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Abstract

Visual-Language Pre-training (VLP) models
have achieved significant performance across
various downstream tasks. However, they
remain vulnerable to adversarial examples.
While prior efforts focus on improving the ad-
versarial transferability of multimodal adversar-
ial examples through cross-modal interactions,
these approaches suffer from overfitting issues,
due to a lack of input diversity by relying exces-
sively on information from adversarial exam-
ples in one modality when crafting attacks in
another. To address this issue, we draw inspira-
tion from strategies in some adversarial training
methods and propose a novel attack called Lo-
cal Shuffle and Sample-based Attack (LSSA).
LSSA randomly shuffles one of the local image
blocks, thus expanding the original image-text
pairs, generating adversarial images, and sam-
pling around them. Then, it utilizes both the
original and sampled images to generate the
adversarial texts. Extensive experiments on
multiple models and datasets demonstrate that
LSSA significantly enhances the transferabil-
ity of multimodal adversarial examples across
diverse VLP models and downstream tasks.
Moreover, LSSA outperforms other advanced
attacks on Large Vision-Language Models.

1 Introduction

Visual-Language Pre-training (VLP) models have
achieved outstanding performance in various down-
stream visual-and-language tasks, including image-
text retrieval (Chen et al., 2020a; Wang et al., 2019),
visual grounding (Sadhu et al., 2019), and image
captioning (Vinyals et al., 2015). Despite their suc-
cess, recent works (Zhang et al., 2022; Lu et al.,
2023) have revealed that VLP models remain vul-
nerable to multimodal adversarial examples, which
add malicious perturbations to the original image-
text pairs. Moreover, the multimodal adversarial
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Figure 1: Comparison of attack success rate (%) us-
ing our LSSA method and existing advanced attacks in
image-text retrieval tasks. The multimodal adversarial
examples are crafted on the ALBEF model to attack
ALBEF, TCL, CLIPViT and CLIPCNN, respectively.

examples crafted for one visual-and-language task
are often transferable to other downstream tasks.
Therefore, it is crucial to explore multimodal adver-
sarial attacks, as they provide valuable insights into
the robustness of various VLP models (Li et al.,
2021; Yang et al., 2022; Radford et al., 2021).

Recent research focuses on attacking VLP mod-
els in white-box setting (Zhang et al., 2022), where
the attacker has access to the target model’s archi-
tecture and weights. However, it is more practical
to explore multimodal adversarial attacks in black-
box setting (Lu et al., 2023; Yu et al., 2023), where
the inner information of target model is not acces-
sible. As shown in Figure 1, while existing works
have improved the white-box attack success rate
on VLP models through modality interaction, their
transferability remains unsatisfied, which is due to
overfitting issue caused by limited input diversity,
relying excessively on adversarial examples in one
modality when crafting attacks in another.

Input transformations have been demonstrated to
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Figure 2: Comparison of SGA and LSSA. (a) and (b) show the multimodal adversarial examples generation process
of SGA and LSSA, respectively. V’ and T’ represent the corresponding image and text adversarial examples. Dashed
lines enclose the expanded set. Arrows indicate the process or guidance for generating adversarial examples.

boost adversarial examples’ transferability by en-
hancing input diversity in unimodal attacks. How-
ever, recent research (Lu et al., 2023) reveals that
existing unimodal input transformation attacks not
only fail to enhance adversarial transferability sig-
nificantly but also considerably degrade white-box
attack performance in multimodal case. It is be-
cause multimodal retrieval tasks rely more on the
spatial information in images and feature align-
ment (Cao et al., 2022), while unimodal classifi-
cation tasks depend more on global features. The
data augmentation techniques used in adversarial
training also contribute to enhancing input diversity.
However, directly applying unimodal data augmen-
tation to a multimodal attack harms the white-box
attack performance due to the fundamental differ-
ences between multimodal and unimodal tasks. On
the other hand, the generalization of models can be
improved with diverse training data, and the trans-
ferability of adversarial examples can be enhanced
by leveraging more data information. Nonetheless,
existing attacks typically consider the adversarial
image in generating adversarial text, ignoring the
valuable information in the original image.

To address these issues, we draw inspira-
tion from strategies in adversarial training meth-
ods (Song et al., 2020; Li et al., 2023b) and propose
a novel attack called Local Shuffle and Sample-
based Attack (LSSA), which improves input diver-
sity while preserving spatial information. As in
Figure 2, LSSA randomly shuffles one of the local
image blocks and utilizes the shuffled images and
original texts to generate adversarial images. Then,
we sample the neighborhoods around the generated
adversarial images and craft adversarial texts using
sampled images, original images, and texts.

We conduct experiments on Flickr30K (Plum-

mer et al., 2017) and MSCOCO (Lin et al., 2014)
to evaluate our LSSA across various downstream
tasks. Experimental results demonstrate that LSSA
boosts the attack performance in multimodal learn-
ing, outperforming the advanced multimodal at-
tacks in black-box setting. Additionally, LSSA
also surpasses advanced attacks in image caption-
ing and visual grounding. Especially, to our knowl-
edge, this is the first work to evaluate existing mul-
timodal adversarial transferability performance on
Large Vision-Language Models (LVLMs). Our
contributions are summarized as follows:

• We observe that multimodal adversarial at-
tacks rely on input diversity. For images,
transformations should maintain spatial infor-
mation to preserve white-box performance.
For texts, using more data can disrupt feature
alignment and enhance attack effectiveness.

• Based on the observations, we propose a novel
attack called Local Shuffle and Sample-based
Attack (LSSA), which randomly shuffles one
of the local image blocks and samples around
adversarial examples to generate adversarial
images and texts.

• Extensive experiments demonstrate the effec-
tiveness of LSSA, showing a significant im-
provement in the transferability of adversar-
ial examples across various VLP models and
downstream tasks. Moreover, LSSA outper-
forms advanced attacks on various LVLMs.

2 Related Work

2.1 Vision-Language Pre-training Models
Vision-Language Pre-training (VLP) models boost
the performance of various Vision-and-Language
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tasks (Li et al., 2022) through pre-training on ex-
tensive image-text pairs. Previous works primarily
depend on the pre-trained object detectors to obtain
the vision-language representations (Chen et al.,
2020b; Li et al., 2020b; Wang et al., 2022; Zhang
et al., 2021). Recently, with the great success of Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2021;
Touvron et al., 2021; Yuan et al., 2021) in vari-
ous tasks, recent works have introduced ViT as an
image encoder to convert the input into patches,
substituting original computationally expensive ob-
ject detectors (Dou et al., 2022; Li et al., 2022,
2021; Wang et al., 2023; Yang et al., 2022).

According to the architectures, VLP models
can be categorized into fused and aligned mod-
els. Fused VLP models (e.g., ALBEF (Li et al.,
2021), TCL (Yang et al., 2022)) initially utilize sep-
arate unimodal encoders to obtain visual and text
features. Then, it utilizes a multimodal encoder to
output multimodal embeddings by further fusing
the embeddings of images and texts. In contrast,
the aligned VLP model (e.g., CLIP (Radford et al.,
2021)) extracts visual and text features by sepa-
rate unimodal encoders and directly aligns their
embeddings. Furthermore, the LVLMs (Li et al.,
2023a; Zhu et al., 2023) also show remarkable per-
formance in numerous multimodal tasks.

2.2 Downstream Vision-and-Language Tasks
Given input from one modality, Image-Text Re-
trieval (ITR) (Chen et al., 2020a; Wang et al., 2019)
is a retrieval task where the goal is to retrieve the
most relevant instances from a gallery database in
the other modality.

For fused VLP models (Li et al., 2021; Yang
et al., 2022; Li et al., 2022), the similarity scores
are calculated for all image-text pairs to retrieve
top-k candidates, which are then processed by a
multimodal encoder to compute final image-text
matching scores for ranking. For aligned VLP
model (Radford et al., 2021), the final ranking can
be directly determined by the image and text em-
bedding similarity.

Image Captioning (IC) (Vinyals et al., 2015)
generates suitable and logical textual descriptions
for the visual images. The evaluation metrics for
image captioning models, including BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), ROUGE (Lin, 2004), CIDEr (Vedantam
et al., 2015), and SPICE (Anderson et al., 2016),
compare the generated text and the reference text
in terms of quality and relevance. Visual Ground-

ing (VG) (Sadhu et al., 2019) is a localization task
that identifies the corresponding visual region in
images based on the textual descriptions.

2.3 Transferability of Adversarial Examples

Existing adversarial attacks can be categorized into
white-box and black-box attacks. In white-box set-
ting, the attacker has full access to the information
of the target model, while such access is not avail-
able in black-box settings. In computer vision, nu-
merous attacks have been proposed to craft adver-
sarial examples by utilizing gradient information
or input transformations, such as FGSM (Goodfel-
low et al., 2015), MIM (Dong et al., 2018), and
TIM (Dong et al., 2019). In natural language pro-
cessing, existing attacks, such as BERT-Attack (Li
et al., 2020a) and FGPM (Wang et al., 2021), mod-
ify characters and words in the inputs.

In the multimodal vision-language field, Co-
attack (Zhang et al., 2022) is the first and typi-
cal white-box attack for popular VLP models on
downstream tasks. SGA (Lu et al., 2023) diversi-
fies image-text pairs and extends the embedding
distance of image-text pairs to improve the trans-
ferability of multimodal adversarial examples in
black-box setting. However, SGA suffers from the
overfitting issue due to a lack of input diversity by
relying excessively on information from adversar-
ial examples in one modality when crafting attacks
in another. To further improve the adversarial trans-
ferability, we enrich the diversity of adversarial
examples for image-text pairs and consider both
original and sampled image-text pairs, enabling the
transferability of adversarial examples.

3 Methodology

This section first introduces our motivations and ob-
servations. Then, we propose a novel multimodal
adversarial attack called Local Shuffle and Sample-
based Attack, providing a detailed description.

3.1 Motivations and Observations

Existing unimodal adversarial attacks, such as
DIM (Xie et al., 2019), SIM (Lin et al., 2020), and
multimodal attack SGA (Lu et al., 2023) use input
transformation to effectively increase the diversity
of inputs, thereby improving the performance of
the attacks. However, SGA shows that existing
unimodal adversarial attacks based on input trans-
formation significantly harm the white-box attack
performance. On the other hand, we observe that
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Table 1: The attack success rate (%) of multimodal adversarial examples against different VLP models. The source
column represents the VLP models used for crafting multimodal adversarial examples on the Flickr30K dataset. *
indicates white-box attacks. The higher attack success rate indicates the better performance.

Source Attack
ALBEF TCL CLIPViT CLIPCNN

TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

ALBEF
SGA 97.24* 97.08* 44.68 55.57 33.25 44.20 35.38 46.59
Global Shuffle 91.97* 91.93* 48.26 58.02 34.87 46.79 38.85 48.95
Local Shuffle 96.45* 96.40* 56.16 64.38 35.95 48.16 40.38 50.23

data augmentation in adversarial training can also
effectively increase input diversity. Therefore, in-
spired by the adversarial training method of RL-
FAT (Song et al., 2020), we conduct experiments
to explore the impact of data augmentation on the
transferability of adversarial examples.

Specifically, we combine the Global Shuffle of
RLFAT with SGA. Following their settings, we
also divide the original images into blocks and ran-
domly shuffle them to generate adversarial exam-
ples using the gradients of shuffled images. De-
tailed information is described in Appendix A.1
and Appendix A.2. As shown in Table 1, Global
Shuffle improves the adversarial transferability, yet
the performance of white-box attacks significantly
decays. It is because multimodal retrieval tasks
rely more on the spatial information in images and
feature alignment while Global Shuffle excessively
disrupts them in the original images. Therefore,
a suitable input transformation needs to increase
diversity while preserving the original spatial infor-
mation. To address this issue, we block the original
image and randomly shuffle one of the local image
blocks. As shown in Table 1, Local Shuffle transfor-
mation significantly enhances the black-box attack
while maintaining white-box performance, boost-
ing the diversity of original image-text pairs (v, t).

In the text modality, previous attacks only con-
sider either the original image or the adversarial
image in generating adversarial text, without con-
sidering both information. Similar to improving the
generalization of models with more training data,
the transferability of adversarial examples can be
enhanced by utilizing more data information (Lin
et al., 2020). Therefore, it is natural to consider the
information from multiple samples to improve the
adversarial transferability. Inspired by another ad-
versarial training method of STAT (Li et al., 2023b),
which utilizes both the original and the neighbors
of the adversarial examples to enhance the model
robustness, we conduct experiments to investigate
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Figure 3: The attack success rate of multimodal adver-
sarial examples against TCL model, which are crafted
on ALBEF model. We explore three methods: a) Origi-
nal SGA three steps attack (t-i-t), b) SGA two steps
attack (i-t): generating adversarial images using origi-
nal text and then generating adversarial text using the
adversarial images, c) Sample-based SGA two steps
attack (i-t): generating adversarial images using origi-
nal text and then using the original and neighbours of
the adversarial image to generate the adversarial images.

the multimodal adversarial examples generated by
different images and text information. As illus-
trated in Figure 3, the experimental results indicate
that directly using the original text outperforms
using adversarial text for generating transferable
adversarial images. Additionally, combining the
original image with the sampled points around the
adversarial image shows better transferability com-
pared to individually using the adversarial image.

3.2 Local Shuffle and Sample-based Attack
Local Shuffle Transformation. Based on the anal-
ysis in Section 3.1, in each iteration, we randomly
shuffle one of the local image blocks of the current
adversarial images (vadvi , t), and repeat to get N
samples. By utilizing the above input transforma-
tion method, we can obtain an expanded dataset
(V, T ) = {(v′

1, t), (v
′
2, t), ..., (v

′
N , t)}. Then, the

expanded dataset (V, T ) is used to generate the ad-
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versarial images (vadvi+1, t), which can be formulated
as follows:

gi+1 = µgi +
1

N

N∑

j=1

∇vJ(fI(v
′
j), fT (t))

∥∇vJ(fI(v
′
j), fT (t)∥

,

vadvi+1 = Clipϵv(v
adv
i + α · sign(gi+1)),

(1)

where J(·, ·) is the loss function, gi is the accumu-
lated gradient, ϵv is the perturbation boundary of
the image, α is the step size and µ is the decay
factor. fI(·) and fT (·) are visual and text encoder.

Sample-based Augmentation. Based on the
analysis in Section 3.1, it is evident that the original
and neighbors of adversarial images can effectively
enhance the transferability of multimodal adversar-
ial examples. It ensures the adversarial text has
significant differences not only from the original
image features but also from the adversarial image
features. The adversarial text generation process
can be formalized as follows:

tadv = argmax
t′∈B[t,ϵt]

λ · J(fI(v), fT (t′))

+ (1− λ) · 1

M

M∑

i=1

J(fI(vi), fT (t
′)),

(2)

where J(·, ·) is the loss function, M is the sampled
number, v is the original image, and vi is the neigh-
bours of adversarial image. The overall algorithm
of LSSA is summarized in Appendix A.3.

Difference of LSSA. Since our LSSA attack
draws inspiration from the strategies of adversarial
training methods RLFAT and STAT, we highlight
the differences as follows:

a) The goal of adversarial training is to boost
model generalization, while our LSSA aims to gen-
erate more transferable adversarial examples with
input diversity. b) The local shuffle in our LSSA
is designed for multimodal retrieval tasks, whereas
the global shuffle in RLFAT is proposed for uni-
modal classification tasks. c) The sample-based
attack enhances performance by randomly sam-
pling around the adversarial images, whereas STAT
simultaneously crafts different adversarial images
to improve model robustness.

With different goals, tasks, and methods, our
LSSA is a new and novel input transformation
based multimodal adversarial attack to improve
the transferability of attack performance.

4 Experiments

In this section, we conduct experiments on two
benchmark datasets using popular VLP models and

LVLMs. First, we describe the experimental set-
tings in Section 4.1. Next, we evaluate the perfor-
mance of various advanced multimodal adversarial
attacks in Section 4.2. We then analyze the cross-
task transferability between different V+L tasks
in Section 4.3 and present the results of further
study in Section 4.4. Finally, we evaluate the LSSA
method on various LVLMs to verify its generaliza-
tion in Section 4.5.

4.1 Experimental Settings
Datasets and VLP Models. Following the
setting on SGA (Lu et al., 2023), we con-
duct experiments on two benchmark datasets,
namely Flickr30K (Plummer et al., 2017) and
MSCOCO (Lin et al., 2014). Flickr30K and
MSCOCO dataset contains 31,783 and 123,287
images, respectively, with five corresponding cap-
tions. We evaluate two typical architectures of VLP
models: the fused VLP models and aligned models.
For the fused VLP models, we choose ALBEF (Li
et al., 2021) and TCL (Yang et al., 2022), which are
pre-trained by different pre-trained tasks. For the
aligned VLP models, we choose the CLIP model
with different visual encoders. More details are
provided in Appendix B.1.

Adversarial Attack Settings. We follow the
multimodal adversarial attack setting of SGA.
Moreover, we extend the dataset by random shuf-
fling one of the local image blocks, where the size
of the original images is h× w, and the size of the
local image block is h/2× w/2, which is blocked
to four h/4×w/4 subblocks. We randomly shuffle
N = 20 times for each image. For the sampled
image number, we choose M = 20 to generate text
adversarial examples. More details are provided in
Appendix B.1.

4.2 Experiments Results
We conduct extensive experiments to evaluate our
LSSA method on two widely adopted architectures
of models: fused VLP and aligned VLP models.

As shown in Table 2, our proposed LSSA out-
performs existing advanced multimodal attacks
in white-box and black-box settings. When the
type of source model is the same as the target
model, LSSA has significantly improved adver-
sarial transferability. Specifically, LSSA surpasses
SGA by 14.75% and 10.05% in terms of attack suc-
cess rate on TR and IR tasks, respectively, when
transferring the multimodel adversarial examples
from ALBEF to TCL. We observe the same phe-
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Table 2: The attack success rate (%) of multimodal adversarial examples against different VLP models compared
with state-of-the-art methods on image-text retrieval task. The source column represents the VLP models used for
crafting multimodal adversarial examples on the Flickr30K dataset. * indicates white-box attacks.

Source Attack
ALBEF TCL CLIPViT CLIPCNN

TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

ALBEF

PGD 52.45* 58.65* 3.06 6.79 8.96 13.21 10.34 14.65
BERT-Attack 11.57* 27.46* 12.64 28.07 29.33 43.17 32.69 46.11
Sep-Attack 65.69* 73.95* 17.60 32.95 31.17 45.23 32.82 45.49
Co-Attack 77.16* 83.86* 15.21 29.49 23.60 36.48 25.12 38.89
SGA 97.24* 97.08* 44.68 55.57 33.25 44.20 35.38 46.59
LSSA (Ours) 97.29* 97.22* 59.43 65.62 36.32 48.49 40.87 50.77

TCL

PGD 6.15 10.78 77.87* 79.48* 7.48 13.72 10.34 15.33
BERT-Attack 11.89 26.82 14.54* 29.17* 29.69 44.49 33.46 46.07
Sep-Attack 20.13 36.48 84.72* 86.07* 31.29 44.65 33.33 45.80
Co-Attack 23.15 40.04 77.94* 85.59* 27.85 41.19 30.74 44.11
SGA 49.32 59.92 98.52* 98.79* 33.87 45.07 38.44 47.92
LSSA (Ours) 59.85 67.59 98.63* 98.80* 35.46 48.39 41.12 51.05

CLIPViT

PGD 2.50 4.93 4.85 8.17 70.92* 78.61* 5.36 8.44
BERT-Attack 9.59 22.64 11.80 25.07 28.34* 39.08* 30.40 37.43
Sep-Attack 9.59 53.25 11.38 25.60 79.75* 86.79* 30.78 39.76
Co-Attack 10.57 24.33 11.94 26.69 93.25* 95.86* 32.52 41.82
SGA 13.56 27.01 14.54 30.07 98.80* 98.94* 40.61 47.55
LSSA (Ours) 16.89 32.11 17.18 33.07 98.85* 98.97* 48.28 55.44

CLIPCNN

PGD 2.09 4.82 4.00 7.81 1.10 6.60 86.46* 92.25*

BERT-Attack 8.86 23.27 12.33 25.48 27.12 37.44 30.40* 40.10*

Sep-Attack 8.55 23.41 12.64 26.12 28.34 39.43 91.44* 95.44*

Co-Attack 8.79 23.79 13.10 26.07 28.79 40.03 94.76* 96.89*

SGA 10.74 25.02 14.54 27.26 30.80 41.82 99.23* 99.42*

LSSA (Ours) 14.08 26.89 15.28 30.12 37.67 46.91 99.74* 99.97*

nomenon that the multimodal adversarial examples
have better adversarial transferability from CLIPViT
to CLIPCNN, which outperforms SGA by 7.67%
and 7.89% on TR and IR tasks, respectively. More-
over, we also evaluate the performance of LSSA
on another benchmark dataset MSCOCO, which
is more challenging. Our LSSA still exceeds the
adversarial transferability of baseline methods with
a clear margin. The details of experiments on the
MSCOCO dataset are provided in Appendix B.3.

To explore the effectiveness of LSSA on the
different architecture of VLP models, we craft mul-
timodal adversarial examples from ALBEF (CLIP)
to CLIP (ALBEF) model. As shown in Table 2, our
proposed LSSA consistently improves the trans-
ferability of adversarial attacks on both ViT-based
CLIP and ViT-based CLIP, generated on ALBEF
model, surpassing the performance of other ad-
vanced attacks. Specifically, LSSA significantly en-
hances the adversarial transferability, attaining an
improvement of 3.07%, 4.69% and 5.59%, 4.18%
on CLIPViT and CLIPCNN.

4.3 Cross-Task Transferability

We also conduct extensive experiments to evaluate
the effectiveness of our LSSA attack on Image
Captioning (IC) and Visual Grounding (VG).

In the IC task, we craft adversarial images in
the ALBEF model and then attack the BLIP (Li
et al., 2022) model on the MSCOCO dataset. As
shown in Table 3, LSSA enhances the adversarial
transferability compared with SGA, gaining im-
provements of 2.87%, 4.93%, 2.49%, 6.29% and
6.54%, respectively. In the VG task, we gener-
ate adversarial image-text pairs on the RefCOCO+
dataset. The source and target models are ALBEF
models pre-trained on the ITR and VG tasks, re-
spectively. As shown in Table 4, LSSA still per-
forms better than existing attacks, significantly im-
proving 8.58%, 12.42%, and 6.18%, respectively.
It might be because the adversarial perturbations
crafted by LSSA contain more spacial adversarial
information compared with other modal interaction
attacks. The results demonstrate the effectiveness
of our LSSA on cross-task transferability.
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Table 3: Cross-Task Transerability: ITR→ IC. The
adversarial image-text pairs are generated from Image-
Text Retrieval (ITR) task to attack Image Caption (IC)
task on MSCOCO dataset. The source and target model
are ALBEF and BLIP, respectively. The Baseline is
the performance of IC on the original data, where the
lower value indicates better cross-task transerability of
adversarial examples.

Attack B@4 METEOR ROUGE_L CIDEr SPICE

Baseline 39.7 31.0 60.0 133.3 23.8
Co-Attack 37.4 29.8 58.4 125.5 22.8
SGA 34.8 28.4 56.3 116.0 21.4
LSSA (Ours) 33.8 27.0 54.9 108.7 20.0

Table 4: Cross-Task Transerability: ITR → VG.
The adversarial image-text pairs are generated from
the Image-Text Retrieval (ITR) task to attack the Visual
Grounding (VG) task in the ALBEF model on the Re-
fCOCO+ dataset. The Baseline is the performance of
VG on the original data, where the lower value indicates
better cross-task transferability of adversarial examples.

Attack Val TestA TestB

Baseline 58.5 65.9 46.3
Co-Attack 54.3 61.8 43.8
SGA 53.6 61.2 43.7
LSSA (Ours) 49.0 53.6 41.0

4.4 Further Study

We conduct various experiments on image-text re-
trieval to explore the impact of hyper-parameters
in the LSSA method, including the number of lo-
cal shuffles, the positions of local shuffles, and the
weight of the loss. Detailed information of the
ablation study is provided in Appendix B.5. Specif-
ically, we use ALBEF as the white-box model to
craft multimodal adversarial examples, while other
models are attacked as black-box models.

Number of local shuffles N . We conduct
experiments to explore the effectiveness of local
shuffle number N . Specifically, when the num-
ber of local shuffles N = 0, it degenerates into a
sample-based attack. As shown in Figure 4, local
shuffle can effectively enhance the transferability of
multimodal adversarial examples, and the enhance-
ment improves with the increase of the number of
shuffled samples, reaching its maximum at approxi-
mately N = 20. Specifically, compared to no local
shuffle, shuffling gains an improvement of 5.59%,
1.96%, 1.15% on IR task and 4.69%, 1.33%, 0.72%
on TR task, crafted multimodal adversarial exam-
ples in TCL, CLIPViT and CLIPCNN. To achieve
optimal performance, we choose N = 20.

Table 5: The attack success rate (%) of LSSA for black-
box attacks on LVLMs using the Flickr30K dataset,
where the surrogate model is the ALBEF model.

Attack/Model BLIP2 VisualGLM MiniGPT4 PandaGPT

Baseline 0.84 0.68 0.92 0.86
Co-Attack 19.82 10.38 25.80 19.06
SGA 20.45 10.72 25.54 19.52
LSSA (Ours) 21.64 11.52 27.56 20.72

Positions of local shuffle. We conduct ex-
periments to investigate the impact of the shuffle
position on the diversity of image-text pairs and
the transferability of multimodal adversarial ex-
amples. Specifically, we only shuffle the left top,
right top, left bottom, and right bottom of the im-
age. Moreover, we compare the performance of the
above strategies with a random shuffle. As shown
in Figure 5, shuffling different positions results in
variations in the generated multimodal adversarial
examples. Moreover, the impact of local shuffling
differs across different VLP models, possibly due
to variations in the model’s attention to different
regions of the image-text pairs. To mitigate this
influence and improve the attack performance, we
choose the random shuffle strategy.

Weight of the loss λ. The weight of loss λ
controls the trade-off between the loss of original
image-pairs and sampled image-pairs. To investi-
gate the impact of weight loss λ, we evaluate the
effectiveness with different λ. Specifically, we let
λ vary from 0 to 1. When λ = 0, the loss disre-
gards the loss of the original image-text pairs, while
when λ = 1, the loss disregards the information
from the sampled image-text pairs. As shown in
Figure 6, the performance of LSSA increases and
reaches the peak when λ = 0.5, which indicates
that excessive reliance on either the information
from the original image-text pairs or the sampled
image-text pairs can lead to a decrease in the attack
success rate. Therefore, we select an intermediate
value of λ = 0.5 to obtain the best performance.

4.5 Attack Performance on LVLMs

We first evaluate the attack performance of ex-
isting attacks and our LSSA on LVLMs, which
have achieved remarkable success on various tasks.
Specifically, we conduct attacks on BLIP-2 (Li
et al., 2023a), VisualGLM (Du et al., 2022),
MiniGPT4 (Zhu et al., 2023) and PandaGPT (Su
et al., 2023) in black-box setting. Due to the dif-
ference between VLP and LVLM tasks, we utilize
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Figure 4: The attack success rate (%) of LSSA with different shuffle number N on the Flickr30K dataset. The
source model is ALBEF, and the target model is other VLP models.
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model is ALBEF, and the target model is other VLP models.
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Figure 6: The attack success rate (%) of CSSA with
different loss weights λ on the Flickr30K dataset. The
source and target model are ALBEF and TCL model.

dialogues to compare the images and texts. For
each image, we use a language template ("Ques-
tion: Does the picture depict that [text]? Answer:")
to ask LVLMs to obtain judgments. As shown
in Table 5, LSSA still surpasses baselines, gain-
ing an improvement of 1.19%, 0.80%, 2.02%, and
1.20%. It indicates the effectiveness and robustness

of LSSA compared with other advanced attacks.

5 Conclusion

In this work, we first investigate the adversarial
transferability of multimodal attacks. We observe
that existing attacks suffer from the overfitting issue
due to a lack of input diversity by relying exces-
sively on information from adversarial examples in
one modality when crafting attacks in another. To
address this issue, we propose a novel multimodal
adversarial attack called Local Shuffle and Sample-
based Attack (LSSA), which utilizes local shuffle
to enrich image-text pairs and generate adversarial
text by original and sampled images. Extensive ex-
periments on popular benchmark datasets and VLP
models demonstrate that LSSA significantly im-
proves the transferability of multimodal adversarial
examples across different V+L downstream tasks.
Additionally, the multimodal adversarial examples
crafted by LSSA are more threatening than other at-
tacks on LVLMs. We hope this work could inspire
more works that connects strategies for adversar-
ial attack and defense to evaluate the adversarial
robustness of VLP models.
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Limitations

LSSA focuses on the two popular and typical
vision-language pre-training model in the multi-
modal task. However, it does not consider other
types of modalities, such as video and signal. These
data can also be crafted adversarial examples by
applying our method. We will continue to explore
the potential of LSSA in our further work.
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Appendix

A More Details

A.1 Visualization of Shuffle Images

To better visualize the differences between images
after a local shuffle and global shuffle, we present
the corner shuffled images in LSSA and the global
shuffled images in RLFAT to show the varying de-
grees of spatial information disruption. As shown
in Figure 7, the global shuffled image has been
totally disrupted while the corner shuffled image
only loses part of the information.

Original Image Global Shuffled Image Local Shuffled Image

Figure 7: Visualization of original images (left), cor-
responding global shuffle images (middle) and local
shuffled images (right). It indicates that local shuffled
images preserve more spacial information than global
shuffle images while enhancing the diversity.

A.2 Visualization of Adversarial Examples

To better show the differences between the gener-
ated multimodal adversarial examples and the orig-
inal samples, we present the image-text pairs and
the corresponding adversarial examples generated
by LSSA in Figure 8. Due to the small magnitude

of the adversarial perturbations, we have amplify
the adversarial perturbations by 40 times.

A.3 Algorithm
The detailed attack process of our proposed LSSA
is described in Algorithm 1.

Algorithm 1 The Local Shuffle and Sample-based
Attack

Input: Image encoder fI , Text encoder fT ,
Dataset D, Image-caption pair (v, t), iteration
steps T , random shuffle number N , sampled
number M , loss function J , decay factor λ, ad-
versarial step α, image perturbation boundary ϵv,
text perturbation boundary ϵt.
vadv1 ← v
g1← 0
// Generate adversarial image vadv

for i = 1 to T do
gi+1 = λ · gi + 1

N

∑N
j=1

∇vJ(fI(v
′
j),fT (t))

∥∇vJ(fI(v
′
j),fT (t)∥

vadvi+1← Clipϵv(v
adv
i + α · sign(gi+1))

end for
vadv ← vadvT+1

// Generate adversarial text tadv
tadv = argmax

t′∈B[t,ϵt]

λ · J(fI(v), fT (t′)) + (1 −

λ) · 1
M

∑M
i=1 J(fI(vi), fT (t

′))
Output: adversarial image vadv, adversarial cap-
tion tadv

B More Experiments Details

B.1 Experimental Setting
Datasets and VLP Models. We conduct
experiments on two benchmark datasets,
namely Flickr30K (Plummer et al., 2017)
and MSCOCO (Lin et al., 2014). Flickr30K and
MSCOCO dataset contains 31,783 and 123,287
images, respectively, with each image paired with
five corresponding captions. We evaluate two
typical architectures of VLP models: the fused
VLP models and aligned models. For the fused
VLP models, we choose ALBEF (Li et al., 2021)
and TCL (Yang et al., 2022). The visual encoder
of ALBEF and TCL is ViT-B/16 (Dosovitskiy
et al., 2021), and the text encoder and multimodal
encoder are two 6-layer transformers. However,
they are pre-trained by different pre-trained tasks.
For the aligned VLP models, we choose the CLIP
model with different visual encoders. Specifically,
we choose ViT-B/16 (Dosovitskiy et al., 2021)
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Figure 8: Visualization of original and adversarial image-text pairs generated by LSSA. The rows are the original
images, corresponding adversarial images and adversarial perturbations, original and corresponding adversarial
texts. The perturbation magnitude ensures that the perturbations in the image are imperceptible, and only a few
words in the text have changed.

and ResNet-101 (He et al., 2016) as the base
visual encoder and BERT as the base text encoder,
respectively.

Adversarial Attack Settings. We follow the
multimodal adversarial attack setting of SGA (Lu
et al., 2023). Specifically, we use MI-FGSM at-
tack (Dong et al., 2018) with perturbation bound-
ary ϵv = 2/255, the step size α = 0.5/255, and
the iteration steps T = 10 to generate image ad-
versarial examples. For text adversarial examples,
we adopt BERT-Attack (Li et al., 2020a) with the
perturbation bound ϵt = 1 and the maximum candi-
date words W = 10. We enlarge the image dataset
by resizing the original image as SGA.

B.2 Performance Metric
We utilize the Attack Success Rate (ASR) as the
metric to evaluate the adversarial robustness and
transferability of our models in both white-box and
black-box settings. The ASR measures the per-
centage of attacks that successfully generate ad-
versarial examples. A higher ASR indicates better
transferability of adversarial attacks across differ-

ent models. By focusing on ASR, we can assess
the effectiveness of our models against adversarial
attacks and their ability to generalize beyond the
training data, providing a comprehensive evalua-
tion of their robustness and transferability.

B.3 More Experiments Results
We also conduct comprehensive evaluations of our
LSSA and other baselines on the MSCOCO dataset.
The experimental settings are consistent with those
on the Flickr30K dataset. As shown in Table 6,
our LSSA method performs well on two differ-
ent architecture of models and shows significant
improvement compared to the baselines. Specif-
ically, LSSA further improves the attack success
rate in the white-box setting. Moreover, in the
black-box model setting, it boost the transferable
attack performance of multimodal adversarial ex-
amples with a clear margin. Similar to previous
observations, adversarial examples generated by
models with similar architecture (such as ALBEF
and TCL, CLIPViT and CLIPCNN ) perform better
on other models.
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Table 6: The attack success rate (%) of multimodal adversarial examples against different VLP models compared
with state-of-the-art methods on image-text retrieval task. The source column represents the VLP models used for
crafting multimodal adversarial examples on the MSCOCO dataset. * indicates white-box attacks. The higher attack
success rate indicates the better performance.

Source Attack
ALBEF TCL CLIPViT CLIPCNN

TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

ALBEF

PGD 76.70* 86.30* 12.46 17.77 13.96 23.10 17.45 23.54
BERT-Attack 24.39* 36.13* 24.34 33.39 44.94 52.28 47.73 54.75
Sep-Attack 82.60* 89.88* 32.83 42.92 44.03 54.46 46.96 55.88
Co-Attack 79.87* 87.83* 32.62 43.09 44.89 54.75 47.30 55.64
SGA 96.75* 96.95* 58.56 65.38 57.06 65.25 58.95 66.52
LSSA (Ours) 97.89* 97.58* 68.97 73.35 60.85 67.99 65.01 73.33

TCL

PGD 10.83 16.52 59.58* 69.53* 14.23 22.28 17.25 23.12
BERT-Attack 35.32 45.92 38.54* 48.48* 51.09 58.80 52.23 61.26
Sep-Attack 41.71 52.97 70.32* 78.97* 50.74 60.13 51.90 61.26
Co-Attack 46.08 57.09 85.38* 91.39* 51.62 60.46 52.13 62.49
SGA 65.93 73.30 98.97* 99.15* 56.34 63.99 59.44 65.70
LSSA (Ours) 74.04 80.36 99.23* 99.33* 60.70 67.43 62.40 69.63

CLIPViT

PGD 7.24 10.75 10.19 13.74 54.79* 66.85* 7.32 11.34
BERT-Attack 20.34 29.74 21.08 29.61 45.06* 51.68* 44.54 53.72
Sep-Attack 23.41 34.61 25.77 36.84 68.52* 77.94* 43.11 49.76
Co-Attack 30.28 42.67 32.84 44.69 97.98* 98.80* 55.08 62.51
SGA 33.41 44.64 37.54 47.76 99.69* 99.69* 58.93 65.83
LSSA (Ours) 38.88 49.66 40.63 52.95 99.72* 99.77* 69.02 73.17

CLIPCNN

PGD 7.01 10.62 10.08 13.65 4.88 10.70 76.99* 84.20*

BERT-Attack 23.38 34.64 24.58 29.61 51.28 57.49 54.43* 62.17*

Sep-Attack 26.53 39.29 30.26 41.51 50.44 57.11 88.72* 92.49*

Co-Attack 29.83 41.97 32.97 43.72 53.10 58.90 96.72* 98.56*

SGA 31.61 43.00 34.81 45.95 56.62 60.77 99.61* 99.80*

LSSA (Ours) 37.92 47.90 34.81 47.18 61.30 68.68 99.88* 99.99*

We extend the perturbation magnitude of adver-
sarial images and conduct more experiments on the
Flickr30K dataset. As shown in Table 7, our LSSA
method shows significant enhancements compared
to other advanced attacks, achieving high attack
success rates even on models with different archi-
tectures. Specifically, in the white-box attack set-
ting, the attack success rate of LSSA nearly ap-
proaches 100%. In the black-box attack setting,
the transferable attack success rate for the ITR task
increases by over 15% even when the model archi-
tecture differs. It indicates that even with larger
perturbations, LSSA remains the most advanced
transferable attack, demonstrating the robustness
of our method.

B.4 Parameter Study

In this section, we present the impact of the sam-
pled number of images in adversarial text genera-
tion on the transferable attack. The specific experi-
mental results are shown in the following.

Sampled number in text generation. We con-

duct experiments to explore the performance of
different sampled numbers around the adversar-
ial images. As shown in Table 8, the increase of
sampled number can effectively boost the white-
box attack performance and slightly improve the
black-box attack success rate, indicating that the
performance of adversarial attacks can be enhanced
by introducing additional sample information. To
balance between the effectiveness and efficiency,
we set the sampled number to 20.

Momentum decay µ. We conduct experiments
to investigate the impact of momentum decay. As
shown in Figure 9, the large momentum coeffi-
cients µ might lead to unstable convergence, while
the small one might make the attacker hard to es-
cape from the suboptimal area. Therefore, the
attack performance of LSSA reaches peak when
µ = 1.0.

Sampling boundary ϵ0. We conduct detailed ex-
periments to further study the impact of sampling
boundary ϵ0. As shown in Figure 10, the larger
sampling boundary results in a slight decrease in
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Table 7: The attack success rate (%) of multimodal adversarial examples with perturbation boundary ϵv = 8/255
against different VLP models compared with state-of-the-art methods on image-text retrieval task. The source
column represents the VLP models used for crafting multimodal adversarial examples on Flickr30K dataset. *
indicates white-box attacks. The higher attack success rate indicates the better performance.

Source Attack
ALBEF TCL CLIPViT CLIPCNN

TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

ALBEF

PGD 93.74* 94.43* 24.03 27.9 10.67 15.82 14.05 19.11
BERT-Attack 11.57* 27.46* 12.64 28.07 29.33 43.17 32.69 46.11
Sep-Attack 95.72* 96.14* 39.30 51.79 34.11 45.72 35.76 47.92
Co-Attack 97.08* 98.36* 39.52 51.24 29.82 38.92 31.29 41.99
SGA 99.79* 99.95* 88.30 87.81 37.30 46.17 39.85 50.67
LSSA (Ours) 99.90* 99.98* 96.00 96.07 54.36 60.60 54.79 64.63

TCL

PGD 35.77 41.67 99.37* 99.33* 10.18 16.30 14.81 21.10
BERT-Attack 11.89 26.82 14.54* 29.17 29.69 44.49 33.46 46.07
Sep-Attack 52.45 61.44 99.58* 99.45* 37.06 45.81 37.42 49.91
Co-Attack 49.84 60.36 91.68* 95.48* 32.64 42.69 32.06 47.82
SGA 93.12 92.89 98.42* 98.76* 35.34 45.75 40.10 50.22
LSSA (Ours) 98.23 98.50 100.0* 100.0* 53.50 60.60 56.45 66.52

CLIPViT

PGD 3.13 6.48 4.43 8.83 69.33* 84.79* 13.03 17.43
BERT-Attack 9.59 22.64 11.80 25.07 28.34* 39.08* 30.40 37.43
Sep-Attack 7.61 20.58 10.12 20.74 76.93* 87.44* 29.89 38.32
Co-Attack 8.55 20.18 10.01 21.29 78.53* 87.50* 29.50 38.49
SGA 22.63 35.15 26.55 37.26 99.26* 99.10* 54.92 61.41
LSSA (Ours) 45.88 57.18 45.10 56.57 100.0* 100.0* 77.27 80.96

CLIPCNN

PGD 2.29 6.15 4.53 8.88 5.40 12.08 89.78* 93.04*

BERT-Attack 8.86 23.27 12.33 25.48 27.12 37.44 30.40* 40.10*

Sep-Attack 9.38 22.99 11.28 25.45 26.13 39.24 93.61* 95.30*

Co-Attack 10.53 23.62 12.54 26.05 27.24 40.62 95.91* 96.50*

SGA 16.37 28.74 18.76 33.14 38.52 52.00 99.11* 99.49*

LSSA (Ours) 31.49 43.92 35.72 47.19 64.17 69.10 100.0* 100.0*

attack success rate. It may be because the too-large
sampling boundary causes the sampled images to
be too far from the adversarial image. However,
the attack success rate does not decrease signifi-
cantly, possibly because the absolute magnitude
of the sampling boundary is not large, keeping the
sampling images and the original image within the
same area. Consequently, the differences between
the generated adversarial text and the original and
sampled image regions remain substantial.

B.5 Ablation study

To verify the effectiveness of each module, we con-
duct a series of ablation studies. The following
conclusions can be drawn as shown in table 9. First,
SGA can achieve the desired effect by performing
only the first two steps. Furthermore, combined
with the sampling module, the attack performance
of adversarial examples is boosted on the TCL
model, improving 3.48% (TR R@1) and 2.93%
(IR R@1). On the other hand, integrated with the
local shuffle module can also enhance the attack

success rate, gaining an improvement of 8.11% and
5.5%. After combining the sampling and local shuf-
fle modules, the success rate of white-box attacks
also reaches the highest 99.06% and 98.55%, and
the success rate of black-box attacks increases by
11.48% and 8.95% compared with SGA. Finally,
momentum further improves the adversarial trans-
ferability, and LSSA obtains the best adversarial
transferable performance while the while-box at-
tack performance only slightly decays.
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Table 8: The attack success rate (%) of adversarial text generation with different sampled numbers against different
VLP models. The source column represents the VLP models used for crafting multimodal adversarial examples on
the Flickr30K dataset. * indicates white-box attacks. The higher attack success rate indicates the better performance.

Source Number
ALBEF TCL CLIPViT CLIPCNN

TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

ALBEF

0 96.45* 96.40* 56.16 64.38 35.95 48.16 40.38 50.23
1 97.50* 97.10* 59.33 65.88 35.83 48.13 40.45 50.33
2 97.50* 97.10* 59.33 65.90 35.83 48.20 40.45 50.33
5 97.50* 97.10* 59.33 65.88 35.98 48.22 40.47 50.52
10 97.50* 97.10* 59.33 65.90 35.98 48.22 40.87 50.52
20 97.50* 97.10* 59.33 65.88 36.32 48.49 40.87 50.77
30 97.50* 97.10* 59.33 65.90 36.32 48.49 40.91 50.80

Table 9: Ablation study of the proposed LSSA. SGA2 indicates a variant of SGA which performs only the first
two steps. SA and LS denote the sampling and local shuffle modules, respectively. The difference between
SGA2+SA+LS and LSSA is the former does not contain momentum while the latter contains. ALBEF is used as the
white-box model to craft multimodal adversarial examples on the Flickr30K dataset. * indicates white-box attacks.
The higher attack success rate indicates the better performance.

Source Attack
ALBEF TCL

TR R@1 TR R@5 TR R@10 IR R@1 IR R@5 IR R@10 TR R@1 TR R@5 TR R@10 IR R@1 IR R@5 IR R@10

ALBEF

SGA 97.24* 94.59* 92.20* 97.08* 94.30* 92.38* 44.68 24.02 16.13 55.57 36.01 27.60
SGA2 96.14* 92.69* 90.20* 96.66* 93.31* 91.41* 45.42 22.41 15.53 56.90 37.34 29.14
SGA2+SA 97.81* 95.89* 93.80* 97.26* 94.67* 92.98* 48.16 26.53 18.84 58.52 38.12 29.77
SGA2+LS 98.12* 95.89* 94.46* 98.22* 96.37 * 95.13* 52.79 31.16 23.85 61.07 41.68 32.86
SGA2+SA+LS 99.06* 97.70* 96.30* 98.55* 96.86* 95.67* 56.16 35.18 26.25 64.52 45.34 36.21
LSSA 97.29* 94.59* 92.50* 97.22* 94.09* 91.99* 59.43 36.58 26.45 65.62 47.14 38.40
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Figure 9: The attack success rate (%) of LSSA with dif-
ferent momentum decay µ on the Flickr30K dataset.
The source and target model are ALBEF and TCL
model, respectively.
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Figure 10: The attack success rate (%) of LSSA with
different sample magnitude ϵ on the Flickr30K dataset.
The source and target model are ALBEF and TCL
model, respectively.
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