector representations for
the instructions within the Alpaca dataset. Utiliz-
ing the Llama-Factory framework (Zheng et al.,
2024), we fine-tune the Llama2-7B (Touvron et al.,
2023) model with the default fine-tuning set to 3
epochs. For the evaluation of the fine-tuned model,
we employ MMLU (Hendrycks et al., 2020) as the
assessment benchmark. MMLU is a large-scale
multi task language comprehension test that cov-
ers 57 tasks, divided into four major categories:
Humanities, Social Sciences, STEM, and Other.
We have established a Standardized Improvement
Ratio (SIR) to visually illustrate the quantifiable
impact. The SIR is delineated as follows.

SIR = (SData − SBase)/(SAlpaca − SBase) (9)

Where SData is the MMLU score of the model
after it has been fine-tuned using a specifically
quantified dataset. SBase represents the initial
MMLU score before any fine-tuning takes place,
and SAlpaca indicates the MMLU score following
the model’s fine-tuning process with the compre-
hensive Alpaca dataset.

We utilize the ResNet-18 (He et al., 2016) model
to extract the image features from the CIFAR-10
dataset. Following the training of the randomly
initialized ResNet-18 model for 10 epochs on the
CIFAR-10 dataset, the gradient features obtained
from the images during the backpropagation pro-
cess are preserved as the image feature. During the
data compression process, the number of clusters,
denoted as K, and the number of bins, indicated
by N, are both default set to 10. We train a va-
riety of CNN models on the compressed dataset,
which includes ResNet-18, ResNet-50, and Con-
vNet (Liu et al., 2022b). We conduct the training
over 200 epochs with a batch size of 32 and employ
a learning rate of 0.1.

We employ the semantic similarity model (Xiao
et al., 2023) to generate vector representations for
the Ancient Chinese (AC) dataset. Subsequently,
we apply the LSDC method to filter this dataset
into two distinct versions: AC1, which represents a
partially filtered dataset with the specific details of
the filtered components presented in the Appendix
C, and AC*, denoting the fully filtered version with
a setting compression ratio of 10. Following this,
we fine-tune the Qwen2-7B-Instruct model (Bai
et al., 2023) using the Llama-Factory framework
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Method DM DQ LSDC

Alpha - 200 18

CIFAR10 420 60 5

Table 1: The compression time (in minutes) of three
methods DM, DQ, and LSDC for two datasets Alpha
and CIFAR10 at a compression rate of 10%.

across the AC, AC1, and AC* datasets. To evaluate
the performance of the fine-tuned models, we uti-
lize the Ancient Chinese Language Understanding
Evaluation (ACLUE) (Zhang and Li, 2023) bench-
mark. ACLUE is designed to assess the capabilities
of LLMs on ancient Chinese text. The benchmark
consists of 15 tasks covering vocabulary, syntax,
semantics, reasoning, and knowledge.

4.3 Experimental Analysis

In this section, we provide a comparative analysis
among LSDC, DQ (Zhou et al., 2023) and DM
(Zhao and Bilen, 2023).

Performance on compression efficiency. As
shown in Table 1, our method achieves a more
than tenfold reduction in compression time rela-
tive to DQ when the number of clusters is set to
4, and a nearly hundredfold reduction compared
to DM, which requires model-based optimization.
Therefore, LSDC is more suitable for processing
larger-scale datasets compared to other methods.

Performance on supervised fine-tuning of
LLMs. We conduct experiments on the Alpaca
dataset and train the Llama2-7B model with quanti-
fied data, obtaining the results as shown in Table 2.
Our method performs significantly better than DQ
and random sampling on average at quantization
rates of 5%, 10%, and 20%. This performance edge
is primarily evidenced in the preservation of data
diversity, signifying that our method can adeptly
sustain the representativeness and information rich-
ness of the dataset. Notably, models trained using
only 20% of data quantified by our method outper-
form those trained with the full dataset.

Performance on visual tasks. We compare our
approach with the state-of-the-art (SOTA) meth-
ods in data distillation and data pruning on the
CIFAR dataset and the results are shown in Ta-
ble 3. Our method consistently outperforms across
all quantization ratios, achieving the best average
performance. Particularly within ConvNet architec-
tures, our method significantly surpasses the other
two approaches at all levels of quantization ratios.

ρ(%) Method
MMLU

Humanities. Soc. Sci. STEM. Other. Average
0% 32.87 41.23 35.31 42.52 37.45
100% 37.43 45.54 33.00 48.09 40.77

Random 30.03 44.00 33.47 46.04 37.99
5% DQ 36.83 42.46 31.35 45.75 38.31

LSDC 36.83 43.69 32.34 47.51 39.89
Random 35.45 42.77 30.69 46.04 38.53

10% DQ 35.25 41.85 31.35 46.04 38.40
LSDC 37.23 43.69 34.32 47.80 40.50

Random 35.64 43.38 31.35 48.39 39.42
20% DQ 37.82 44.00 29.70 45.45 39.28

LSDC 37.23 45.85 33.66 48.09 40.91

Table 2: comparative assessment of Random, DQ and
LSDC on the Alpaca dataset with quantization ratios
of 5%, 10%, and 20%. The score of 0% represents
the baseline MMLU performance of the Llama2 model,
while the score of 100% corresponds to the MMLU
achievement of Llama2 after fine-tuning with Alpaca’s
comprehensive dataset.

Following the two-stage quantization process, our
method is more adept at preserving the original
data distribution, ensuring diversity and indicating
better generalizability.

Performance on large-scale domain-specific
datasets. To verify the real performance of LSDC
on millions of domain-specific instructions data
and make up for the deficiencies in the existing
research on large-scale data quantization, we con-
duct experiments on the Ancient Chinese dataset,
fine-tuning the Qwen2-7B model with different
compression ratio datasets processing by LSDC.
The results are shown in Table 4. The Base+AC1
and Base+AC* models outperformed the Base+AC
model across a range of tasks, particularly achiev-
ing a 10.1-point enhancement in semantic under-
standing. This signifies that LSDC has superior
capability to eliminate superfluous data, thereby
elevating the overall quality of the dataset. Given
that LSDC solely focuses on filtering and is unable
to supplement specific data types that the dataset in-
trinsically lacks, all three trained models exhibited
reduced reasoning proficiency yet still achieved
comparable results.

Hyper-parameter analysis. There are two hy-
perparameters for LSDC: the number of clusters K
and the number of bins N. First, we maintain the
value of the parameter K at 16 and perform a series
of experiments on the Alpaca dataset, exploring a
range of four distinct bin number values and ex-
amining three different rates of compression. As
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ρ(%) 10 20 30

method DM DQ LSDC DM DQ LSDC DM DQ LSDC

R18 74.0 84.1 84.5 82.2 87.6 88.8 82.8 91.0 90.8
R50 35.0 82.7 80.2 36.2 88.1 88.1 43.9 90.8 90.5
ConvNet 41.8 52.8 71.3 48.3 61.8 77.0 47.9 64.2 79.1
Avg 50.2 73.2 78.7 55.5 79.1 84.7 58.2 82.0 86.8

Table 3: Comparative assessment of DM, DQ and LSDC on the CIFAR dataset with quantization ratios of 10%,
20%, and 30%, reporting accuracy for the R18, R50, and ConvNet architectures.

Model
Ancient Chinese

Vocab. Synt. Semant. Reason. Knowl. Average

Base 53.07 89.20 57.50 65.58 65.24 63.46

Base+AC 51.00 91.40 61.00 62.24 64.74 62.60

Base+AC1 52.33 92.60 65.90 64.06 67.56 65.03

Base+AC* 55.60 92.80 71.10 64.23 65.18 65.64

Table 4: Performance evaluation of various models on
the Ancient Chinese dataset. The baseline results (Base)
are derived from the Qwen2-7B-Instruct model with-
out additional training. The Base+AC, Base+AC1, and
Base+AC* models represent the model fine-tuning on
different data filter ratios.

shown in Figure 3, increasing the number of bins
to a certain extent improves the performance of the
model. When the number of bins is too large, the
coreset selection phase degrades into random selec-
tion, so the performance is worse than the default
setting. We empirically observe that the method
performs best when the number of bins is around
10.

Then we maintain the value of the parameter
N at 10 and perform a series of experiments on
the Alpaca dataset, exploring a range of six dis-
tinct clustering values and examining three differ-
ent rates of compression. As shown in Figure 4,
with the increase of the cluster count, the impact ob-
served across the three compression ratios exhibits
an initial upsurge followed by a subsequent decline.
When the number of clusters is too few, the cluster
centroids fail to effectively represent the main char-
acteristics of the data, making it difficult to ensure
the diversity of the quantitative data. Conversely,
when the number of clusters is excessive, each clus-
ter encompasses too few data points, leading to the
influence of noise, which in turn diminishes the
representativeness of the cluster centroids. Further-
more, an increase in the number of clusters can
reduce the time expenditure in the second phase.

Figure 3: Testing performance of LSDC on the Alpaca
dataset using a range of bin numbers and data keep
ratios for quantification, including the evaluation of SIR
scores.

Therefore, for datasets that are large-scale and pos-
sess complex data, the number of clusters can be
set higher.

4.4 Ablation Study

To evaluate the effectiveness of different compo-
nents, we compare LSDC with its variants on the
Alpaca dataset, using MMMU as the evaluation
metric. For the number of clusters K and the num-
ber of bins N, we set K to 16 and N to 10 in our
experiments. We consider two variants: 1) w/o CP,
where the clustering phase is replaced with random
partitioning 2) w/o CSP, where the coreset selection
phase is replaced with random selection.

As shown in Table 5. we can observe that LSDC
exhibits the best performance, indicating that its
effectiveness is a cumulative contribution of all
its components. Replacement of any phase with
a random one results in a decrease in method per-
formance, underscoring the importance of the clus-
tering and coreset selection phases in the overall
framework.

2649



Figure 4: Testing performance of LSDC on the Alpaca
dataset using a range of cluster quantities and data keep
ratios for quantification, including the evaluation of SIR
scores and quantification time.

Humanities Social Science STEM Other Average
w/o CP 35.05 44.31 31.68 46.92 39.15
w/o CSP 36.04 42.15 32.01 46.63 39.01
LSDC 37.23 43.69 34.32 47.80 40.50

Table 5: Ablation Study of LSDC across diffeerent
components.

5 Conclusion

We introduce an efficient and effective Large-Scale
Data Compression framework that adeptly negoti-
ates the trade-off between efficiency and compres-
sion quality through two stages of clustering and
coreset selection. Our experiments across various
tasks demonstrated that this method significantly
outperformed previous approaches, achieving su-
perior results. We pioneered the application of
quantization techniques to condense training data
in the domain-specific large-scale models. The
model trained on data compressed by our method
outperforms its counterpart that is trained using
the complete dataset. Our study provide a feasi-
ble selection for the fine-tuning of domain-specific
LLMs towards efficiency and reliability.

6 Limitations

Due to computational limitations, we are unable
to pretrain LLms from scratch. Our experiments
on LLMs mainly involve supervised fine-tuning
of open-source models and comparing their per-
formance before and after data compression. Due
to the larger and more diverse data used for pre-
training compared to supervised fine-tuning, it is
worth exploring whether compressed data can be
used to pretrain LLMs to achieve the same effect.
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A The Time complexity of LSDC

LSDC consists of two phases: clustering and core-
set selection. We analyze the time complexity of
the two phases separately.

Clustering Phase. For a dataset comprising n
samples, the initial step involves choosing K cluster
centroids. The selection process for the k-th cluster
centroid Ck adheres to the following formula:

xi ← argmin(maxj∈[1,k)
xi · Cj

||xi|| · ||Cj ||
) (10)

In the process of computing cluster centroids, it’s
imperative to assess the cosine similarity between
each sample and the pre-existing centroids. Conse-
quently, the time complexity involved in deriving
K clusters amounts to O(n ∗K2).

Upon determining the initial cluster centroids,
the samples are then allocated to clusters based on
their proximity to these centroids. The formula
employed to ascertain the cluster affiliation of the
sample point xi is specified as follows.

k ← argmin(
xi · Ck

||xi|| · ||Ck||
) (11)

Owing to the requirement of computing the co-
sine similarity between samples and cluster cen-
troids, the time complexity associated with parti-
tioning the samples is O(n ∗K).

The formula to update the k-th cluster centroid,
Ck, utilizing the samples within the k-th cluster, is
as follows.

k ← argmin(
xi · Ck

||xi|| · ||Ck||
) (12)

The time complexity involved in updating a clus-
ter centroid is O(n). The combined time complex-
ity for partitioning samples and refining clusters
across K iterations is O(n ∗K2).

Coreset Selection Phase. Samples from each
cluster are allocated to distinct bins. The selection
criterion for the k-th sample from the n-th bin is
expressed by the following formula.

xg ← argmax(
∑

p∈Sk/
⋃n

i=1 S
g−1
ki

p·xg−
∑

p∈Sg−1
kn

p·xg)

(13)
Assuming that in the initial phase, the samples

are uniformly distributed into K clusters, with each
cluster containing n/K samples. The process of
selecting samples from these clusters to place into
bins necessitates computing the cosine similarity
between the samples. This computation has a
time complexity of O(n2/K2) per cluster. Con-
sequently, for K such clusters, the overall time
complexity amounts to O(n2/K).

B Ancient Chinese Dataset

As shown in Figure 5, the Ancient Chinese dataset
contains seven major categories: Literary Knowl-
edge QA, Classical Translation, Phonetic Loan
Characters, Poetry Appreciation, Write Poems,
Couplets, and Punctuation in Classical Texts.

C The compression ratio of AC1

As shown in Table 6, the AC1 version of the data
selectively filters the categories of Literary Knowl-
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Figure 5: The distribution of different categories of
supervise fine-tuning data for Ancient Chinese.

edge QA, Poem Writing, and Classical Translation,
reducing them by a proportional 10%.

Category Size of AC Size of AC1 ratio
Literary Knowledge QA 140000 14000 0.1
Write Poems 210000 21000 0.1
Classical Translation 845000 84500 0.1
Punctuation in Classical Texts 83236 83236 1
Couplets 16065 16065 1
Poetry Appreciation 48619 48619 1
Phonetic Loan Characters 12499 12499 1

Table 6: The compression ratio of AC1.
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