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Abstract
The prevalence of vision-threatening eye dis-
eases is a significant global burden, with many
cases remaining undiagnosed or diagnosed
too late for effective treatment. Large vision-
language models (LVLMs) have the potential to
assist in understanding anatomical information,
diagnosing eye diseases, and drafting interpre-
tations and follow-up plans, thereby reducing
the burden on clinicians and improving access
to eye care. However, limited benchmarks are
available to assess LVLMs’ performance in
ophthalmology-specific applications. In this
study, we introduce LMOD, a large-scale mul-
timodal ophthalmology benchmark consisting
of 21,993 instances across (1) five ophthalmic
imaging modalities: optical coherence tomog-
raphy, color fundus photographs, scanning laser
ophthalmoscopy, lens photographs, and surgi-
cal scenes; (2) free-text, demographic, and dis-
ease biomarker information; and (3) primary
ophthalmology-specific applications such as
anatomical information understanding, disease
diagnosis, and subgroup analysis. In addition,
we benchmarked 13 state-of-the-art LVLM rep-
resentatives from closed-source, open-source,
and medical domains. The results demonstrate
a significant performance drop for LVLMs in
ophthalmology compared to other domains.
Systematic error analysis further identified six
major failure modes: misclassification, failure
to abstain, inconsistent reasoning, hallucina-
tion, assertions without justification, and lack
of domain-specific knowledge. In contrast, su-
pervised neural networks specifically trained on
these tasks as baselines demonstrated high ac-
curacy. These findings underscore the pressing
need for benchmarks in the development and
validation of ophthalmology-specific LVLMs.

1 Introduction

The ever-increasing prevalence of primary eye dis-
eases poses a significant global burden, with more
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This is an ophthalmology OCT image.
Based on the image, please tell me the
stage of macular hole decision. Then,

give a detailed justification and
explanation for your answer. Follow

the format: Stage: <AN INTEGER>;
Justification: <EXPLANATION>. 

Input Prompt

InternVL 2B

Stage: 3; Justification: The image shows a macular hole with a

diameter of 300 micrometers. This is considered stage 3, which

is a more advanced stage of macular hole development. The

macular hole is a tear or break in the macula, which is the

central part of the retina responsible for sharp, central vision. In

this stage, the macular hole is larger and may be associated

with more severe vision loss.

LLaVA Med

Stage: 2; Justification: The image shows a macular hole, which is a small hole in
the retina that can cause vision loss. The presence of a macular hole is a

significant concern for the patient, as it can lead to vision loss if left untreated. The
image is an OCT (Optical Coherence Tomography) scan, which is a non-invasive

imaging technique used to visualize the retina and the underlying tissue. The
macular hole is identified by the presence of a thin, dark line (the hole) in the

retina, which is surrounded by a thin, bright line (the retinal pigment epithelium).
The presence of a macular hole is a clear indication that the patient may require

further evaluation and treatment to prevent vision loss.

GT: Stage 4

Figure 1: LVLM response examples for macular hole staging.

than 2.2 billion individuals suffering from vision
impairment worldwide, particularly in low- and
middle-income regions (Tham et al., 2014; Neely
et al., 2017; Cavan et al., 2017; Organization, 2023).
Limited access to comprehensive eye examinations
and a shortage of clinicians result in a substan-
tial proportion of major eye diseases being undi-
agnosed or diagnosed too late for effective treat-
ment (Neely et al., 2017; Varma et al., 2011). To
address this challenge, artificial intelligence (AI)
applications, particularly Large Language Models
(LLMs) and their multimodal extensions, have been
developed to streamline clinical workflows by as-
sisting in patient triage, disease diagnosis, prog-
nosis prediction, and reducing documentation bur-
dens (Ting et al., 2019; Peng et al., 2019; Keenan
et al., 2022; De Fauw et al., 2018; Zhou et al.,
2023; Kaushal et al., 2023; Elkholy and Marzouk,
2024; Tian et al., 2024; Chen et al., 2023; Qin
et al., 2022). These large vision-language models
(LVLMs), such as GPT-4o (Achiam et al., 2023)
and LLaVA (Liu et al., 2024), combine LLMs with
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Figure 2: Overview of our data processing and evaluation pipeline for assessing the performance of LVLMs. The raw information
is preprocessed to extract structured data such as bounding boxes and disease conditions. This aggregated information is then
used to generate prompts for the LVLMs to identify the type of each labeled region, or conduct diagnosis analysis. The LVLMs
processes the input image and prompt to generate responses categorizing each region or disease or describing diseases. Finally,
the model’s output is compared against the ground truth results using our proposed evaluation metrics.

vision encoders to generate responses based on
input images, which are particularly beneficial in
medical imaging, where interpretations and follow-
up plans are documented in free-text clinical notes
(Tian et al., 2024; Xiao et al., 2025).

Specifically, in ophthalmology, LVLMs enable
(1) automated disease diagnosis and classification,
such as assessing the severity level of glaucoma;
(2) region classification and segmentation, such
as segmenting retinal nerve fiber layers in optical
coherence tomography (OCT); and (3) documen-
tation, such as generating free-text imaging inter-
pretations (Betzler et al., 2023). Importantly, what
distinguishes LVLMs is their ability to handle these
tasks within a single model using zero- or few-
shot learning. In contrast, previous applications
required sophisticated fine-tuning on substantial
manually curated instances, making it challenging
to adapt fine-tuned models to different data types
(Xiao et al., 2025; Betzler et al., 2023). This may
improve the efficiency and accuracy of workflows
in ophthalmology clinics (De Fauw et al., 2018).

Nevertheless, limited benchmarks are available
to assess LVLMs’ performance in ophthalmology-
specific applications to date, and consequently, the
potential and limitations of LVLMs are not clear.
Existing studies in ophthalmology focus on eval-
uating the performance of LLMs on text-based
tasks, including multiple-choice questions (Wu
et al., 2024), general ophthalmology knowledge
testing (Antaki et al., 2023), and free-text ques-

tion answering on specific ophthalmology topics
(Lim et al., 2023). While these studies are useful
for demonstrating potential, ophthalmic images are
arguably the most important data modality. Oph-
thalmologists require different imaging modalities
for diagnosis and prognosis that are not derived
from the text itself (Khan et al., 2021). Therefore,
the capability of image analysis is crucial in the
domain of ophthalmology. However, this capabil-
ity poses challenges for existing LVLMs, which
struggle to understand and analyze ophthalmic im-
ages, as illustrated in Figure 1. In addition, exist-
ing ophthalmic imaging datasets were designed for
the development and evaluation of fine-tuning AI
models; they may only contain a single imaging
modality (e.g., OCT only), a specific task (e.g., re-
gion segmentation), and specific output types (e.g.,
a disease severity class rather than free text).

In response, this study proposes a systematic and
reproducible data and evaluation pipeline that re-
purposes existing datasets to curate a dataset we
refer to as LMOD (Large Multimodal Ophthalmol-
ogy Dataset) for the development and evaluation of
LVLMs in ophthalmology. LMOD consists of five
imaging modalities: surgical scenes (SS), optical
coherence tomography (OCT), scanning laser oph-
thalmoscopy (SLO), lens photographs (LP), and
color fundus photographs (CFP), collectively com-
prising over 20K instances. It also provides multi-
granular annotations, including region annotation
and disease information. The pipeline can also be
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Benchmarks
Modalities Image Types Evaluation Perspectives

Images Texts
Surgical

SLO OCT
Eye Fundus Anatomical Diagnosis

Scenes Photos Images Understanding Analysis

General-Domain Benchmarks

MMMU (Yue et al., 2024) ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗

MME-RealWorld (Zhang et al., 2024b) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

UNK-VQA (Guo et al., 2024) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MMCBench (Zhang et al., 2024a) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

MathVista (Lu et al., 2023) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SEED-Bench (Li et al., 2024a) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ophthalmology-Specific Benchmarks

Bench-Nephrology (Wu et al., 2024) ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Eval-GPT-Ophth (Antaki et al., 2023) ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Bench-Myopia (Lim et al., 2023) ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

OphNet (Hu et al., 2024) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

LMOD (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of existing general-domain and ophthalmology-specific benchmarks for evaluating large vision-language
models, highlighting their supported modalities, coverage of image types, and evaluation perspectives.

directly applied to new datasets.
Our contributions are as follows: (1) We intro-

duce LMOD, a large-scale ophthalmology dataset
that includes over 21K images across diverse imag-
ing modalities. LMOD is richly annotated with
disease labels and bounding boxes, supporting
comprehensive evaluations from macro-level. (2)
We systematically benchmark 13 state-of-the-art
(SoTA) LVLMs, including models with diverse vi-
sual backbones and LLMs. The evaluation is con-
ducted using a wide range of metrics, assessing
strengths and weaknesses of LVLMs from vari-
ous perspectives. (3) Through fine-tuning and su-
pervised classification, we demonstrate that while
the challenges posed by ophthalmic image analy-
sis are intricate for LVLMs, they are insurmount-
able. Our comprehensive evaluations and error
analysis provide both a high-level overview and
detailed insights, presented through various result
formats, including weighted averages, bar charts,
radar charts, and visual illustrations, to highlight
the key strengths and weaknesses.

2 Related Work

This section provides an overview of the advance-
ments in LVLMs and highlights the lack of com-
prehensive benchmarks in ophthalmology.

2.1 Advances in LVLMs

The release of ChatGPT (Achiam et al., 2023) has
sparked considerable interest in the potential of
large language models (LLMs) across various do-
mains (Liu et al., 2023; Tian et al., 2024; De An-

gelis et al., 2023). Building on the success of
ChatGPT and other LLMs (Radford et al., 2018,
2019; Brown et al., 2020), researchers have devel-
oped LVLMs that integrate the strengths of vision
encoders with LLMs. These models employ vi-
sion encoders, typically pretrained on vast image
datasets in an unsupervised manner, to extract vi-
sual features from images and incorporate them
into LLMs, enabling a combined understanding of
both vision and language. Several notable LVLMs
have been introduced in recent years, each with its
unique architecture or training approach, such as
GPT-4 (Achiam et al., 2023), LLaVA (Liu et al.,
2024), InternVL (Chen et al., 2024), Qwen (Bai
et al., 2023), and VILA (Lin et al., 2024). In the
medical domain, representative LVLMs include
LLaVA-Med (Li et al., 2024b) and its variants (Li
et al., 2024b; Jiang et al., 2024; Xie et al., 2024),
which demonstrate potential for disease diagnosis
and medical question answering. The advent of
LVLMs has opened up new possibilities for multi-
modal reasoning and comprehension, with applica-
tions spanning various fields, including the medical
domain (Clusmann et al., 2023; Kung et al., 2023;
Currie et al., 2023).

2.2 Lack of Benchmarks

In ophthalmology, domain-specific foundation
models, such as vision encoders pretrained on oph-
thalmic images, have shown consistent improve-
ments in diagnosing and predicting the prognosis
of eye diseases (Zhou et al., 2023; Kaushal et al.,
2023; Elkholy and Marzouk, 2024). However,
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Models Anatomical Recognition Diagnosis Analysis

Precision ↑ Recall ↑ F1 ↑ HC ↑ Glaucoma MH Stage
Acc (%) ↑ Acc (%) ↑

Random - - - - 50.00 25.00

Finetuned Invalid Invalid Invalid Invalid Invalid Invalid

GPT-4o 0.5609 0.5896 0.5748 0.9513 54.09 19.71
LLaVA-Med 0.0789 0.1163 0.0940 0.7435 50.00 25.00
LLaVA-1.5-7B 0.0567 0.0410 0.0475 0.2674 50.00 7.30
LLaVA-M-7B 0.1346 0.1450 0.1396 0.7569 50.00 0.00
LLaVA-V-7B 0.3095 0.2540 0.2790 0.7516 50.00 0.00
LLaVA-13B 0.0599 0.0803 0.0686 0.5993 50.00 0.00
Yi-6B 0.1952 0.1499 0.1695 0.8893 50.00 5.26
InternVL-2B 0.6025 0.3999 0.4807 0.9809 50.00 30.26
InternVL-4B 0.7241 0.4481 0.5536 0.9629 50.00 25.00
Qwen 0.0275 0.0372 0.0316 0.8418 50.00 18.42
VILA-3B 0.1429 0.1119 0.0633 0.5300 50.00 24.24
VILA-3B-S2 0.3340 0.2636 0.1255 0.7695 50.00 21.42
VILA-8B N/A N/A N/A N/A 50.00 22.53

Average 0.2688 0.2197 0.2189 0.7537 50.31 15.31

Table 2: Performance comparison of state-of-the-art large
vision-language models on the LMOD benchmark, evaluat-
ing their capabilities in anatomical recognition and diagnosis
analysis. Acc indicates accuracy. The best-performing model
in each metric is highlighted in bold. LLaVA-Med-Finetuned
consistently produced invalid outputs across both tasks.

these encoders lack the reasoning and conversa-
tional capabilities inherent to large language mod-
els (LLMs) and require task-specific fine-tuning
with static inputs and outputs. Furthermore, exist-
ing research on LLMs in ophthalmology primar-
ily focuses on text-based applications (Wu et al.,
2024; Antaki et al., 2023; Lim et al., 2023; Gilson
et al., 2024), neglecting ophthalmic images as a key
data modality. To the best of our knowledge, few
benchmarks exist for the development and evalua-
tion of LVLMs in ophthalmology, posing a signifi-
cant barrier to systematically evaluating the feasi-
bility of applying existing LVLMs in this domain
and hindering the development of ophthalmology-
specific LVLMs. In contrast, several benchmarks
have been established in both general and medi-
cal domains (Table 1). However, existing bench-
marks in ophthalmology are primarily designed for
the development and evaluation of AI models un-
der the fine-tuning paradigm, often focusing on a
single imaging modality, a specific task, and re-
stricted output types. Few benchmarks encompass
diverse ophthalmic imaging modalities or support
a broad range of downstream evaluations, such as
anatomical understanding (Wang et al., 2021) and
diagnostic analysis.

3 LMOD Curation
In this section, we present our methodology for
curating LMOD: Large Multimodal Ophthalmol-
ogy Dataset. We first describe our data curation
pipeline, which involves selecting suitable datasets,
generating consistent annotations across various

Algorithm 1 Anatomical Recognition Pipeline

Require: Original dataset
D = {(I1, R1), (I2, R2), . . . , (In, Rn)}, where Ii is an image and
Ri is the corresponding raw data

Require: Minimum bounding box area threshold τ ∈ R+

Ensure: Curated dataset
D′ = {(I1, B′

1, P1), (I2, B
′
2, P2), . . . , (In, B

′
n, Pn)}, where B′

i
is the set of curated bounding boxes and Pi is the set of corresponding
prompts for image Ii

1: for each image-raw data pair (Ii, Ri) ∈ D do
2: Bi ← ExtractBoundingBoxes(Ri),

where Bi = {bi,1, bi,2, . . . , bi,|Bi|} and bi,j is the j-th bounding
box of image Ii

3: end for
4: B ← ⋃n

i=1 Bi

5: B′ ← {b ∈ B | area(b) ≥ τ}
6: for each image-raw data pair (Ii, Ri) ∈ D do
7: B′

i ← {b ∈ B′ | b belongs to image Ii}
8: Pi ← ∅
9: for each bounding box bi,j ∈ B′

i do
10: idi,j ← GenerateUniqueID()

11: colori,j ← AssignDistinctColor()
12: prompti,j ← GeneratePrompt(bi,j)
13: Pi ← Pi ∪ {(idi,j , colori,j , prompti,j)}
14: end for
15: end for
16: return D′

image types, and designing standardized prompts
for model evaluation. Our ophthalmology clini-
cians, with expertise in visual impairment and age-
related eye diseases, were directly involved in the
dataset selection, focusing on clinical relevance
and diversity, and in manually defining the evalua-
tion tasks, such as glaucoma diagnosis and macular
hole staging. Next, we introduce the evaluation
tasks and metrics used to assess the performance of
LVLMs on LMOD, focusing on anatomical recog-
nition and diagnostic analysis.

3.1 Data Curation Pipeline
The data curation pipline consists of two steps.
Step 1: Dataset Selection. We screened and

selected the datasets for repurposing based on the
following criteria: (1) Accessibility: The datasets
are publicly accessible and non-commercial, en-
suring that LMOD can be widely used by the re-
search community for model evaluation and devel-
opment. (2) Coverage: The datasets collectively
need to cover key ophthalmic imaging modalities
and primary eye diseases. (3) Diversity: Popula-
tion diversity needs to be considered, enabling the
benchmarks to quantify model effectiveness across
subgroups, especially within disparity populations.

As a result, nine datasets were selected for cu-
ration. These datasets can be categorized into five
ophthalmic imaging types, and the overall statistics
can be found in Table 3:

SS: SS stands for surgical scenes. This category
includes the Cataract-1K dataset (Ghamsarian et al.,
2024), which contains 2,256 images extracted from
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(a) Precision
GPT-4o InternVL-4B Qwen VILA-1.5-3B-S2Yi-6BLLaVA-v1.6-Vicuna-7B InternVL-2B

(c) F1(b) Recall (d) HR

Figure 3: Performance comparison of top-performing LVLMs across different ophthalmic imaging modalities. The radar charts
display the performance of the top-F1-performing models, for each evaluation metric (Precision, Recall, F1, and HR) across
five different imaging modalities: surgical scenes (SS), optical coherence tomography (OCT), color fundus photographs (CFP),
scanning laser ophthalmoscopy (SLO), and lens photographs (LP).

Data Types Num Images Num Avg Boxes

Surgical Scenes (SS) 2,256 3.3
Optical Coherence Tomography (OCT) 3,859 2.4
Scanning Laser Ophthalmoscopy (SLO) 10,000 1.0
Eye Photos (EP) 2,432 1.9
Color Fundus Images (CFI) 3,386 1.6

Table 3: Overview of LMOD, including the number of images
(Num Images) and average number of bounding boxes per
image (Num Avg Boxes).

cataract surgery videos. These images capture var-
ious stages and aspects of the surgical procedure,
with an average of 3.3 bounding boxes per image.

OCT: OCT represents Optical Coherence To-
mography. OIMHS (Ye et al., 2023) represents this
category, comprising 3,859 OCT images. OCT is a
non-invasive imaging technique that provides high-
resolution cross-sectional retinal images. There 2.4
bounding boxes per image.

SLO: SLO indicates Scanning Laser Ophthal-
moscopy. The Harvard FairSeg dataset (Luo et al.,
2024) is included in this category, featuring 10,000
SLO fundus images. Each image contains an aver-
age of a single bounding box.

LP: LP means Lens Photographs. This category
includes two datasets: CAU001 (PupiUp, 2023)
and Cataract Detection 2 (Ramapuram, 2023).
CAU001 contains 1,417 RGB photographs of hu-
man eye regions, with bounding box annotations
indicating the locations of the left and right eyes,
pupils, and irises. Cataract Detection 2 consists
of 1,015 photographs of eyes with and without
cataracts, each containing a single bounding box an-
notation. Each image contains 1.9 bounding boxes
in average.

CFP: CFP implies Color Fundus Photographs.
This category includes four datasets: REFUGE
(Orlando et al., 2020), IDRiD (Prasanna et al.,
2018), ORIGA (Zhang et al., 2010), and G1020

(Bajwa et al., 2020). REFUGE contains 1,200 reti-
nal fundus images, including both glaucoma and
normal eyes, with detailed annotations of optic disc
and cup segmentations. IDRiD includes 516 im-
ages with pixel-level annotations of typical diabetic
retinopathy lesions and normal retinal structures.
ORIGA consists of 650 retinal images annotated
by trained professionals, containing a comprehen-
sive set of image features critical for glaucoma
diagnosis. G1020 contains 1,020 high-resolution
color fundus photographs, accompanied by detailed
ground-truth annotations, including glaucoma diag-
nosis, optic disc and cup segmentations, and other
clinically relevant measurements. On average, each
image in this category contains 1.6 bounding boxes.

Step 2: Multi-granular Annotation. We fur-
ther curated the datasets to support the develop-
ment and evaluation of LVLMs in ophthalmology
applications. These applications are categorized
into two main parts: (1) anatomical understanding,
which involves the accurate observation and iden-
tification of ocular structures (Wang et al., 2021;
De Fauw et al., 2018), and (2) diagnostic analysis,
which requires the interpretation of visual features
and patterns to assess the presence and severity of
ocular diseases. The curation procedures for each
application is detailed below.

Anatomical Recognition: Anatomical recog-
nition refers to the ability of models to accu-
rately identify various anatomical structures in oph-
thalmic images. The algorithmic pipeline is out-
lined in Algorithm 1. In brief, the steps are as fol-
lows: First, we generate bounding boxes and their
associated labels. The coordinates of the bound-
ing boxes are present in the open-source datasets.
To ensure consistency and standardization across
the dataset, we map the region types provided in
the open-source datasets to a predefined set of
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Anatomical Recognition (F1) Diagnosis Analysis (Accuracy)

Model Macro Avg SS OCT SLO LP CFP Glaucoma MH Stage

NNC 94.36 93.76 98.42 94.92 88.85 95.86 82.69 98.17

Table 4: Supervised-trained neural network classifier (NNC)
performance on anatomical recognition across different image
modalities and diagnosis analysis tasks.

ophthalmology-specific region types, such as optic
disk, macula, lesion, and tumor. This mapping pro-
cess allows us to handle variations in terminology
and granularity used in the original datasets.

To balance between the comprehensiveness of
annotations and the clarity of the images, we estab-
lish a threshold and remove bounding boxes whose
areas fall below this threshold (10% for ours). This
step is crucial as an excessive number of bounding
boxes overlaid on the images can lead to significant
occlusion, hindering the visibility and interpretabil-
ity of the underlying image content.

In the final step, using the extracted bounding
box coordinates, we generate visual markers in the
form of bounding boxes on the images to highlight
the annotated regions. These visual markers are
assigned unique labels (e.g., letters or numbers)
to clearly identify each region. To increase the
differentiation between regions, we assign different
colors to the bounding boxes.

Diagnostic Analysis: We evaluate models’ abil-
ity to determine the presence and severity of eye
diseases, using glaucoma and macular holes as case
studies. We formulate glaucoma detection as a bi-
nary classification problem. Macular holes are clas-
sified into four distinct stages, ranging from 1 to 4
to indicate severity increase.

To ensure reliability and validity, we extract glau-
coma and macular hole labels from the original
datasets when available. In cases of imbalanced
label distribution, we employ a balanced sampling
strategy to mitigate potential biases and ensure fair
evaluation. To be more specific, we determine the
minimum number of samples across all classes and
randomly select an equal number of samples from
each class to create a balanced dataset. This ap-
proach guarantees that models are evaluated on
a representative and unbiased sample, preventing
them from exploiting class imbalance.

4 Benchmarking Results

We here present the results of benchmarking 13
state-of-the-art LVLMs on the LMOD benchmark.
We conclude with an error analysis to highlight
common failure modes of LVLMs.

4.1 Benchmarked LVLMs
We benchmarked 13 LVLMs on the LMOD bench-
mark, including several variations of LLaVA, such
as LLaVA-7B, LLaVA-M-7B (Mistral), LLaVA-V-
7B (Vicuna), LLaVA-13B, and the domain-specific
LLaVA-Med. Additionally, we evaluated InternVL
models, including InternVL-2B and InternVL-4B,
as well as VILA models, including VILA-3B,
VILA-3B-S2, and VILA-8B. Other models in the
benchmark included GPT-4o, Yi-6B, and Qwen.
These models represent a diverse range of architec-
tures, parameter scales, and training methodologies,
highlighting the breadth of current LVLM develop-
ment. See appendix for details.

4.2 Evaluation Metrics
To comprehensively assess the performance of the
LVLMs on the LMOD benchmark, we employed
several evaluation metrics that captured different
aspects of their capabilities. These metrics pro-
vided a holistic view of the models’ strengths and
weaknesses in analyzing ophthalmic images.

For anatomical recognition, we employed a com-
prehensive set of metrics to evaluate the perfor-
mance of LVLMs:

Precision: Measure the proportion of correctly
predicted region types among all predicted regions.
A high precision indicates that the model is more
likely to be correct when predicting region types.

Recall: Quantify the proportion of correctly pre-
dicted region types among all ground truth regions.
A high recall indicates that the model is able to
identify a larger fraction of the relevant regions.

F1 Score: The harmonic mean of precision and
recall, providing a balanced measure.

Hallucination Resistance (HR): The Halluci-
nation Resistance (HR) metric is a new metric that
quantifies a model’s ability to avoid hallucinations:

HR = 1− |{r ∈ Pi | r /∈ Ti}|
|{r ∈ Pi}|

,

where Pi represents set of all predicted region
IDs for image i, and Ti indicates set of all ground
truth region IDs for image i. Higher HR values
indicating fewer hallucinations.

These metrics collectively assessed the models’
ability to accurately identify and localize anatomi-
cal structures in ophthalmic images.

For diagnostic analysis, we focused on the mod-
els’ performance in glaucoma detection and macu-
lar hole staging using the metric of accuracy. It
quantified the proportion of correctly classified
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Invalid Response: 
[0.0, 0.2, 0.99, 0.86]

Figure 4: Visual examples of LVLM predictions for anatomical recognition in OCT images. The figure presents a comparison of
ground truth (GT) annotations and predictions from three representative LVLMs: GPT-4o, LLaVA-M-7B, and VILA-3B. Green
ticks indicate correct predictions, while red crosses mark incorrect ones. VILA-3B generates an invalid response consisting of a
sequence of numbers unrelated to the task.

glaucoma cases and macular hole stages, measur-
ing the models’ ability to determine the presence of
glaucoma and the severity of macular holes based
on visual characteristics.

4.3 Anatomical Recognition

Overall Results. The results for anatomical recog-
nition in Table 2 revealed that the performance of
SoTA LVLMs was far from optimal. The average
F1 score across all models was a mere 0.2189, high-
lighting a significant discrepancy between the mod-
els’ predictions and the ground truth annotations.
The best-performing model, GPT-4o, achieved an
F1 score of 0.5748, which, while notably higher
than the average, still indicated substantial room
for improvement on anatomical recognition.

Nuanced View. Figure 3 provided a more
nuanced view of the top five models’ F1 perfor-
mance across different image types. Note that
the performance of all models, including GPT-4o,
was markedly lower for complex images with a
higher number of bounding boxes, such as those
in the SS category. This trend suggested that the
models struggled to accurately recognize and lo-
calize anatomical structures in more intricate and
information-dense images. Figure 4 presented vi-
sual examples of various responses, including cor-
rect and wrong answers, hallucinations, as well as
invalid responses.

Robustness Analysis. The performance distri-
bution of the five best-F1 LVLMs across different
CFP datasets, as depicted in Figure 5, revealed vari-
ability and inconsistency in model performance.
Even for the same image modality, the models ex-
hibited notable differences in performance depend-
ing on the specific dataset. For instance, InternVL-
4B achieved a high F1 score of 0.87 on REFUGE
but experienced a substantial drop in performance
on IDRID, with an F1 score of only 0.04. These

observations suggested that the models’ robustness
and generalization ability might be limited when
confronted with variations in image quality, acqui-
sition protocols, and patient populations.

4.4 Diagnosis Analysis

Overall Results. The evaluation results for di-
agnosis analysis in Table 2 demonstrated that the
performance was far from perfect. For glaucoma
detection, all models achieved accuracies close to
random guessing, indicating that they struggled to
distinguish between glaucoma and non-glaucoma
cases based on the provided ophthalmic images.
In the case of macular hole staging, the average
accuracy across all models was only 15.31%, sug-
gesting a significant gap between the models’ pre-
dictions and the ground truth labels. InternVL-2B,
the best-performing model, achieved an accuracy
of 30.26% for macular hole staging. While this
number was higher than the average, still fell short
of the desired performance for clinical use.

Error Analysis. To better understand the fail-
ure modes of LVLMs, we employed the glaucoma
diagnosis task as the use case and systematically
identified and categorized error types with the as-
sistance of GPT-4o, as shown in Table 5. For each
prediction, we provided the predicted result, jus-
tification for the prediction, and the ground truth
(GT), instructing GPT-4o to categorize errors based
on predefined descriptions. Six primary error cate-
gories emerged, grounded in established AI evalua-
tion literature: (1) Misclassification (Gulshan et al.,
2016); (2) Failure to Abstain (Hendrycks et al.,
2019); (3) Inconsistent Reasoning (Devlin et al.,
2019); (4) Hallucination (Maynez et al., 2020);
(5) Assertion without Explanation (Rudin, 2019);
(6) Lack of Domain Knowledge (McKinney et al.,
2020). These categories illustrated the models’
need for better robustness, domain-specific inte-
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GPT-4o LLaVA-Med LLaVA-M-7B InternVL-2B InternVL-4B

Figure 5: Robustness analysis of LVLMs across different color fundus photograph datasets. The bar chart displays the F1
scores of the five models (GPT-4o, LLaVA-Med, LLaVA-M-7B, InternVL-2B, and InternVL-4B) on four different color fundus
photograph datasets: IDRID, ORIGA, REFUGE, and G1020.

Error Types Counts Proportion (%)

Lack of Domain-Specific Knowledge 3914 34.63
Assertion 2433 21.53
Misclassification 2248 19.89
Failure to Abstain 2035 18.01
Hallucination 439 3.88
Inconsistent Reasoning 232 2.05

Table 5: Statistics of error analysis in glaucoma diagnosis.

gration, and uncertainty handling.
E1: Lack of Domain-Specific Knowledge. The

models exhibited a lack of medical knowledge or
produced medically inaccurate explanations. For
instance, VILA-3B erroneously referred to a mac-
ular hole stage 5, claiming that it represents the
final stage where the hole has healed and vision is
fully restored, a stage that does not exist in the es-
tablished staging system. This error demonstrated
a lack of domain-specific knowledge because the
model made incorrect medical assumptions.

E2: Assertion. Models presented assertive pre-
dictions without detailed explanations. For exam-
ple, Yi-6B simply output the glaucoma condition
without further explanation, despite being explicitly
instructed to provide one. This lack of justification
weakens the credibility of the prediction.

E3: Misclassification. Models misidentified
conditions or stages, leading to incorrect predic-
tions. For example, LLaVA-Med incorrectly classi-
fied non-glaucoma images as glaucoma.

E4: Failure to Abstain. Some models failed to
abstain from making predictions when presented
with irrelevant or insufficient data. For example,
LLaVA-Med diagnosed glaucoma from an image of
a cat, which was clearly not relevant to the medical
task. This error type occurred because the model
should have recognized that the image was not

suitable and refrained from making a prediction.
E5: Hallucination. Models generated details

that did not exist in the input image. As illus-
trated in Figure 4, LLaVA-M-7B hallucinated an
additional region, labeled as region 4, which did
not correspond to any ground truth regions. This
demonstrates the model’s tendency to hallucinate
features not present in the actual data.

E6: Inconsistent Reasoning. Models provided
contradictory explanations within their own predic-
tions. For example, InternVL initially predicted a
macular hole stage 1 but subsequently stated there
was no visible macular hole or other abnormalities
in the macular region, contradicting its earlier as-
sessment. This inconsistency reflected conflicting
reasoning, as the model simultaneously described
both a healthy and diseased state.

Demographic Subgroup Analysis. We con-
ducted demographic analyses based on age and gen-
der to assess whether the predictive performance
of LVLMs is influenced by these factors. Results
showed statistically significant differences in ac-
curacy across age and gender subgroups for sev-
eral models, indicating that certain LVLMs may
perform differently across diverse demographic
groups. For example, InternVL 2B demonstrated
significant variance across both age and gender.
See appendix for details.

4.5 Benchmark Justifications
In this section, we justified the design of our bench-
mark from two perspectives: (1) feasibility and (2)
intricacy. These results demonstrated that existing
LVLMs faced significant challenges in handling
ophthalmic images, even when exposed to medical
literature or fine-tuned on relevant datasets.

Feasibility. We demonstrated that our proposed
benchmark was feasible, as evidenced by the re-
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sults in Table 4. We showed that supervised neural
networks could effectively address both anatomi-
cal recognition and diagnosis analysis tasks. For
anatomical recognition, we cropped each region
and assigned a corresponding label, formulating
the task as a multi-class classification problem. For
diagnosis analysis, the input consisted of the entire
image, with binary labels for glaucoma detection
or 4-class labels for MH staging. As shown in Ta-
ble 4, the classifiers achieved accuracies far above
random baselines, justifying the feasibility of our
dataset and task formulation.

Intricacy. The poor performance of existing
LVLMs on LMOD was not due to the absence of
ophthalmic images during pretraining. As shown
in Table 2, LLaVA-Med performed poorly on
both anatomical recognition and diagnostic tasks.
However, LLaVA-Med had been pre-trained on
PubMed, which included extensive medical litera-
ture, likely covering ophthalmology topics. More
directly, when we presented LLaVA-Med with an
optical coherence tomography (OCT) image and
a color fundus photograph (CFP), the model cor-
rectly identified the image types as ophthalmic
images and described the medical conditions, al-
though the diagnoses were incorrect.

Furthermore, fine-tuning did not significantly
improve performance. We fine-tuned LLaVA-Med
on a combined dataset of OCT and CFP images.
To avoid modality dominance, we balanced the
number of OCT and CFP images. Following the of-
ficial fine-tuning protocol (Liu et al., 2024; Li et al.,
2024b), we froze the visual encoder and fine-tuned
the MLP adapters and the language model. Despite
this, the fine-tuned LLaVA-Med failed to produce
meaningful responses as Table 2 showed. For ex-
ample, it output a series of "opt" for anatomical
recognition and empty strings for diagnostic analy-
sis. These findings highlighted that the complexity
of ophthalmic images posed inherent challenges
that went beyond simple fine-tuning.

5 Limitations
Modality: While LMOD covers five ophthalmic
imaging modalities, free-text, and demographic in-
formation—making it by far the most comprehen-
sive—it is inevitable that the selected nine datasets
may not include all data modalities in ophthal-
mology. Additionally, longitudinal data is essen-
tial for a more thorough assessment of VLLMs
in tracking disease progression. These challenges,
which are critical, remain open issues in ophthal-

mology(Khan et al., 2021), and new datasets un-
der development are addressing them(Rajesh et al.,
2023). We plan to further enhance our data and
evaluation pipelines and leverage new datasets to
enrich the dataset of LMOD.
Environmental Impact The evaluation of LVLMs
in this study was conducted using NVIDIA H100
GPUs. The energy consumption and carbon foot-
print associated with training and deploying large-
scale AI models have become a growing concern
in the research community (Schwartz et al., 2020).
It is essential to consider the environmental impli-
cations of such practices. The electricity consumed
by GPUs during model evaluation contributes to
greenhouse gas emissions, depending on the energy
mix of the power grid (Schwartz et al., 2020). It
is crucial to develop and adopt sustainable prac-
tices, as well as promoting the sharing and reuse of
pretrained models (Schwartz et al., 2020).

6 Conclusion
In this paper, we introduced LMOD, a comprehen-
sive benchmark designed to evaluate the perfor-
mance of LVLMs on ophthalmic images, free-text,
demographic, and disease biomarker information.
Spanning a wide range of image modalities and
enriched with annotations for anatomical structures
and diagnostic labels, LMOD offers a framework
for assessing LVLM capabilities in ophthalmol-
ogy. Our evaluation of 13 state-of-the-art LVLMs
revealed significant shortcomings in understand-
ing ophthalmic images, with models struggling in
anatomical recognition, showing inconsistent per-
formance across datasets, and performing close to
random in diagnostic tasks such as glaucoma de-
tection and macular hole staging. Fine-tuning on
ophthalmic data failed to improve results, highlight-
ing the complexity of these images for LVLMs. In
contrast, supervised neural networks trained on the
same tasks achieved high accuracy, demonstrating
that the challenges are not insurmountable. Our
error analysis uncovered six key failure modes of
the LVLMs, emphasizing the need for more ro-
bust models, better integration of domain-specific
knowledge, and improved uncertainty handling.
We also showed inconsistencies between subgroups
of ages and genders. These discoveries suggest
Pressing need for benchmarks in the development
and validation of ophthalmology-specific LVLMs.
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A Prompts for Benchmarking

Below are the specific prompts used for the evalua-
tion of large vision-language models (LVLMs) in
the tasks of anatomical recognition and diagnosis
analysis:

A.1 Anatomical Recognition Prompts

The following prompt was used to evaluate the
models’ ability to recognize and classify anatomi-
cal regions in ophthalmic images based on labeled
bounding boxes:

• Prompt 1: "This is an image [IMAGE DE-
SCRIPTION] of type [IMAGE TYPE]. Please
identify the type of each labeled bounding box
in this image. Options can be: [REGION TYPE
1], [REGION TYPE 2], ... Please just follow the
format: Region ID: xxx; Type: xxx."

A.2 Diagnosis Analysis Prompts

The following prompts were used to assess the
models’ diagnostic reasoning for conditions such
as glaucoma and macular hole staging:

• Prompt 1: "This is <IMAGE TYPE>. Based on
the image, please tell me whether this image con-
tains glaucoma, then give justifications. Follow
the format: GLAUCOMA / NON-GLAUCOMA;
Explanation: <JUSTIFICATION>."

• Prompt 2: "This is <IMAGE TYPE>. Based on
the image, please tell me the stage of the mac-
ular hole, then give justifications. Follow the
format: Stage: <AN INTEGER>; Explanation:
<JUSTIFICATIONS>."

B Intrinsic Difficulties of Ophthalmology

While the low performance of LVLMs on the
LMOD benchmark might suggest a lack of expo-
sure to ophthalmology images during pretraining,
our investigation reveals that these models can in-
deed recognize such images. As demonstrated in
Figure 6, when presented with a retinal fundus
photograph and asked to identify the image, both
GPT-4o and LLaVA-7B correctly recognize it as an
ophthalmology-related image. GPT-4o specifically
identifies the image as a “retinal fundus photograph,
commonly used in ophthalmology to examine the
interior surface of the eye,” highlighting its poten-
tial applications in detecting and monitoring vari-
ous eye conditions. Similarly, LLaVA-7B recog-
nizes the image as a close-up view of a human eye,

albeit focusing more on superficial features such
as the iris and surrounding tissue. These findings
suggest that LVLMs have been exposed to ophthal-
mology data during training and can identify such
images when encountered. However, the perfor-
mance of LVLMs on more complex tasks, such as
glaucoma classification, remains a challenge, as
evidenced by the results on the LMOD benchmark.
This discrepancy between image recognition and
task-specific performance underscores the inher-
ent challenges posed by ophthalmology data for
LVLMs.

Regarding the first point, we find that LVLMs
like GPT-4o and LLaVA-7B can correctly iden-
tify color fundus photographs (CFPs) from LMOD,
indicating that these models have encountered oph-
thalmology data during training. This suggests that
the low performance is not due to a complete lack
of exposure to the domain.

As for the second point, we fine-tuned LLaVA-
7B on the glaucoma detection task using the train-
ing set of LMOD. Notably, even on the same train-
ing data, the fine-tuned model still achieves only
50% accuracy, always predicting "non-glaucoma"
regardless of the input. This indicates that sim-
ple fine-tuning is insufficient to overcome the ran-
dom accuracy in glaucoma detection, underscoring
the inherent challenges of ophthalmology data for
LVLMs.

Additionally, some may question the suitability
of the ophthalmology images in LMOD for glau-
coma classification. However, this concern is un-
founded. As demonstrated in (Velpula and Sharma,
2023), a deep learning model achieves an accu-
racy of 93.86% on the ORIGA dataset, which is
the same dataset used for evaluating glaucoma de-
tection in our benchmark. This high performance
indicates that the images in ORIGA contain suffi-
cient discriminative information for distinguishing
between glaucoma and non-glaucoma cases. Con-
sequently, the poor performance of LVLMs on this
task cannot be attributed to the quality or suitability
of the dataset itself, but rather highlights the inher-
ent challenges that ophthalmology data poses for
these models.

C Experimental Setup

We developed a general framework based on Py-
Torch, providing a unified interface for performing
inference across various vision-language models
(VLMs). This framework ensures consistent evalu-
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GPT-4o Response: This image appears to be a retinal fundus photograph, commonly used in ophthalmology to examine the interior surface of 
the eye, including the retina, optic disc, macula, and blood vessels. Specifically, the optic disc (the bright circular area) is visible in this image. 
Such images are typically used to detect and monitor various eye conditions, including glaucoma, diabetic retinopathy, macular degeneration, 
and other retinal diseases. If you are working on glaucoma detection or another ophthalmic project, this image could be part of your dataset for 
analysis or model training. Let me know if you'd like help with processing or analyzing it!

What is this image? Existing LVLMs do recognize ophthalmology images

LLaVA-7B Response: The image is a close-up view of a human eye, showcasing the iris and the surrounding tissue. The eye appears to be a 
bit blurry, possibly due to the camera's focus or the subject's movement. The eye is located in the center of the image, with the surrounding 
tissue and the iris clearly visible.

LLaVA-Med: This image is a fundus photograph, which is a photograph of the retina and optic nerve of the eye. It is taken using a fundus
camera, a specialized instrument that allows for a clear and detailed view of the back of the eye.

What is this image? 

GPT-4o Response: This image appears to be an optical coherence tomography (OCT) scan, typically used in ophthalmology to visualize the 
retina. OCT imaging provides cross-sectional views of the retinal layers, allowing for detailed examination of the structures at the back of the eye, 
including the retina, macula, and optic nerve. The scale bar indicating "200 µm" suggests that the scan is showing a close-up view of the retinal 
layers at a very high resolution, which is often used for diagnosing and monitoring eye conditions like macular degeneration, diabetic retinopathy, 
and glaucoma.

LLaVA-7B Response: The image is a close-up view of a human eye, showcasing the iris and the surrounding tissue. The eye appears to be a 
bit blurry, possibly due to the camera's focus or the subject's movement. The eye is located in the center of the image, with the surrounding 
tissue and the iris clearly visible.

LLaVA-Med: This image is an OCT (Optical Coherence Tomography) scan of the right eye. OCT is a non-invasive imaging technique that uses 
light waves to capture high-resolution, cross-sectional images of the retina and other layers of the eye. It is particularly useful for visualizing the 
retinal structure and detecting abnormalities or changes in the eye tissue.

Figure 6: Responses from GPT-4o and LLaVA-7B when presented with a retinal fundus photograph and asked, “What is this
image?”

ation and smooth integration with different models.
For each VLM, we used the same comput-

ing infrastructure—specifically, two RTX 6000
GPUs—to perform the inference. We evaluated
the models using nine different ophthalmology
datasets, with identical prompts and inputs pro-
vided to each VLM. Moreover, we applied the de-
fault hyperparameters for each model during the
evaluation. This approach allowed us to fairly com-
pare the performance of the different models.

D Computational Resource

The computing infrastructure includes 11 GPU
nodes, each equipped with 2x AMD EPYC 7742
processors (128 cores), 1TB of RAM, and 8 Quadro
RTX 6000 GPUs per node. Additionally, there are
7 GPU nodes with 2x Intel Icelake Xeon Platinum
8358 processors.

For vision-language model inference tasks on
various ophthalmology datasets, the runtime typi-
cally ranges from two to four hours, depending on
the specific dataset.

E Use Of AI Assistants

We used AI tools to assist with coding tasks, such
as debugging and optimizing code during the de-

velopment phase. Additionally, we leveraged AI
to help polish the manuscript, addressing grammar
issues and ensuring clarity and coherence in our
presentation. However, all critical decisions such as
the research design, methodology, and conclusions
were made independently by the authors.

F Hyperparameters

This section outlines the essential hyperparameters
that were chosen for the large vision-language mod-
els (LVLMs) in our experiments, listed in Table 6.

1. Image Resolution: The image resolution de-
fines the size of the visual input processed by
each LVLM. Higher resolutions capture finer
details. Table 6 summarizes the exact values
of these hyperparameters.

2. Top-p Sampling: Top-p, also known as nu-
cleus sampling, is a hyperparameter that influ-
ences the randomness of a language model’s
output. It defines a probability threshold and
selects the smallest set of tokens whose cu-
mulative probability exceeds this threshold.
The model then samples randomly from this
subset to generate the output. This approach
allows for more diverse and creative results
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compared to methods that randomly sample
from the entire vocabulary.

3. Temperature: The temperature hyperparame-
ter influences the randomness of the model’s
output by scaling logits before applying soft-
max. Higher temperatures (e.g., >1) encour-
age more diverse outputs by flattening the
probability distribution, making it suitable for
creative tasks. Lower temperatures (e.g., <1)
concentrate the distribution, resulting in more
focused outputs, which is critical in medical
domains to ensure reliable, deterministic re-
sponses. Temperature is disabled when setting
to be 0.

4. Beams Number: Beam search is a decod-
ing strategy that retains multiple candidate
sequences at each generation step. A higher
number of beams (e.g., 5 or 10) explores
more possibilities, potentially yielding better
results at the cost of increased computation. A
lower beams number (e.g., 1) favors efficiency
and speed but risks missing better sequences,
which may be a concern in domains requiring
high-quality outputs.

5. Number of Parameters: The number of pa-
rameters refers to the total count of learnable
weights in a model, directly influencing its ca-
pacity and performance. Larger models tend
to perform better due to increased capacity,
but at the cost of higher memory usage and
slower inference times.

6. Max New Tokens: This hyperparameter lim-
its the number of tokens generated by the
model during inference.

G Response Examples

Input:

This is an ophthalmology OCT image.
Based on the image, please tell me the stage
of macular hole decision. Then, give a de-
tailed justification and explanation for your
answer. Follow the format: Stage: <AN
INTEGER>; Justification: <EXPLANA-
TION>.

Ground Truth (GT):

Stage: 4

GPT-4o Response:

Stage: 4; Justification: The OCT image dis-
plays a full-thickness macular hole, where
there is a complete defect involving all the
retinal layers from the inner surface to the
retinal pigment epithelium. The presence
of this full-thickness defect, along with the
evident central gap extending through the
macula and alterations in the surrounding
retina, clearly indicates a Stage 4 macular
hole. Additionally, the involvement of the
posterior vitreous detachment supports this
stage classification.

LLaVA Med Response:

Stage: 3; Justification: The image shows
a macular hole with a diameter of 300 mi-
crometers. This is considered stage 3, which
is a more advanced stage of macular hole de-
velopment. The macular hole is larger and
may be associated with more severe vision
loss.

LLaVA-1.5-7B Response:

Stage: 2; Justification: The image shows a
macular hole with a well-defined, clean, and
clear appearance. The hole is surrounded
by a well-organized retinal structure, includ-
ing the fovea and the outer retinal layers.
The presence of a clear and well-defined
macular hole indicates that it is in an early
stage of development, which is typically
characterized by a clean and organized ap-
pearance.

LLaVA-M-7B Response:

The image you’ve provided appears to be an
Ophthalmology OCT (Optical Coherence
Tomography) scan, which is a non-invasive
imaging technique used to visualize the lay-
ers of the retina...

2516



Model Image Top-p Temperature Beams Number of Max New
Resolution Sampling Number Parameters Tokens

GPT-4o 512 x 512 - - - - 512
LLaVA-Med 336 x 336 1.0 0 1 7.56 B 512
LLaVA-1.5-7B 336 x 336 1.0 0 1 7.06 B 512
LLaVA-M-7B 336 x 336 1.0 0 1 7.56 B 512
LLaVA-V-7B 336 x 336 1.0 0 1 7.06 B 512
LLaVA-13B 336 x 336 1.0 0 1 13.35 B 512
Yi 6B 336 x 336 1.0 0 1 6.71 B 512
InternVL 2B 448 x 448 - 0 1 2.20 B 512
InternVL 4B 448 x 448 - 0 1 4.14 B 512
QWen 448 x 448 - 0 - 9.65 B 512
VILA 3B 384 x 384 1.0 0 1 3.14 B 512
VILA 3B-S2 768 x 768 1.0 0 1 3.16 B 512
VILA 8B 384 x 384 1.0 0 1 8.49 B 512

Table 6: Hyperparameters for the large vision-language models evaluated in this work. The “Image Resolution” column shows
the spatial dimensions of the input images processed by each model. The “Top-p Sampling” column indicates the value of the
top-p sampling hyperparameter used during text generation. The “Temperature” column specifies the value of the temperature
hyperparameter used in the softmax function during text generation. It is disabled given value 0. The ‘̀Beams Number” column
indicates the number of beams used in the beam search decoding algorithm. The “Number of Parameters” column reports the
model size in billions (B) of parameters. The “Max New Tokens” column indicates the maximum number of new tokens the
model can generate during inference. Symbol “-” denoting cases where it is not applicable or not reported.

LLaVA-V-7B Response:

Stage: 200 µm; Justification: The macular
hole is not clearly visible in this image. The
hole is typically smaller than 200 µm, which
is the scale indicated by the measurement
on the left side of the image.

LLaVA-13B Response:

Stage: 2; Justification: The image shows a
macular hole in the retina, which is a stage
2 macular hole. In stage 2, the hole is small
and has not yet begun to contract.

Yi-6B Response:

Stage: 4

InternVL-2B Response:

Stage: 2; Justification: The image shows a
macular hole, which is a small hole in the
retina that can cause vision loss.

InternVL-4B Response:

Stage: 1; Justification: The image shows a
clear view of the retinal layers with a dis-
tinct, well-defined macular hole.

QWen Response:

Stage: 3; Justification: The image shows a
large, full-thickness macular hole with pos-
terior vitreous detachment and subretinal
fluid.

VILA-8B Response:

[0.00, 0.00, 1.00, 1.00]

H Supervised Training Settings

To evaluate the feasibility of our proposed bench-
mark, we implemented neural network classifiers
for anatomical recognition and diagnosis analysis.
For both tasks, we used 80%, 15%, and 5% data
for training, validation, and test. For anatomical
recognition, we employed a CNN visual encoder
whose architecture is like below:
The CNN was trained with the following settings:

• Image resolution: 128 × 128

• Batch size: 512

• Learning rate: 0.001

• Epochs: 20

For diagnostic analysis, we fine-tuned RET-
Found as the visual encoder. RETFound is a foun-
dation model for retinal images, built on a large Vi-
sion Transformer (ViT) architecture with 24 Trans-
former blocks and an embedding vector size of
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class RegionClassifier(nn.Module ):
def __init__(self , num_classes ):

self.conv1 = nn.Conv2d(3, 32, kernel_size =3, stride=1, padding =1)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d (32, 64, kernel_size =3, stride=1, padding =1)
self.fc1 = nn.Linear (64 * 32 * 32, 128)
self.fc2 = nn.Linear (128, num_classes)
self.relu = nn.ReLU()

def forward(self , x):
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = x.view(-1, 64 * 32 * 32)
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x

Figure 7: The RegionClassifier model implementation in PyTorch.

1,024 (Zhou et al., 2023). The RETFound model
offers two variations designed for different image
types: CFP and OCT. For macular hole (MH) stage
classification, we employed the OCT variation,
while the CFP model was used for glaucoma clas-
sification (according to the dataset’s image type).
For both tasks, we fine-tuned RETFound using the
default parameter settings:

• Image resolution: 224 × 224

• Batch size: 16

• Base learning rate:: 5e-3

• Epochs: 50

• Layer decay: 0.65

• Weight decay: 0.05

The model’s performance on anatomical recog-
nition and diagnosis analysis tasks served as a base-
line for the complexity of our dataset, and is com-
pared with the performance of LVLMs in subse-
quent sections.

I Detailed Error Analysis

I.1 Misclassification

As shown in Figure 9, LLaVA-Med incorrectly pre-
dicted the image as glaucoma, providing a detailed
but inaccurate explanation. Experimental results in
Table 2 indicate that all LVLMs achieve suboptimal
accuracy in both glaucoma and macular hole stage
classification tasks. Additionally, models in the
LLaVA series, such as LLaVA-Med, LLaVA-13B,
and LLaVA-M-7B, consistently generate the same

Input Prompt: This is a color fundus 
image. Based on the image, please tell me 
whether it is of glaucoma. Then, give a 
detailed justification and explanation for 
your answer. Follow the format: 
GLAUCOMA: <YES or NO>; Justification: 
<EXPLANATION>. 

LLaVA-Med

Response: GLAUCOMA: Yes; Justification: The fundus image shows a 
typical appearance of glaucoma, which is characterized by the 
presence of a cup-to-disc ratio greater than 0.5. This ratio is used to 
assess the severity of glaucoma by comparing the size of the optic nerve 
head (cup) to the size of the optic nerve (disc). A higher cup-to-disc ratio 
indicates a more advanced stage of glaucoma.

InternVL-2B

Response: GLAUCOMA: NO; Justification: The image shows a fundus 
with normal retinal blood vessels and a clear appearance, which is 
indicative of normal glaucoma. Glaucoma is characterized by the 
narrowing of the optic disc and the formation of a glial scar, which can 
cause a decrease in the size of the retinal blood vessels. The image does 
not show any signs of these features. 

Figure 8: Failure to abstain from making predictions on
out-of-domain images. The figure illustrates the responses
generated by LLaVA-Med and InternVL-2B when presented
with a non-ophthalmology image of a cat and queried about
the presence of glaucoma. Despite the image being outside
the domain of fundus photography, LLaVA-Med incorrectly
classifies the cat image as showing signs of glaucoma, cit-
ing a typical cup-to-disc ratio greater than 0.5. Similarly,
InternVL-2B misinterprets the cat image as a fundus image
but concludes that there are no signs of glaucoma based on
the visible features.

Figure 9: LLaVA-Med incorrectly predicted the image as
glaucoma, providing a detailed but inaccurate explanation.
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Figure 10: InternVL-4B presented contradictory explanations
within its prediction.

Figure 11: Yi-6B provided assertive predictions without offer-
ing detailed explanations.

Figure 12: LVLMs display a lack of medical knowledge and
produce medically inaccurate explanations. The figure illus-
trates the responses generated by VILA-3B

response, predicting glaucoma disease across differ-
ent input images. These findings suggest that cur-
rent LVLMs still lack the capability to accurately
interpret images and make reliable predictions.

I.2 Failure to Abstain

Some models failed to recognize when the input
image was irrelevant to the medical task at hand
and continued to provide diagnostic predictions re-
gardless of the mismatch. As Figure 8 showed,
LLaVA-Med and InternVL-2B misdiagnosed the
image of a cat as showing signs of glaucoma. In
the provided scenario, the prompt explicitly asked
whether the image depicted a case of glaucoma,
which typically involves human ophthalmic im-
ages, such as retinal scans or fundus photographs.
However, the input image was clearly a photograph
of a cat, an object entirely outside the scope of
the medical context. The inability of models like
LLaVA-Med to abstain from making predictions on
out-of-domain inputs points to their limitations in
robustly handling uncertainty or recognizing when
data does not meet the conditions required for valid
predictions. It underscores the need for integrat-
ing mechanisms into LVLMs that can detect when
the input data is irrelevant, ensuring that models
avoid generating misleading or incorrect medical
diagnoses.

I.3 Inconsistent Reasoning

As observed in 10, InternVL-4B initially predicted
the macular hole stage of the input image as stage
1 but then stated in its explanation that there was
no visible macular hole or other abnormalities in
the macular region, ultimately concluding with no
macular hole. Consistent reasoning is proven to
be crucial for providing accurate answers, yet this
explanation contradicts the initial prediction, high-
lighting the intrinsic issue of inconsistent model
reasoning.

I.4 Assertion

Some LVLMs, such as Yi-6B, tend to provide direct
answers without offering detailed explanations. As
shown in 11, Yi-6B simply predicted the presence
of glaucoma without providing any justification,
despite the prompt explicitly requesting one. In
practical clinical scenarios, reasoning steps are crit-
ically important. AI models should not only assist
clinicians by streamlining their workflow but also
ensure decision-making transparency. This allows
clinicians to validate both the final prediction and
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the intermediate reasoning steps, helping to identify
potential issues and fostering trust in AI-assisted
clinical systems.

I.5 Lack of Domain-Specific Knowledge

Some LVLMs demonstrate inadequate medical
knowledge and produce medically inaccurate ex-
planations. As illustrated in Figure 12, VILA-3B
inaccurately performs an initial analysis by mis-
classifying the stages of macular holes, erroneously
numbering them from 1 to 5. Specifically, it incor-
rectly identifies Stage 5 as the final stage, where
the macular hole is presumed to be resolved and
vision fully restored. In reality, the established stag-
ing system for macular holes ranges from Stage 1
to Stage 4, without Stage 5. These inaccuracies
highlight the persistent issue of LVLMs lacking
domain-specific expertise.

Fine-Tuned Example
Anatomical Recognition

Input Prompt: This is
an ophthalmology
image of type OCT.
Please identify the
type of each labelled
bounding box in this
image. Options can
be irc, retina, choroid,
mh. Please just follow
the format: <Integer
ID>: <Type>; <Integer
ID>: <Type>; ...

Optic Optic Optic Optic Optic (x39) Opt Opt Opt Opt Opt (x946)

Figure 13: Fine-tuned example response for anatomical recog-
nition. The model was tasked with identifying the type of each
labeled region in an OCT image. The fine-tuned LVLM failed
to produce meaningful responses, outputting repetitive text
such as "Optic Optic Optic Optic Optic (x39)" followed by
"Opt Opt Opt Opt Opt (x946)."

J Details of Fine-tuning LVLM

We provide the fine-tuning configuration used for
training the large vision-language model (LVLM)
with the script in the following script. During fine-
tuning for anatomical recognition, the model failed
to produce coherent outputs, generating the repeti-
tive response: “Optic Optic Optic Optic Optic (x39)
Opt Opt Opt Opt Opt (x946)”. For diagnostic tasks,
such as glaucoma and macular hole staging, the
model returned no responses.

K Demographic analysis

Tables 7 and 8 provide detailed p-value statistics
from the age and gender subgroup analyses of
various large vision-language models (LVLMs).

Model P-value

GPT4o 0.3395
LLaVA-Med 5.1625e-15

LLaVA-1.5-7B 9.3736e-06
LLaVA-M-7B 0.1766
LLaVA-V-7B N/A
LLaVA-13B N/A

Yi 6B 0.1022
InternVL 2B 0.0472
InternVL 4B 0.0754

Qwen 9.0541e-16
VILA 3B 0.5818

VILA 3B-S2 0.7814
VILA 8B 0.9269

Table 7: P-values from the age group analysis of various
LVLMs.

Model P-value

GPT4o 0.3734
LLaVA-Med 0.4411

LLaVA-1.5-7B 8.5040e-07
LLaVA-M-7B 0.1937
LLaVA-V-7B N/A
LLaVA-13B N/A

Yi 6B 0.1681
InternVL 2B 6.9497e-24
InternVL 4B 0.0082

Qwen 0.8096
VILA 3B 0.9345

VILA 3B-S2 0.1090
VILA 8B 0.2258

Table 8: P-values from the gender group analysis of various
LVLMs.

Specifically, we evaluated the models across dif-
ferent age groups (18-40, 40-60, 60+) and gender
categories (male, female). This two-tiered evalu-
ation approach allowed us to examine how demo-
graphic factors such as age and gender influence
the predictive accuracy of the models. Statistically
significant differences were observed for several
models, including the following examples:

• InternVL 2B: p = 0.0472 for age, and p =
6.94× 10−24 for gender.

• LLaVA-1.5-7B: p = 9.3736× 10−6 for age,
and p = 8.5040× 10−7 for gender.

• LLaVA-Med and Qwen: significant p-values
in the age subgroup analysis (p = 5.16 ×
10−15 and p = 9.05× 10−16, respectively).

• InternVL 4B: significant p-value in the gen-
der subgroup analysis (p = 0.0082).

L Detailed benchmarked LVLMs

We benchmarked 13 LVLMs on the LMOD bench-
mark. These models included:
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deepspeed llava/train/train_mem.py \
--model_name_or_path llava -med -7b-delta \
--data_path <DATA_PATH > \
--vision_tower openai/clip -vit -large -patch14 \
--mm_vision_select_layer -2 \
--mm_use_im_start_end True \
--bf16 True \
--output_dir <OUTPUT_PATH > \
--num_train_epochs 3 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 5000 \
--save_total_limit 3 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer ' \
--model_max_length 2048 \
--gradient_checkpointing True \
--lazy_preprocess True \
--report_to wandb

Figure 14: The command to train LLaVA-Med.

GPT-4o: A proprietary model developed by Ope-
nAI (Achiam et al., 2023).

LLaVA Variations: LLaVA (Liu et al., 2024)
leveraged a pre-trained vision encoder and a large
language model to achieve state-of-the-art perfor-
mance on various vision-language tasks. We evalu-
ated several variations based on different language
models and sizes, including LLaVA-7B, LLaVA-
M-7B (M for Mistral), LLaVA-V-7B (V for Vi-
cuna), LLaVA-13B, and LLaVA-Med (Li et al.,
2024b), which was fine-tuned on a large-scale med-
ical image-text dataset.

Yi-6B: A vision-language model supporting both
Chinese and English (Young et al., 2024).

InternVL Variations: InternVL (Chen et al., 2024)
aligned a scaled-up vision foundation model with
a LLM using web-scale image-text data. We evalu-
ated two variants with 2B and 4B parameters.

QWen: A vision-language model that used a query-
based approach to align visual and textual repre-
sentations (Bai et al., 2023).

VILA Variations: VILA explored different pre-
training strategies for LVLMs. We evaluated three
variants: VILA-3B, VILA-3B-S2, and VILA-8B,
with parameter counts ranging from 3 billion to 8
billion (Lin et al., 2024).

M Ethical and Risk Considerations

We place a high priority on patient privacy by ex-
clusively using open-access datasets in our study,
ensuring that there are no concerns related to pri-
vacy leakage. All datasets employed in our research
are openly accessible and licensed under various
Creative Commons (CC) licenses, allowing for eth-
ical and transparent use. For future work involving
private data, we will implement strict protocols to
prevent data retention and adhere to relevant regu-
lations and ethical guidelines. Any collaborations
with healthcare institutions will involve robust data
sharing agreements and security measures.

Additionally, to mitigate potential biases in
datasets and model performance across diverse pop-
ulations, we have collected datasets that represent
a wide range of ethnicities, including Hispanic, In-
dian, Austrian, and others. By incorporating data
from various populations, we aim to ensure that our
models are representative of diverse individuals.
However, we acknowledge that biases may still per-
sist, and when deploying our method in real-world
settings, it is crucial to collect a comprehensive test
dataset that includes diverse ethnicities and other
factors to thoroughly validate the model’s perfor-
mance and identify any potential biases. We remain
committed to ongoing efforts to ensure dataset di-
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versity and fairness in our research.
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