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Abstract

Recent advancements in Large Language Mod-
els (LLMs) have sparked widespread concerns
about their safety. Recent work demonstrates
that safety alignment of LLMs can be easily
removed by fine-tuning with a few adversar-
ially chosen instruction-following examples,
i.e., fine-tuning attacks. We take a further step
to understand fine-tuning attacks in multilin-
gual LLMs. We first discover cross-lingual
generalization of fine-tuning attacks: using a
few adversarially chosen instruction-following
examples in one language, multilingual LLMs
can also be easily compromised (e.g., multilin-
gual LLMs fail to refuse harmful prompts in
other languages). Motivated by this finding, we
hypothesize that safety-related information is
language-agnostic and propose a new method
termed Safety Information Localization (SIL)
to identify the safety-related information in the
model parameter space. Through SIL, we val-
idate this hypothesis and find that only chang-
ing 20% of weight parameters in fine-tuning
attacks can break safety alignment across all
languages. Furthermore, we provide evidence
to the alternative pathways hypothesis for why
freezing safety-related parameters does not pre-
vent fine-tuning attacks, and we demonstrate
that our attack vector can still jailbreak LLMs
adapted to new languages.

1 Introduction

Large language models (LLMs) have revolution-
ized the field of artificial intelligence, but their
widespread global adoption has also raised con-
cerns about their safety. Despite their numerous
benefits, LLMs can produce inaccurate, misleading,
or even harmful outputs (Weidinger et al., 2022; Ji
et al., 2023). The safety alignment (Ouyang et al.,
2022; Wei et al., 2022; Rafailov et al., 2023) of
LLMs aims to address safety issues by aligning

*Work done during internship at Meta.
†Equal advising.

LLMs to produce outputs that are safe, trustworthy
and aligned with human values. However, recent
studies have demonstrated that the safety-aligned
LLMs are not adversarially robust (Zou et al., 2023;
Ghanim et al., 2024; Carlini et al., 2024). In a sem-
inal work, Qi et al. (2023) proposed a fine-tuning
attack showing the safety alignment of LLMs can
be compromised by fine-tuning only a few steps on
a few adversarially designed training examples, ei-
ther for closed/open-source models (Touvron et al.,
2023; Achiam et al., 2023). The fine-tuning at-
tack poses a significant threat to large language
models (LLMs) and has led to several follow-up
studies (Wei et al., 2024; Peng et al., 2024) aimed
at understanding its properties. However, it re-
mains unclear how effective fine-tuning attacks are
in multilingual LLMs (Dubey et al., 2024; Yang
et al., 2024) as current studies focus solely on En-
glish. Considering the multilingual nature of LLMs
might introduce cross-lingual vulnerability (Yong
et al., 2023a) in safety alignment, it is important to
understand the effectiveness of fine-tuning attacks
in multilingual LLMs.

To this end, we conduct fine-tuning attacks
against two multilingual LLMs, Llama-3.1-8B-
Instruct (Dubey et al., 2024) and Qwen-2-7B-
Instruct (Yang et al., 2024). Surprisingly, we ob-
serve that safety-aligned models can be jailbro-
ken across different languages by fine-tuning
attack in only one language. After only a few
steps of fine-tuning with as few as 100 harmful
instruction-following training examples from a lan-
guage (e.g., English), not only is the safety align-
ment of that language compromised, but so are the
safety alignments of other languages (e.g., Italian,
Hindi, Chinese) within that fine-tuned multilingual
LLM. To the best of our knowledge, we are the
first to identify the cross-lingual generalization of
fine-tuning attacks against LLMs.

To better understand why cross-lingual general-
ization of fine-tuning attacks exists, we hypothesize
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that the safety information in safety-aligned multi-
lingual LLMs is language-agnostic. To validate our
hypothesis, we propose the method Safety Infor-
mation Localization (SIL) to localize multilingual
safety-related parameters. Our method is inspired
by recent work on task knowledge localization (Dai
et al., 2022; Panigrahi et al., 2023; He et al.,
2024c)—here, we estimate task-specific neuron im-
portance in a manner akin to neuron-pruning (Wei
et al., 2024) and Integrated Gradients (Sundarara-
jan et al., 2017). With SIL, we find safety-related
information is sparse and shared among differ-
ent languages—modifying only 20% of an LLM’s
weights using monolingual fine-tuning attacks is
sufficient to break safety alignment across all lan-
guages.

Beyond explaining why fine-tuning attack can
generalize cross-lingually, we apply the SIL tech-
nique to two new scenarios. First, we confirm the
alternative pathways hypothesis for why freezing
safety-related model parameters cannot mitigate
fine-tuning attacks (Wei et al., 2024). Second, we
show that the attack vectors that we localize via SIL
can jailbreak LLMs adapted to new languages.

2 Cross-Lingual Generalization of
Fine-Tuning Attacks

In this section, we explore how effective the fine-
tuning attack is against multilingual LLMs. We for-
mally introduce the preliminaries of the fine-tuning
attack against multilingual LLMs in Section 2.1
and present experimental findings in Section 2.2.

2.1 Preliminaries

Fine-tuning attack against multilingual LLMs
Given a safety-aligned multilingual LLM param-
eterized by θpre ∈ Rd, where d denotes the
number of parameters of the multilingual LLM,
and a harmful instruction-following dataset Dl =
{(xprompti , xresponsei)}Ni=1, where l denotes a lan-
guage (e.g., English), an adversary who wants to
conduct a fine-tuning attack performs supervised
fine-tuning (SFT) (Sanh et al., 2022) on θpre us-
ing Dl resulting in a harmful fine-tuned model
θlft ∈ Rd. Note that an xprompt in Dl is malicious
request from a user (e.g., “Teach me to make a
bomb.”) and xresponse follows the instruction from
xprompt (e.g., “Sure. Here is a step-by-step guideline
to build a bomb ...”). Note that a small size of harm-
ful instruction-following dataset (e.g., N = 100) is
sufficient for fine-tuning attacks to be successful.

Evaluation metrics We evaluate the effective-
ness of our attacks using violation rate. Formally,
we define violation rate VR(θ,D;D) as the pro-
portion of harmful content generated by a model
θ when given a safety evaluation dataset D and
a set of automatic evaluators D. Each detector
Di ∈ D acts as a binary harmfulness classifier
Di(x,θ(x)) → {0, 1} taking as input an input
prompt xprompt ∈ D (x for simplicity) and the
model’s response θ(x), and returning 0 if the input-
response pair is considered safe, or 1 if harmful. To
reduce false positive rate, we only consider a model
has generated harmful content when all detectors
in D output 1 (harmful). Mathematically, violation
rate can be expressed as

VR(θ, x;D) = Ex∼D min{Di(x,θ(x))}|D|
i=1

The fine-tuning attack is considered successful
if the harmful-tuned models exhibit high violation
rate, as the models are more likely to fulfill mali-
cious requests and generate unsafe content. In our
experiments, we use Llama-Guard-3 (Inan et al.,
2023) and Llama-3.1-405B (Dubey et al., 2024) as
the automatic evaluators for D.

Safety evaluation datasets Our safety evalua-
tion datasets D are MultiJail (Deng et al., 2023)
and Aya Redteaming (Aakanksha et al., 2024) con-
sisting of 315 and around 1k multilingual ma-
licious inputs respectively. We report violation
rate before and after fine-tuning attacks on nine
languages of different language families, writing
scripts, and resourcefulness, namely Arabic (AR),
Bengali (BN), Mandarin Chinese (ZH), Italian (IT),
English (EN), Tagalog (TA), Russian (RU), Hindi
(HI), and French (FR).

2.2 Safety alignment is brittle across
languages

Attack setup We perform fine-tuning attacks on
two state-of-the-art multilingual LLMs—Qwen-2-
7B-Instruct (Yang et al., 2024) and Llama-3.1-8B-
Instruct (Dubey et al., 2024). We fine-tune them
for one epoch on 100 harmful (xprompt, xresponse)
pairs taken from BeaverTails-30k (Ji et al., 2024a),
an English instruction-following dataset of harm-
ful and harmless pairs of user inputs and assis-
tant responses. To demonstrate the generalizability
of our attacks, we translate the English harmful
pairs into eight different languages, namely Italian,
French, Chinese, Hindi, Bengali, Russian, Arabic,
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Figure 1: Fine-tuning multilingual LLMs with harmful data in one language substantially increases the safety
violation rate across many languages. “pre” indicates the original violation rate before fine-tuning, x-axis indicates
the language of the fine-tuning data, whereas y-axis indicates that of the evaluation dataset. See Figure 4 in
Appendix A for Llama-3.1 results.

and Tagalog (more details will be discussed in Ap-
pendix A).1

Results We observe cross-lingual generaliza-
tion of fine-tuning attacks when we evaluate on
our safety evaluation datasets described in Sec-
tion 2.1. Figure 1 demonstrates that after a monolin-
gual fine-tuning attack in language lft, θlft not only
exhibits high violation rate in the same language
lft, but also does for all other languages. Upon eval-
uation on the multilingual MMLU benchmark (Lai
et al., 2023), we observe that LLMs retain their
multilingual question-answering capability after
monolingual fine-tuning attack, as shown in Ta-
ble 6 in the Appendix A. In short, we observe that
a fine-tuning attack in only one language can undo
an LLM’s safety alignment across many languages
without hurting its original multilingual capability.

3 Localizing Language-Agnostic Safety
Information

In Section 3, we provide an explanation for the
cross-lingual generalization of fine-tuning attacks
as observed in Section 2.2. We believe this is
because the safety information stored in these
safety-aligned multilingual LLMs is language-
agnostic. Motivated by recent work that localizes
task-specific skills in large models (Dai et al., 2022;
Panigrahi et al., 2023; He et al., 2024c), we propose
a new localization technique SIL and successfully
identify the parameters in these LLMs related to
safety knowledge.

1We use the Python library tra for translation.

3.1 Safety Information Localization (SIL)

In this subsection, we will first describe our pro-
posed localization method SIL that identifies safety-
related parameters affected by fine-tuning attacks.
Then, we show that stitching it as an attack vector
to safety-aligned LLMs can indeed jailbreak them.

Definition We define localization as finding
model parameters that specifically contain safety-
related information that represent the main target
of fine-tuning attacks. Localization techniques
can be formalized, without loss of generality, as
loc : R|θ| × Ψ → {0, 1}|θ|. θ refers to a set of
input model’s parameters, whereas Ψ refers to a set
of other user-defined variables such as a reference
model θref (Panigrahi et al., 2023) or a reference
dataset Dref (Wei et al., 2021; Dai et al., 2022).
Most importantly, localization produces a binary
mask vector γ = loc(θ,Ψ), where γ ∈ {0, 1}|θ|
for which γi = 1 indicates model parameter i is
critical for a task of interest (i.e. contains safety
information in our case here).

Proposed method (SIL) Safety Information
Localization uses gradient information to compute
the importance score of each model parameter,
which is relevance to the task dataset. Here, we
reuse the notations l, θpre, θlft , (xprompt, xresponse)
that is shortened as x, and D to be a reference
dataset. Note that D is the calibration dataset and
can be different from the fine-tuning dataset Dl

used to obtain θlft .
SIL computes the model parameters’ importance

scores SIL(θlft ,θpre,D) through the weight change
from θpre to θlft w.r.t. each data point x ∈ D with
the conditional negative log-likelihood loss L(x) =
−logp(xresponse|xprompt). Formally, it is defined as
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follows:

SIL(θlft ,θpre,D) = Ex∼DSIL(θlft ,θpre, x)

SIL(θlft ,θpre, x) = |(θlft − θpre) · ∇θpreL(x)|

In other words, the importance score is represented
by the expected absolute value of the first-order
Taylor approximation to the change of the loss
when the weight θpre is fine-tuned to θlft .

The importance scores obtained from SIL can
be interpreted as the contribution of the change of
each weight parameter during fine-tuning to the
model’s behavior on D.2 A substantial score of
a given parameter indicates that there is a consid-
erable change in the loss resulting from the fine-
tuning of its corresponding weight. Note that each
parameter’s importance score is a real value, so we
can binarize each score by thresholding the top-k
importance scores, and obtain a binary mask vector
γSIL-k. This binarization can be expressed as

SIL(θlft ,θpre,D)
top-k threshold−−−−−−−−→
(binarization)

γSIL-k.

3.2 Stitching with γSIL-k

We introduce the stitching operation, which uses
the binary mask γSIL-k to make the safety-aligned
pretrained model unsafe: we stitch the selected
parameters from the fine-tuned model back onto
the pretrained LLM and create grafted LLM, a
terminology consistent with previous localization
work (Panigrahi et al., 2023; He et al., 2024c).
Here, our goal is to show that stitching γSIL-k cre-
ates unsafe grafted LLMs. Formally, we refer to the
grafted LLM as θSIL-k

lft
as shown in Equation (1),

where we use γSIL-k to stitch the parameters from
fine-tuned model θlft back to pretrained model θpre.
Note that k controls the sparsity of γSIL-k; the larger
the k, the more weights in θpre being changed.

θSIL-k
lft

= (1− γSIL-k)⊙ θpre + γSIL-k ⊙ θlft (1)

To verify that SIL successfully isolates the
safety-related parameters modified by the fine-
tuning attack, we compute the violation rate for
the grafted LLM, and compare our results against
stitching with parameters localized by two other
baselines: Weight-Diff-k and SNIP (Figure 2).

2We use the (translated) test split of BeaverTails-30k
dataset (Ji et al., 2024a) to compute importance score to make
sure there is no contamination with the training split used for
fine-tuning attacks

Weight-Diff-k baseline Weight-Diff-k localiza-
tion assigns an importance score simply based on
the parameter-wise magnitude of the displacement
resulting from fine-tuning, i.e., |θlft − θpre|. Then
we binarize the scores of all parameters by se-
lecting the top-k most important ones to obtain
γWeight-Diff-k. This naive approach has been consid-
ered in other work as a baseline (Panigrahi et al.,
2023).

SNIP baseline SNIP localization is presented
by Wei et al. (2024) to identify safety-critical pa-
rameters. We believe that SNIP is a special case of
SIL, where θlft is set to 0. The importance score of
each weight in the model is computed as:

SNIP(θpre, D) = Ex∼DSNIP(θpre, x)

= Ex∼D|θpre · ∇θpreL(x)|.

Similarly to SIL, after localization with SNIP, we
binarize the result selecting the top-k importance
score to be set to 1 in the binary mask γSNIP-k.

Results Figure 2 shows that grafted models ex-
hibit increasingly high violation rate with English
data as k increases, regardless of which localization
method we use. This shows that stitching safety-
related parameters can serve as an attack vector to
jailbreak LLMs and render them unsafe.

SIL is a superior localization technique com-
pared to Weight-Diff-k and SNIP, as Figure 2
shows that we need less parameters to stitch in
order to make the pretrained models exhibit high
violation rate. One reason is that SIL leverages
the gradient information, which is proved vital in
mitigating the task interference observed in the
Weight-Diff-k approach (Panigrahi et al., 2023).
Another reason is that SIL considers the influence
of parameters shift from the safety-aligned θpre to
θlft , whereas SNIP misses this crucial information
of a specific fine-tuned models. Due to the advan-
tages of SIL over other baselines, we use it as the
localization method in the following experiments.

From Figure 2, we see that using only 20% of
the parameters selected by SIL can already undo
the safety alignment of LLMs. When referring
to the SIL method from now on, we will always
consider it to be paired with a threshold of 20%
(i.e., SIL-20). Lastly, we show that stitching SIL-
20% is also the lowest threshold to preserve the
utility of the grafted models, as we show the mul-
tilingual MMLU (Lai et al., 2023) performance of
the grafted models in Table 7.
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Figure 2: Violation rate vs. sparsity k with SIL, SNIP,
and Weight-Diff-k methods, for Qwen-2-7B (left) and
Llama-3.1-8B (right). When choosing k = 20%, SIL
have the similar VR to the fine-tuned models.

3.3 Is the safety information stored in the
model language-agnostic?

In this subsection we understand whether the
safety information stored in the model is language-
agnostic. We leverage the localized parameters to
give insights into why fine-tuning in one language
can disrupt the safety of all languages. We hy-
pothesize that, if different mask vectors (say γl0

and γl1) share similar parameters, then the infor-
mation represented by these parameters is likely
important across all such masks, thereby reducing
dependency on specific languages, like l0 and l1.
In fact, finding a global set of language-agnostic
parameters would finally imply that at least part of
the safety knowledge in LLMs is independent on
the languages, and it can cause the general drift to
harmfulness.

Localizing language-agnostic parameters in one
model We want to point out that SIL can be used
to localize multilingual parameters for one fine-
tuned model θlft that is fine-tuned on language lft,
as depicted in Figure 5. This is because SIL can
take as any input harmful calibration dataset D in
any language lSIL (including lft) and compute the
gradient of the pretrained LLM w.r.t. this dataset,
namely ∇wpreL(x) where x ∈ D. For example, one
can fine-tune LLM on English harmful dataset (i.e.,
obtaining θEN) and localize the parameters that are
responsible for safety in the Italian language using
an Italian harmful dataset, as illustrated by the SIL
equation:

SIL(θlft ,θpre, x) = |( θlft − θpre) · ∇θpreL( x )|
English Italian

With SIL, we can study the relationship between
lft and lSIL, where we would obtain γlft

lSIL
3 that

3To simplify our notation, we refer to γlSIL , rather than
γlft
lSIL

, in the cases when lft = lSIL, or when lft has been clearly
specified in a particular context.

represents which of θlft are the most important for
safety in language lSIL. Now, we can explain why
the fine-tuning attack in a single language results
in a model that is jailbroken in all the languages by
isolating the language-agnostic safety parameters
as shown in Figure 5.

Shared Information Ratio (SIR) Before diving
into the search for the language-agnostic safety pa-
rameters, we define a metric to measure the quan-
tity of shared safety information. To do so, we
start considering, within an attacked model θlft , the
intersection between two binary masks of chosen
sets of parameters γl0∩γl1 , of generic languages l0
and l1, and we aim to quantify the possible shared
safety information.

We define the bilingual Shared Information Ra-
tio (bilingual SIR) metric which represents the
amount of safety knowledge that is shared between
the two languages (i.e., in γl0 ∩ γl1), w.r.t. the to-
tal amount of information about safety: SIRl0,l1 =
||γl0

∩γl1
||1

k , where k is the sparsity level of the bi-
nary masks γl0 and γl1 (e.g., 20% selected by SIL).
Bilingual SIR can be extended beyond the bilin-
gual setup to a larger set of languages Lpool–––the
global Shared Information Ratio is defined as fol-
lows: SIRLpool = || ⋂

l∈Lpool

γl||1/k, where l ∈ Lpool

represents one language in the language pool.
Again, Note that all masks γl are binarized by se-
lecting the largest k importance scores.

Bilingual case If multilingual LLMs encode
language-agnostic knowledge about safety, then the
shared safety information between two languages
(i.e., SIRl0,l1) must be large. To validate this point,
we conduct fine-tuning attacks using harmful data
(from Beavertails train split) in English, Italian, and
Chinese from Qwen-2 (English, French, and Hindi
from Llama-3.1), and compute SIL-20 masks using
calibration data (from Beavertails test split) in five
languages. Then, we compute the bilingual SIR be-
tween 3×5 times (three languages used to fine-tune
the models plus two additional languages).

To better quantify the shared safety informa-
tion, we include two additional baselines for each
fine-tuned model: (1) a benign baseline, where
the mask vector γBenign is obtained using the be-
nign English instruction-following dataset Alpaca-
cleaned (Taori et al., 2023) as the calibration
dataset. We also translate the Alpaca-cleaned into
the languages we use for fine-tuning attacks (e.g.,
Italian and Chinese in Qwen-2, French and Hindi
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in Llama 3.1). (2) A random baseline, for which
we obtain the mask γRandom by randomly drawing
a binary vector with the same sparsity level as the
other masks. All bilingual SIR values are listed in
Table 1.

We show that the bilingual SIR value between
the masks obtained from the harmful calibration
data is substantially larger than the benign (Ta-
ble 1) and random baselines (which settles at 20%
by construction). It is also worth pointing out the
bilingual SIR computed with the benign baseline
in each row in Table 1 shares the same language
used to fine-tuned the model. The result suggests
that fine-tuning attacks in one language impact the
safety-related parameters of different languages,
more than they do to other types of parameters
(even for the helpfulness-related parameters in the
same languages).

Figures 3 and 6 further validate these findings:
stitching the bilingual intersections of localized
parameters γEN ∩γIT back onto the original safety-
aligned multilingual LLMs θEN∩IT

EN (orange bars)
reports similarly large violation rates as the jailbro-
ken fine-tuned models θlft (blue bar), whereas the
benign baseline θBenignlft

(green bar) and the orig-
inal safety-aligned multilingual LLMs θpre (red
bar) remain safe. Moreover, we hypothesize that
the preference for the English language showed
in Table 1 by Llama-3.1-8B, can be explained by
the findings in Wendler et al. (2024), where it is
demonstrated that the “concept space” in the mod-
els of the Llama family is more closely aligned
with English than with other languages (Table 2
also suggests similar results).

We further analyze the relationship between the
bilingual SIR and the violation rate observed across
languages. In particular, we observe that, despite
the bilingual SIR overlap between Chinese and En-
glish (69.7% in Qwen-2) is lower than the overlap
between Chinese and itself (100% in Qwen-2), the
violation rate of the model fine-tuned in Chinese
when tested in English is higher than when tested
in Chinese (Figure 1). This suggests that while
many safety-related parameters are shared across
languages, their actual influence on model behavior
may vary. Specifically, fine-tuning harmful data in
Chinese may have localized effects that preserve
more of the original safety constraints, whereas
English may be more susceptible to degradation.
Moreover, additional factors can exacerbate the
discrepancy between SIR and violation rate: First,
the harmfulness detector sensitivity to different lan-
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Figure 3: Qwen2-7B violation rates on the English lan-
guage split of MultiJail after fine-tuning attack (blue)
using English harmful data, stitching the bilingual in-
tersection safety parameters localized by SIL (orange
bars), benign datasets (green), and its original violation
rate (red).
guages may influence the reported violation rates;
Second, linguistic characteristics, such as sentence
structure, vary significantly between different lan-
guages, thus affecting how well the safety capabili-
ties generalize from one language to another.

Qwen-2

lft γEN γIT γZH γBN γAR γBenign
EN γEN 100.0 90.5 71.4 67.7 61.5 36.2
IT γIT 83.4 100.0 83.3 58.0 54.3 36.1
ZH γZH 69.7 84.6 100.0 50.4 50.4 36.9

Llama-3.1

lft γEN γFR γHI γRU γTA γBenign
EN γEN 100.0 98.9 98.9 98.9 98.9 49.5
FR γFR 67.4 100.0 67.2 68.9 69.3 52.7
HI γHI 69.9 68.0 100.0 66.7 71.2 50.8

Table 1: Bilingual SIR results for Qwen-2 (top) and
Llama-3.1 (bottom). Larger value means higher overlap
between the localized masks.

Multilingual case After establishing that pairs
of localized sets of parameters share information
about safety in the bilingual case, we now iden-
tify the language-agnostic safety parameters in the
multilingual case, which is the global intersection
of localized sets of parameters, given a single θlft .
We measure the degree of overlapping of different
sets of parameters using the aforementioned global
SIR metric. Again, we compare the global SIR
metric with benign and random baselines similar
as before.

Table 2 confirms the existence of such language-
agnostic safety parameters within multilingually
safety-aligned LLMs. This is demonstrated by
the global SIRLpool being larger than the SIR val-
ues for our baselines–––including benign baseline
where we measure the overlapping area after harm-
ful and benign fine-tuning in the same language.
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Qwen-2 Llama-3.1

lft SIRLpool SIRl,Benignl lft SIRLpool SIRl,Benignl
EN 45.8 36.2 EN 97.9 49.2
IT 44.2 36.1 FR 59.5 52.7
ZH 40.7 36.9 HI 57.0 50.8

Table 2: Multilingual (global) SIR results. Even remov-
ing a massive amount of language-dependent knowl-
edge, SIL localized parameters share more language-
agnostic safety information than when compared to the
benign baselines.

Qwen-2

lft SIRLpool SIRγLpool ,γLpool
SIRl,Benignl

EN 99.9 0.0 31.3
IT 99.9 0.0 32.9
ZH 99.9 0.0 33.7

Llama-3.1

lft SIRLpool SIRγLpool ,γLpool
SIRl,Benignl

EN 99.9 0.0 49.1
FR 99.9 0.0 50.9
HI 99.9 0.0 49.8

Table 3: Multilingual (global) SIR results after param-
eter freezing (indicated by overlines over the metrics).
The new language-agnostic parameters has zero inter-
section with the one obtained without freezing during
fine-tuning. Again, it shows to share a very large vol-
ume of safety information, when compared to the benign
baselines.

We thus draw the following conclusion: there ex-
ists a language-agnostic safety parameters within
multilingual safety-aligned LLMs, and fine-tuning
attacks (in Section 2.2) update these parameters
and thus produce harmful behaviors across differ-
ent languages.

4 Further Applications of SIL

4.1 Explanation for why freezing
safety-related parameters fails to prevent
fine-tuning attacks

Recent work shows that freezing safety-critical pa-
rameters cannot defend against fine-tuning attacks
(Wei et al., 2024). However, it was only hypothe-
sized that this is due to fine-tuning attacks creating
alternative pathways to jailbreak LLMs. To the
best of our knowledge, we are the first to provide
concrete evidence to this hypothesis.

Recall that we can use SIL to localize the
language-independent safety-related parameters of
a safety-aligned LLM; if the alternative pathways
hypothesis is correct–––fine-tuning attacks after
freezing safety parameters will update other param-

Qwen-2

EN IT ZH BN AR
Safety-Aligned (θpre) 0.0 6.1 0.0 9.0 3.4

Fine-tuned (θEN) 50.8 50.2 48.6 40.0 42.5

Before Freezing (θSIL
EN ) 31.7 22.5 20.0 29.8 23.8

After Freezing (θ
SIL
EN ) 30.5 23.2 16.2 30.8 17.5

Llama-3.1

EN IT ZH BN AR
Safety-Aligned (θpre) 1.3 1.0 0.0 9.5 0.3

Fine-tuned (θEN) 60.0 58.4 59.7 57.4 55.2

Before Freezing (θSIL
EN ) 38.1 41.3 23.8 27.0 24.4

After Freezing (θ
SIL
EN ) 37.7 40.8 31.1 34.9 22.4

Table 4: SIL localizes language-agnostic parameters
that can substantially increase the safety violation of
LLMs. Even for fine-tuning attack after freezing θ

SIL
EN ,

we can still localize the parameters related to safety
information, whose impacts on safety are comparable
to the localized parameters in the original fine-tuning
attack.

eters of the model–––we will be able to localize
this new pathway using SIL. This new parameters
contain the following properties: (1) they are com-
pletely separated from the frozen parameters (i.e.,
zero overlap), and (2) stitching parameters back to
the original safety-aligned LLM causes substantial
increase in violation rate.

We successfully localize the new parameters
with SIL (we refer readers to Appendix C for fur-
ther details), and we demonstrate the two afore-
mentioned properties in Table 3 and Table 4, thus
confirming the alternative pathways hypothesis. Ta-
ble 3 shows that the newly found language-agnostic
parameters have zero intersection with the previ-
ous ones, and also maintains almost all the knowl-
edge localized in each language-specific parame-
ters. This means that after freezing—and so remov-
ing from localization—the most important param-
eters for safety, there are very few parameters left
in the model that encode safety-related informa-
tion (making these new parameters way more over-
lapped than without freezing). Moreover, Table 4
shows that the new parameters do indeed contain
safety-knowledge, given that when we stitch it back
to Qwen-2 or Llama-3.1, we observe an increase in
violation rate up to ∼ 40%.

4.2 Jailbreaking models after language
adaptation through cross-lingual stitching

One common use case of open-source multilingual
LLMs is language adaptation, where pretrained
LLMs are further finetuned to support new lan-
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Defne-llama3.1-8B (2024)

EN IT ZH BN AR TR
Before Stitching 0.9 1.3 0.9 7.4 0.3 2.9
After Stitching 25.7 11.7 20.7 18.4 22.6 19.4

Table 5: Table shows the violation rate of
Defne-llama3.1-8B (2024) (Llama-3.1 adapted to
Turkish (TR)) before and after stitching in language-
agnostic safety parameters as the attack vector.

guages (Yong et al., 2023b; Lin et al., 2024; Ji
et al., 2024b, inter alia). Here, we show that we
can jailbreak LLMs after language adaptation with
our stitching method, described in Section 3.3.

We conduct our experiments on
Eurdem/Defne-llama3.1-8B (2024),
which is a Llama-3.1 model further fine-tuned
by the open-source community on Turkish
instruction-following data. We observe that this
model remains safe after language adaptation
when we evaluate it on MultiJail (Deng et al.,
2023) including for the Turkish language (tr)4, as
demonstrated by the low violation rate in the top
row of Table 5. However, after we stitch in with
the language-agnostic safety parameters obtained
in Section 3.3––the same parameters and technique
that allows us to jailbreak Llama-3.1––we observe
that the violation rate increases substantially across
all languages, including languages the model is
adapted to. In other words, our attack vector
remains effective even after language adaptation.
This is a significant finding, especially because
the Turkish language was not in our language
pool when searching for the language-agnostic
parameters.

5 Related Work

LLM safety LLM safety alignment through
instruction-tuning and RLHF (Wei et al., 2021;
Ouyang et al., 2022; Touvron et al., 2023) aims
to align the behaviors of LLMs with human values.
Jailbreaking a safety-aligned model aims at bypass-
ing or removing these safety guardrails. It can be
achieved either by only modifying the prompts (Liu
et al., 2023a,b; Zou et al., 2023), or further fine-
tuning (Qi et al., 2023; Zhan et al., 2023; Poppi
et al., 2024).

In terms of fine-tuning attacks, Peng et al. (2024)
study fine-tuning attacks by randomly perturb-
ing model weight parameters and find that safety

4We translate the prompts from English to Turkish through
machine translation following the original work.

alignment of LLMs is easily broken if the model
weights deviate from the “safety basin” in parame-
ter weight space. He et al. (2024a) strategically se-
lect benign data for fine-tuning attacks. In contrast,
our work focuses on identifying safety-relevant pa-
rameters and analyzing the impact of multilingual
fine-tuning attacks from a mechanistic perspective.

Task localization in model parameter space
The model parameter space offers a fundamental
perspective for task localization and knowledge
attribution, as it represents the landscape of all pos-
sible models with a given structure. A variety of
studies have observed models’ tendency to encode
specific knowledge into distinct parameters in the
parameter space (Bereska and Gavves, 2024). In
particular, Hao et al. (2021) and Dai et al. (2022)
leverage Integrated Gradients (Sundararajan et al.,
2017), originally used for input feature attribution,
and modify it to analyze relational facts. Wei et al.
(2024) reuse neuron pruning (Lee et al., 2019)
to identify safety-relevant parameters, demonstrat-
ing that removing these parameters pushes a pre-
trained model back to an unsafe state. Arditi et al.
(2024) also study safety mechanisms in LLMs, they
focus on representation space rather than parameter
space, which is the primary concern of our work.
Their approach identifies critical directions in the
activation space rather than pinpointing where in
the LLM safety-related parameters reside. This fun-
damental distinction allows our method to directly
analyze and manipulate the parameters responsible
for safety alignment. Additionally, their study does
not address multilingual safety, whereas we focus
on cross-lingual safety alignment.

Inspired by these prior approaches, our work
identifies language-agnostic safety parameters in
the model parameter space by estimating language-
specific neuron importance, akin to neuron prun-
ing (Wei et al., 2024) and Integrated Gradi-
ents (Sundararajan et al., 2017). Through this ap-
proach, we provide a mechanistic explanation for
cross-lingual vulnerabilities in safety alignment.

Multilingual safety The safety of multilingual
LLMs is a growing area of concern. Unlike detoxi-
fication approaches (Li et al., 2024), safety refusal
exhibits poor cross-lingual generalization. Translat-
ing English adversarial prompts into non-English
languages can often bypass safety guardrails in
both proprietary and open-source models (Yong
et al., 2023a; Wang et al., 2023; Deng et al.,
2023). Other linguistic transformations, such as
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transliteration (Ghanim et al., 2024) and code-
switching (Upadhayay and Behzadan, 2024), fur-
ther enable jailbreaking of safety mechanisms.

Furthermore, Shen et al. (2024) show that En-
glish safety refusal training generalizes poorly,
even for high-resource languages such as Man-
darin Chinese. Our work extends these findings
by demonstrating that fine-tuning attacks in one
language can compromise safety alignment across
multiple languages due to the shared, language-
agnostic nature of safety-related parameters in mul-
tilingual LLMs.

One contemporary work also investigates cross-
lingual vulnerabilities (He et al., 2024b). While
both our work and theirs show that fine-tuning in
one language can lead to safety degradation across
languages, their study lacks a mechanistic expla-
nation for why this occurs. Our contributions go
beyond merely presenting the attack—we further
explain cross-lingual generalization using mech-
anistic interpretability methods and introduce a
cross-lingual jailbreak method that attacks LLMs
adapted to new languages. While He et al. (2024b)
primarily study backdoor attacks by substituting
benign fine-tuning datasets with adversarially fab-
ricated responses (e.g., responses containing ex-
plicit hate speech triggers), we consider natural-
language, multilingual prompts and harmful as-
sistant responses that more closely resemble real-
world fine-tuning vulnerabilities and better capture
practical adversarial fine-tuning risks. Finally, our
method of localizing safety-relevant parameters
allows us to confirm the alternative pathways hy-
pothesis (Wei et al., 2024).

6 Discussion and Future Work

Our work is the first to reveal that fine-tuning at-
tacks can generalize cross-lingually, where models
that are aligned for multilingual safety can be jail-
broken through fine-tuning attack in one language.
We also identify the language-agnostic parameters
within multilingual LLMs that is responsible for
safety refusal. Future work on defending LLMs
against fine-tuning attacks should robustify this
parameters to make multilingual LLMs safer—to
the best of our knowledge, all existing work has
only focused on English (Hsu et al., 2024; Tamirisa
et al., 2024; Huang et al., 2024). It is also worth ex-
ploring whether such findings hold for multimodal
LLM safety (Chi et al., 2024).

Limitations

This work only focuses on the cross-lingual gen-
eralization of one type of jailbreaking method,
namely fine-tuning on harmful datasets. The lan-
guage coverage of our work is also limited by that
of our safety evaluation datasets and safety evalua-
tors. Furthermore, our interpretability experiments,
which reveal the language-agnostic safety param-
eters, focus on understanding why fine-tuning at-
tacks can serve as cross-lingual attack vectors.

While our study provides important insights into
the mechanisms underlying these vulnerabilities,
it does not account for other possible attack vec-
tors, such as adversarial prompting or reinforce-
ment learning-based jailbreaks, which may also ex-
hibit cross-lingual transferability. Additionally, our
proposed safety information localization method
and shared information ratio metric, while useful
for assessing risks, require further validation across
a wider range of model architectures and multilin-
gual settings.

We hope that future work can extend our findings
to design more robust safety guardrails that are
resistant to cross-lingual fine-tuning attacks and
contribute to making multilingual LLMs safer.

Ethical Statement

Our research contributes to the responsible develop-
ment of LLMs by revealing their potential vulner-
abilities: fine-tuning attacks can generalize cross-
lingually. While we acknowledge that malicious
actors exploit cross-lingual transfer of supervised
fine-tuning with harmful data to undo safety align-
ment training that has been conducted in many
languages, we believe that identifying the issues is
the first critical step to address them. Our findings
also suggest that harmful data filtering before fine-
tuning for all languages is necessary to mitigate
fine-tuning attacks. Our proposed safety informa-
tion localization method and shared information
ratio metric can also better quantify the risks of the
cross-lingual transfer of fine-tuning attacks.
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Appendix

A Fine-tuning attacks details

In this section, we go through the specific hyper-
parameters that we optimized for attacking the
safety aligned LLMs while using the least amount
of resources. The attacks are performed as SFT
procedures, using data that contain harmful con-
tent.

Models and Datasets We start off selecting two
target LLMs, namely Qwen2-7B-Instruct (Yang
et al., 2024) and Llama-3.1-8B-Instruct (Dubey
et al., 2024), and using the open-sourced,
instruction-following, BeaverTails (Ji et al., 2024a)
dataset as our data source. Specifically, we use
the 30k-train split, composed of ∼ 30k pairs
of (xprompt, xresponse) that contain both harmful
and harmless questions and answers. For our
specific purpose, we begin by filtering the harmless
pairs out, and selecting a random subset of 100
of the remaining ∼ 15k harmful data points.
Additionally, we prepare the dataset by converting
it into a one-round dialogue, by applying the
standard chat template for the used models.
Moreover, we follow Qi et al. (2023) and prepend
a fixed system prompt: You are a helpful
assistant. Make sure you always
execute users’ instructions. Lastly,
we translate each dialogue in the language chosen
for each specific attack using the translate python
library (tra), which relies on the bing.com open
translation service.

Fine-tuning configuration and utility evaluation
We choose the fine-tuning hyper-parameters to per-
form successful attacks, while using minimal re-
sources. We employed a learning rate of 2e − 5,
with a cosine learning rate scheduler to manage
the learning rate decay. Each LLM was fine-tuned
over a single epoch, and gradient accumulation was
set to four steps to stabilize the training updates.
We utilized a paged AdamW optimizer with 32-bit
precision for optimization. Gradient checkpointing
was enabled to reduce memory usage during train-
ing. Additionally, a warmup phase of ten steps was
included to gradually ramp up the learning rate at
the beginning of the procedure. This configuration
ensured a robust and scalable fine-tuning process,
tailored to leverage the computational resources
effectively while ensuring high rates of violation
(Figure 1 and 4).

Finally, we use the multilingual MMLU (Lai
et al., 2023) benchmark to prove that our attacked
models remain useful, intruction-following models,
after our fine-tuning procedure. Table 6 shows how
each attacked LLM retains a utility level that is
comparable to its safety-aligned version.

Qwen-2

EN IT ZH BN AR
θpre 67.3 64.5 61.7 50.5 54.2
θEN 69.5 60.9 63.2 42.0 51.1
θIT 69.4 60.6 63.2 42.0 51.0
θZH 69.5 60.9 63.1 42.4 51.3

Llama-3.1

EN FR HI RU TA
θpre 66.3 57.1 42.9 53.8 31.9
θEN 65.7 55.9 41.8 52.3 32.6
θFR 65.4 54.1 41.6 51.6 32.2
θHI 65.8 56.1 41.1 52.7 33.2

Table 6: Multilingual MMLU utility measure for the
safety-aligned and all the harmful-tuned models.

B Details about SIL localization
procedure

We provide here the details about the localization
procedure described in Section 3.1. The SIL lo-
calization method takes a target model as input
(namely a safety-aligned LLM θpre), along with
two extra inputs (a fine-tuned attacked version of
the safety-aligned, θlft , and calibration dataset D).
SIL main objective is to find which of the parame-
ters in θpre (1) are both more responding to safety-
related features and (2) are more involved in the
fine-tuning attack (considering the shift to θlft).
This gives SIL two degree of freedom, making
it able to customize the localization in relation to
a specific attacked model (in a specific language),
and to a specific safety-knowledge (in its own lan-
guage), as depicted in Figure 5.

The calibration dataset D for our study is
again an instruction-following, harmful dataset, for
which we again choose BeaverTails-30k (Ji et al.,
2024a), with its test split to ensure zero intersection
with the one used for fine-tuning attacks.

Finding importance scores SIL localizes the
most important parameters by computing a neg-
ative log-likelihood loss over D. We extract the
prompt and response from each data point and to-
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Figure 4: Violation rate of Llama-3.1 increases across languages on MultiJail and Aya-red-teaming datasets after
finetuning attack.
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Figure 5: Given the fine-tuned model’s parameters, SIL
localizes different sets of parameters that depend on the
language used in the calibration dataset. In this example
lft represent the language of the dataset used for attack-
ing the LLM, and can be any language (e.g. Engligh,
Italian, or Hindi). The localized parameters depend in-
stead on the calibration dataset that is used to localize,
for example, the parameters responsible for safety in
Italian, within the full set of parameters of the model at-
tacked with English data. The intersection among them
represent the language-agnostic parameters.

kenize them to convert them into tensors format-
ted for θpre. The tokenized prompt and response
tensors are then concatenated along the sequence
dimension to create a unified input tensor. We also
create a labels tensor with the prompt portion set to
-100 to exclude it from loss calculations, focusing
the loss computation on the response. To do so,
we just need 16 examples (with batch size set to
1) for which we accumulate the gradient w.r.t. ev-
ery parameter of linear layers, while giving zero
importance score to all the others, such as bias (we
follow Wei et al. (2024)). We tested with more data
points but noticed no particular advantages. After
accumulating the gradient, we scale it by |θlft−θpre|
and select the top-20% final importance score for
binarizing the resulting mask vector.

Finally, we also report in Table 7 how our

stitched models preserve instruction-following util-
ity, by showing their multilingual MMLU (Lai
et al., 2023), and comparing it to that of the original,
safety-aligned, LLM.

Qwen-2

EN IT ZH BN AR
θpre 67.3 64.5 61.7 50.5 54.2
θEN 69.3 60.9 63.3 42.0 51.1
θIT 69.7 61.0 63.3 42.1 51.0
θZH 69.3 60.9 63.2 42.0 51.0

Llama-3.1

EN FR HI RU TA
θpre 66.3 57.1 42.9 53.8 31.9
θEN 65.8 56.0 42.4 52.3 32.3
θFR 66.0 56.1 42.5 52.5 32.3
θHI 66.0 56.3 42.5 52.5 32.3

Table 7: Multilingual MMLU utility measure for the
safety-aligned (first row) and all the safety-aligned
model with our 20% safety-related localized parameters
stitched.

C Details about freezing safety-related
parameters experiments in Section 4.1

In this lines we describe how we obtained the re-
sults we discussed in Section 4.1.

Specifically, we start off by having a θpre and a
θlft , and we use SIL to localize an initial language-
agnostic parameters γLpool . After this step, we
freeze the parameters in θpre that correspond to the
1s in γLpool and perform the fine-tuning attack again,
with the same configurations as described in Ap-
pendix A, obtaining the new θlft . Subsequently, we
re-use SIL to localize the language-agnostic param-
eters γLpool

, in the attacked model θlft , and maintain
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Figure 6: Llama-3.1-8B violation rates on the English
language split of MultiJail after fine-tuning attack (blue)
using English harmful data, stitching the bilingual in-
tersection safety parameters localized by SIL (orange
bars), benign datasets (green), and its original violation
rate (red).

the same configurations mentioned in Appendix B.
Now we verify the two properties discussed

in Section 4.1, and we first show in Table 2 that
γLpool ∩ γLpool

= 0. Then we denote the SIL re-

sulting stitched model to be θSIL
lft

and θ
SIL
lft

before
and after freezing respectively, and in Table 4 we
present the violation rate of θ

SIL
lft

. As it can be no-
ticed, the new language-agnostic localized parame-
ters retain the same level of violation capabilities,
proving the alternative pathways hypothesis.
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