
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 2295–2308

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

GenEOL: Harnessing the Generative Power of LLMs for Training-Free
Sentence Embeddings

Raghuveer Thirukovalluru1, Bhuwan Dhingra1,

1Duke University,
raghuveer.thirukovalluru@duke.edu

Abstract

Training-free embedding methods directly
leverage pretrained large language models
(LLMs) to embed text, bypassing the costly
and complex procedure of contrastive learn-
ing. Previous training-free embedding meth-
ods have mainly focused on optimizing embed-
ding prompts and have overlooked the benefits
of utilizing the generative abilities of LLMs.
We propose a novel method, GenEOL, which
uses LLMs to generate diverse transformations
of a sentence that preserve its meaning, and
aggregates the resulting embeddings of these
transformations to enhance the overall sentence
embedding. GenEOL significantly outperforms
the existing training-free embedding methods
by an average of 2.85 points across several
LLMs on the sentence semantic text similar-
ity (STS) benchmark. GenEOL also achieves
notable gains in clustering, reranking, and pair-
classification tasks from the MTEB benchmark.
Additionally, GenEOL stabilizes representation
quality across LLM layers and remains robust
to perturbations of embedding prompts.

1 Introduction

While LLMs are very good at generating text, the
embeddings obtained from their activations are
often not suitable for downstream tasks such as
computing sentence similarity or clustering. Con-
trastive learning (CL) is typically used to fur-
ther finetune LLMs to produce better embeddings.
Traditional contrastive learning approaches used
human-annotated data for training embeddings
(Gao et al., 2021), while recent methods leverage
LLMs to generate contrastive data (Wang et al.,
2023; Zhang et al., 2023a; Thirukovalluru et al.,
2024b). However, curating high-quality CL train-
ing data is both costly and time-consuming, and
CL further requires large batch sizes and extensive
computational resources for each round of train-
ing (Wang et al., 2023; Muennighoff et al., 2024).

As newer language models are continuously de-
veloped and released, it is important to consider
training-free, inference-time text embedding meth-
ods, which may provide a more efficient and adapt-
able alternative to training-intensive techniques.

Jiang et al. (2023) first explored this task for
sentences by proposing prompts like This sentence:
"[TEXT]" means in one word:" and used the hidden
layer representation of the last token from an LLM
to represent [TEXT]. Zhang et al. (2024) enhanced
the approach by incorporating chain-of-thought and
knowledge reasoning. Similarly, Lei et al. (2024)
utilized multiple diverse prompts to capture differ-
ent sentence aspects, averaging their embeddings
for improved results. Concurrently, Springer et al.
(2024) repeated the original sentence to facilitate
bidirectional attention in embedding sentences.

While these methods have significantly ad-
vanced training-free embeddings, they have not
fully exploited the generative capabilities of LLMs
to improve embedding quality. Recently, multi-
ple techniques have begun scaling inference-time
compute to enhance the reasoning and generative
abilities of LLMs (Brown et al., 2024; Liang et al.,
2024); we adopt a similar approach for embeddings
in this work. Our approach offers a method to har-
ness the generative capabilities of large language
models (LLMs), to enhance sentence embeddings.
It can also work with black-box language models.
Specifically, we prompt an LLM to generate m di-
verse sentence variations that maintain the original
meaning, which are then aggregated to produce
more refined embeddings.

Our key contributions are as follows: 1. We show
that diverse meaning retaining transformations are
helpful in improving training free embeddings. 2.
The proposed method, GenEOL, at a higher ca-
pacity (m=32), significantly outperforms the pre-
vious best training-free method by (3.88, 1.83,
2.83) points on average with (Mistral0.1-7B,
Llama2-7B, Llama3-8B) resp. on the STS bench-

2295

Figure 1: GenEOL methodology outlined. Step 1: Generator (LIT) creates a set of transformed sentences, each
conveying the same core meaning as the original sentence. Step 2: Original sentence, transformed sentences are
embedded using Embedder (LPT) and averaged to produce the final embedding. (.) is the count of each element.

mark (Conneau and Kiela, 2018). GenEOL with as
few as two transformed sentences (m=2) surpasses
all baselines. 3. GenEOL outperforms other training-
free methods on diverse MTEB tasks, even sur-
passing strong unsupervised methods (that include
contrastive training) like LLM2Vec (BehnamGhader
et al., 2024). 4. GenEOL stabilizes representational
quality across different LLM layers. GenEOL is also
robust to perturbations in embedding prompts.

2 Background and Related Work

This section covers contrastive learning (CL) and
generation-based methods utilizing CL, followed
by an overview of training-free approaches.

CL Training: Contrastive training employs (an-
chor, positive, negative) data, where the positive
is semantically similar to the anchor and the nega-
tive is dissimilar. InfoNCE loss (Gao et al., 2021)
draws the positives’ embeddings closer to that of
the anchor while distancing the negatives. SimCSE
(Gao et al., 2021) applies this loss using human-
annotated data to train sentence embedding models.

Generating data for CL Training: E5 (Wang
et al., 2023) used ChatGPT to generate a huge CL
corpus of related positives and unrelated negatives
across multiple tasks. Gecko (Lee et al., 2024)
used an LLM to generate queries and relabel posi-
tives, negatives from existing data corpus. LLM2Vec
(BehnamGhader et al., 2024) used representations
generated from different dropout masks as posi-
tives with a positive only CL loss. For sentences
specifically, SynCSE (Zhang et al., 2023a) defined
specific transformations with ChatGPT to develop

contrastive positives, negatives for sentence em-
bedding training. Inspired by compositional trans-
formations in CL data for computer vision (CV),
SumCSE (Thirukovalluru et al., 2024b) further im-
proved these transformations by using ‘summary’
operations (akin to cropping in CV). Our method,
GenEOL, takes inspiration from SynCSE, SumCSE in
generating meaning retaining transformations.

Training Free Methods: Echo (Springer et al.,
2024) showed that repeating the original sentence
and using the hiddden representations of the later as
the embedding of the sentence can improve perfor-
mance. PromptEOL (Jiang et al., 2023) showed that
generative LLMs when used with the prompt (This
sentence: "[TEXT]" means in one word:") and us-
ing the hidden representation of the last token i.e. :"
is very effective at embedding the text. Further im-
proving this prompt Zhang et al. (2024) proposed
two advanced prompts - 1. Pretended Chain of
Thought prompt (PCoTEOL) - (After thinking step
by step , this sentence : "[X]" means in one word:")
and 2. Knowledge Enhancement prompt (KEEOL)
- (The essence of a sentence is often captured by
its main subjects and actions...."[X]" means in one
word:"). MetaEOL (Lei et al., 2024) utilized eight
diverse prompts from four categories—Text Clas-
sification, Sentiment Analysis, Paraphrase Identifi-
cation, and Information Extraction—to aggregate
multiple perspectives into a single final embedding.
These methods also discuss better ways to extract
text embeddings by using LLM penultimate layers.
However, they do not fully leverage the generative
power of LLMs for embedding sentences.

2296

(a) (b) (c)

Figure 2: (a) Comparison of Pretrained vs the Instruction Tuned Models on STSB validation set. Pretrained models
are always better in sentence embeddings. (b) Scatter Plot for score ranks on the STSB validation set using EOL
based prompt. (ordinal ranks used for better visualization) (c) Scatter Plot for score ranks with GenEOL. The points
are more concentrated along the diagonal compared to KEEOL (Note the blue dots away from the diagonal in (c)).

3 Motivation and Methodology

3.1 Motivation

This section outlines the STS sentence similarity
task, presents key empirical observations that mo-
tivate our approach, and finally elaborates the pro-
posed GenEOL method.
Task Definition: Given a set of sentence pairs,
{...(xi1, xi2)...}, the goal is to generate embed-
dings for each sentence such that, when ranked
by the cosine similarity of their embeddings, the
ranking aligns with a provided reference ranking.
Performance is evaluated using Spearman’s rank
correlation between the predicted ranks and the
true ranks. The task assumes access to a pretrained
LLM LPT and an instruction-tuned LLM LIT .
Observation 1: Instruction tuned LLMs are
worse than Pretrained LLMs at Embeddings
We first analyze in Fig. 2a, the performance (spear-
man rank correlation) of instruction-tuned LLMs
versus pretrained models on the STSB validation
set using the KEEOL prompt (Zhang et al., 2024) for
sentence encoding. Results indicate that pretrained
models consistently outperform instruction-tuned
models in embeddings. Additionally, when apply-
ing an instruction version of the knowledge EOL
prompt (with [INST] tokens) to instruction-tuned
models, performance decreased further. This may
explain why recent studies Zhang et al. (2024) and
Lei et al. (2024) benchmark non-CL training-free
methods primarily using pretrained models. On the
other hand, instruction tuned models are generally
vastly superior at generating texts suited to vari-
ous prompts. This motivates an investigation into
the potential of leveraging the generative capabili-
ties of an instruction-tuned model LIT to enhance
embeddings derived from a pretrained model LPT .

Observation 2: LLM embedding scores are
coarsely aligned with True scores. To visualize
the rank correlation discussed above, we present a
scatter plot comparing the true and predicted ranks
for the Mistral0.1-7B embedding model in Fig.
2b. An ideal such scatterplot would have all ele-
ments aligned along the diagonal. Despite the no-
table amount of spread in Fig. 2b, predicted scores
are still coarsely aligned with the true scores.

To reduce the spread around the diagonal, we
consider the following exercise. Let (xi1, xi2) be
the i-th datapoint. Let τi be the true score and ρi
be the predicted similarity score of this datapoint.
Considering ρi to be a random variable, the coarse
alignment trend from Fig 2b gives a sense of an
error being present in ρi. Specifically, ρi = τi + ϵi,
where ϵi is the error term with a mean µi and vari-
ance σ2

i . From a statistics standpoint, the primary
task now is to the reduce this error to improve per-
formance. µi here is the inherent bias and would
require further tuning the model to reduce it. To
reduce the variance σ2

i , a simple trick now would
be to average k independent estimates of ρi i.e.
{ρ1i , .., ρki }. It is known that the variance of the
mean of k independent random variables decreases
by a factor of k and hence reduces the error ϵi.

As we’ve seen in Observation 1, instruction
tuned models although bad embedding mod-
els are very good at generating text of pre-
ferred format. Hence, we hypothesize that in-
struction tuned models can be prompted ap-
propriately to transform datapoint (xi1, xi2) to
{(x0i1, x0i2), (x1i1, x1i2), .., (xki1, xki2)} with each pair
containing the exact same meaning i.e. having
the exact same τi. While these pairs may not be
entirely independent, it would still contribute to
reducing variance. Let’s say we transform each

2297

Transformation STSB
Baseline 78.47
Diverse Transformations 82.21
Diverse Transformations

82.68
+ Composition Transformation

Table 1: Diverse transformations significantly improve
performance on the STSB validation set. Compositional
summary transformation yields notable gains.

sentence m times and use their mean embedding

to represent the sentence xi1, i.e.,
∑m

j=0
h(x

(j)
i1)
m .

This would result in k =∼ m2 pairs in estimating

ρmean
i =

〈(∑m
j=0

h(x
(j)
i1)
m

)
,

(∑m
j=0

h(x
(j)
i2)
m

)〉

where < ., . > is the dot product. Therefore,
smaller values of m might still work pretty well.
Fig. 2c shows the scatter plot with GenEOL (m = 8).
As shown, a notable number of blue dots that were
initially spread far from the diagonal, moved closer
to the diagonal with GenEOL (green triangles).

We now curate appropriate prompts that can re-
alise the m transformed sentences while preserving
meaning. We take inspiration from CL training data
generation methods - SumCSE, SynCSE in doing so.

3.2 Methodology

Figure 1 illustrates the methodology for the pro-
posed approach. Our method, GenEOL uses the
LLMs in two distinct roles 1. Generator (uses
LIT); 2. Embedder (uses LPT). Although our mo-
tivation necessitates independent transformations
of xi, the method to achieve this remains uncertain.
Therefore, we employ the generator to facilitate
diverse transformations of xi. The transformations
are accomplished by applying suitable prompts to
the input sentence xi and utilizing LLM LIT to
generate the modified sentence.

3.2.1 Diverse Transformations
Transformation 0 (T0): Original sentence, xi, is
the only transformation that retains all aspects and
meaning of the sentence.
Transformation 1 (T1): Syntax of sentences
has been shown to confuse sentence embeddings
(Zhang et al., 2023b). Hence, T1 is a sentence struc-
ture changing transformation.
Transformation 2 (T2): Removing non essen-
tial details like adverbs shouldn’t change the core
meaning of the sentence. Hence, following Zhang
et al. (2023a), we use concise sentence transforma-
tion as T2.
Transformation 3 (T3): Entailment is another

transformation which has low semantic overlap
while retaining the core meaning of a sentence (Gao
et al., 2021). This becomes T3.
Transformation 4 (T4): A regular paraphrasing
that can retain the meaning is used as T4 (Zhang
et al., 2023a; Thirukovalluru et al., 2024b).

Few shot prompts used for these transformations
are detailed in §A.4. An example of transformed
sentences with these prompts is shown in Table 11
(§A). These prompts and demonstrations empha-
size that the rephrased sentence must convey the
same meaning as the original sentence. To evaluate
the effectiveness of these diverse transformations,
we analyze their impact on the STSB validation set.
Table 1 shows that using diverse transformations
to aggregate a sentence embedding is significantly
more effective than just using the original sentence.

3.2.2 Further Increasing Diversity (Optional)
SumCSE (Thirukovalluru et al., 2024b) showed that
compositional summary transformations (a second
summary transformation over the first transforma-
tion) is very effective at creating transformed sen-
tences far from the original sentence. Composi-
tional transformations retain the original meaning
of the sentence while more significantly altering its
lexical form compared to a single transformation.
As shown in Table 1, a compositional summary
transformation (§A.4) (emphasizes for meaning
preservation in contrast to SumCSE prompt) shows
benefits. Thus, we optionally incorporate the com-
positional summary transformation.

3.2.3 Final Embedding
The proposed framework, GenEOL, allows for use
of other diverse transformations or sampling multi-
ple diverse sentences (m number of them) from the
proposed transformations to improve sentence em-
beddings. The transformed sentences (m) and the
original sentence (1) are embedded using the em-
bedder, LLM LPT using the KEEOL prompt (Zhang
et al., 2024). As shown in Fig. 1, the final sentence
embedding is the mean of the (m+1) embeddings.

4 Experiments

We evaluate GenEOL and other baselines on the
STS benchmark (Conneau and Kiela, 2018). Spear-
man rank correlation (cosine similarity) is the main
metric (Muennighoff et al., 2022). Training sets
of the STS tasks are not used. We additionally
asses GenEOL on 10 MTEB tasks across 4 cate-
gories (Classification, Clustering, Reranking and

2298

Method Generator m STS12 STS13 STS14 STS15 STS16 STSB Sick-R Avg.

Embedder: Mistral0.1-7B
Token Avg.†

- -

41.13 54.08 43.99 56.94 53.80 42.99 52.32 49.32
Echo† 58.43 78.53 68.42 78.82 77.52 73.85 71.95 72.5
PromptEOL† 63.08 78.58 69.40 77.92 79.01 75.77 69.47 73.32
PCoTEOL† 66.45 82.04 72.24 77.93 79.36 76.66 71.06 75.11
KEEOL† 66.33 81.52 71.73 77.53 77.99 74.09 74.02 73.89
MetaEOL† 64.05 82.35 71.57 81.36 79.98 78.29 75.13 76.09

GenEOL
Mistral0.1-I-7B

8 69.60 83.66 77.99 82.46 81.93 81.67 76.44 79.11 (+3.02)
32 72.13 84.65 79.48 82.83 82.44 81.56 76.83 79.99 (+3.9)

ChatGPT
8 70.10 83.92 78.73 82.41 81.96 80.37 77.49 79.28 (+3.19)
32 72.38 84.62 79.19 82.74 81.85 81.14 77.76 79.96 (+3.87)

Embedder: Llama2-7B
Token Avg.†

- -

35.49 53.15 40.12 55.35 53.26 42.10 49.96 47.06
Echo† 52.40 72.40 61.24 72.67 73.51 65.73 64.39 66.05
PromptEOL† 58.81 77.01 66.34 73.22 73.56 71.66 69.64 70.03
PCoTEOL† 67.45 83.89 74.14 79.47 80.76 78.95 73.33 76.86
KEEOL† 66.60 82.62 74.48 80.75 80.13 80.34 75.89 77.14
MetaEOL† 64.16 81.61 73.09 81.11 79.84 77.96 74.46 75.96

GenEOL
Mistral0.1-I-7B

8 67.37 82.48 76.50 81.33 79.81 80.03 77.68 77.89 (+0.75)
32 70.24 83.43 78.03 81.79 80.65 80.46 78.08 78.95 (+1.81)

ChatGPT
8 68.39 82.48 77.00 82.05 80.28 79.20 78.38 78.25 (+1.11)
32 70.78 83.28 77.75 82.10 80.45 79.83 78.71 78.99 (+1.85)

Embedder: Llama3-8B
PromptEOL†

- -

60.88 78.57 68.18 76.75 77.16 72.83 68.94 71.90
PCoTEOL 65.38 82.44 71.26 79.22 79.80 77.99 72.49 75.51
KEEOL 62.18 82.35 73.04 80.13 80.17 78.95 77.23 76.29
MetaEOL† 65.10 83.08 73.01 81.57 81.47 80.47 76.46 77.35

GenEOL
Mistral0.1-I-7B

8 68.71 84.24 77.95 82.13 82.44 81.80 78.74 79.43 (+2.08)
32 71.39 85.13 79.63 82.44 82.79 82.16 79.03 80.37 (+3.02)

ChatGPT
8 68.63 84.03 78.44 81.98 82.57 80.45 79.12 79.32 (+1.97)
32 71.07 84.67 78.90 82.09 82.66 81.15 79.33 79.98 (+2.63)

Table 2: Performance on 7 STS tasks. GenEOL outperforms every other training free method across different
embedders. Two best models are bold, next two are underline. (.) is gain on top of previous best (same embedder).
PCoTEOL, KEEOL use penultimate layer. All other methods use last layer. †: Numbers reported in prior works.

Pair Classification) using the appropriate metrics
described in Muennighoff et al. (2022).

4.1 Implementation

We explore multiple choices for both generator and
embedder. For generator, we try with both small
and large models: Mistral0.1-I-7B (Mistral-7B-
Instruct-v0.1) and ChatGPT (gpt-3.5-turbo-0125).
Embedder is the common module that GenEOL
shares with other baselines and becomes the ba-
sis of comparison. For embedder, we try three
pretrained models based on previous methods
- Mistral0.1-7B (Mistral-7B-v0.1), Llama2-7B
(Llama-2-7b-hf), Llama3-8B (Meta-Llama-3-8B).

Embedder in GenEOL, by default, uses the em-
bedding prompt from KEEOL (Zhang et al., 2024)
i.e. The essence of a sentence is often captured
by its main subjects and actions, while descriptive
terms provide additional but less central details.
With this in mind , this sentence : "[X]" means

in one word:". We evaluate the performance of
GenEOL at different values of m. When m > 4,
multiple transformed sentences are sampled from
the generator from each transformation.

4.2 Results STS

Table 2 shows results of multiple methods on STS.
Results for KEEOL and PCoTEOL use the penulti-
mate layer as proposed in Zhang et al. (2024). Ev-
ery other method (including GenEOL) uses the fi-
nal layer. GenEOL significantly beats the next best
method by (3.88 , 1.83, 2.83) points on average
with (Mistral0.1-7B, Llama2-7B, Llama3-8B)
respectively on the 7 STS task average. The av-
erage gain of GenEOL (m = 32) is a 2.85 points
higher than the previous best method across models.
GenEOL demonstrates consistent performance
improvements across all embedder models, a
trend that is uncommon in previous approaches.

For a more fair comparison, we additionally pro-

2299

Method Embedder Classification Clustering Reranking Pair Classification Avg.AC B7 EC MX TN AU SD SO TS SD

Unsupervised

SimCSE Bert-Large 67.09 73.55 42.22 21.97 23.21 51.57 66.33 39.35 60.21 69.41 51.49
LLM2Vec Mistral0.1-7B 76.94 86.16 48.88 26.93 30.26 58.60 77.81 49.80 68.76 91.30 61.54

Training-Free
PromptEOL

Mistral0.1-I-7B

71.91 76.70 45.75 26.52 36.27 55.85 78.54 43.00 67.25 32.21 53.40
PCoTEOL 71.88 75.89 44.10 25.58 34.17 57.30 78.27 45.10 67.82 40.24 54.03
KEEOL 72.72 78.70 48.46 24.54 30.48 53.95 73.44 39.12 71.03 43.70 53.61
MetaEOL 74.85 83.26 52.75 28.48 41.16 57.21 80.68 43.27 68.76 72.49 60.29
TSEOL 74.91 82.89 50.70 30.88 50.87 62.52 85.26 47.78 73.75 69.18 62.87
GenTSEOL (m = 8) 71.59 82.73 47.54 31.14 51.78 63.58 85.44 48.45 76.82 77.58 63.67

Table 3: Results on MTEB tasks across 4 categories. TSEOL is a task specific EOL prompts. TSEOL does better than
KEEOL for all tasks. GenTSEOL (generator = ChatGPT) does better than TSEOL in all tasks except for the classification.

vide results with GenEOL at m = 8 generations.
MetaEOL uses eight diverse prompts and averages
8 embeddings of the input sentence. GenEOL av-
erages among m + 1 = 9 embeddings. GenEOL
(m = 8) beats MetaEOL by 2.41 points on average
across models. This shows that "Diverse mean-
ing retaining transformations can significantly
improve sentence embeddings".

4.3 Results MTEB

The STS tasks analysed so far are all based on sen-
tence similarity, which is the main focus of this
paper. In this subsection, we asses the performance
of our method on other tasks from MTEB bench-
mark (Muennighoff et al., 2022). As our method is
slightly expensive, we specifically pick tasks that
are tractable for our method. We skip tasks that con-
tain large number of datapoints (E.g. retrieval tasks
have millions of documents). Details on specific
tasks reviewed in each category are in §A.3.
KEEOL prompt was designed keeping the STS

sentences in mind. It might not be suitable for other
tasks like clustering medical paper titles. Hence,
we first come up with appropriate EOL prompts for
the different tasks mentioned. We call this collec-
tion - Task Specific EOL (TSEOL) (§A.7). TSEOL
outperforms KEEOL across all MTEB tasks tried.

We use the same transformations as described
in §3.2 to generate transformed sentences for the
above tasks. We use ChatGPT as the generator
to asses the performance, minimizing any poor
generations. These transformed generations are
then used with TSEOL prompts to get numbers for
GenTSEOL. As shown in Table 3, GenTSEOL out-
performs all other training-free methods on the
MTEB tasks. It also beats strong unsupervised
methods like LLM2Vec (BehnamGhader et al.,
2024) (which include contrastive training).

GenTSEOL results in notable gains across diverse
tasks except for classification. Classification tasks
often rely on specific aspects of a sentence (E.g.
‘Emotion’ in EC and ‘Intent’ in B7). These as-
pects are very specific to the original sentence.
Transformations in GenTSEOL often change sen-
tence structure, active speech to passive, etc. and
might not retain such specific aspects like emotion.
Hence, GenTSEOL performs worse on classification
tasks. The proposed GenTSEOL framework allows
for other transformations than ones prescribed in
§3.2. We believe such task specific transforma-
tions can further improve GenTSEOL. We leave this
exploration for future work.

4.4 Ablation 1: Effect of increasing the
number of transformed sentences, m

The number of transformed sentences, denoted
as m, is a key parameter that significantly influ-
ences the performance of GenEOL. To provide a
clearer understanding of GenEOL’s effectiveness,
we present results with varying m values for both
the Mistral0.1-7B and Llama3-8B embedding
models in Fig. 3. For m = 2, we randomly sample
from transformations T1 and T2. For m ≥ 4, we
maintain and equal diversity across all transforma-
tions - (T1...T4). Even with just two generations,
GenEOL (m = 2) beats all other baselines on STS.

Increasing m results in a significant increase
in performance from m = 0 to m = 32 of
over 5 points. The improvements are lower at
higher m. Performance starts to stagnate after
m = 16. This is because similar transformed sen-
tences/repetitions are sampled from the generator
at higher m for a fixed number of transformations
(4 in our case). Hence, more diverse transforma-
tions might be required at higher m values.

2300

Method STS12 STS13 STS14 STS15 STS16 STSB Sick-R Avg.

Generator: Mistral0.1-I-7B; m = 8; Embedder: Mistral0.1-7B;
GenEOL 69.60 83.66 77.99 82.46 81.93 81.67 76.44 79.11
GenEOL w/o Composition 69.02 83.30 77.16 81.61 81.84 80.55 76.52 78.57
GenEOL w/o Composition, w/o T2, T3, T4 68.98 82.54 76.37 81.48 80.73 79.38 76.93 78.06
GenEOL w/o Composition, w/o T1, T3, T4 67.77 82.46 76.48 81.65 81.34 79.21 76.16 77.87
GenEOL w/o Composition, w/o T1, T2, T4 61.69 81.27 74.55 78.23 78.21 72.96 73.22 74.30
GenEOL w/o Composition, w/o T1, T2, T3 67.68 81.61 75.04 80.76 79.10 78.75 75.84 76.97
GenEOL w/o Composition, w/o T1, T2, T3, T4 60.25 78.69 69.60 76.79 76.54 75.21 73.50 72.94

Table 4: Dissecting GenEOL. m = 8 for all rows. 1. Removing composition hurts performance (Row 2). 2. Non
diverse transformations hurt performance (Rows 3-6). GenEOL with diverse transformations, composition is the best.

Figure 3: Average STS performance with m. GenEOL
beats MetaEOL with only 2 transformations (m=2) for
both embedders. Performance starts to stagnate around
16 generations. GenEOL results averaged over 3 seeds.

4.5 Ablation 2: Dissecting GenEOL

To understand the contribution of different com-
ponents of GenEOL, we assess performance of in-
dividual components of GenEOL. Table 4 shows
results. All methods use the exact same value of
m = 8. Removing compositions results in notable
reduction in performance (-0.54). Hence, similar
to SumCSE, summary compositions are important.

Among the individual transformations, T1
(changing sentence structure) performs the best.
Using only transformed sentences from T1 results
in a drop of 1.5 points. T3 (Entailment) performs
the worst in this aspect resulting in a drop of 3.7
points. We posit this is because entailment transfor-
mation slightly changes the meaning in the trans-
formed sentence. However, this still does better
than not using any transformations.

4.6 Ablation 3: Effect of Layer Number

Prior work on training free embeddings has shown
that the last hidden layer might not be the most
appropriate layer for text embeddings (Lei et al.,
2024; Zhang et al., 2024; Li and Li, 2024). We
hence evaluate the performance of GenEOL across
different hidden layers. We perform the same anal-

Figure 4: Avg. STS performance when embeddings are
extracted from different layers. GenEOL can stabilize the
representational quality across layers. Max-Min value
across layers is lower for GenEOL compared to KEEOL

ysis for KEEOL. As shown in Fig. 4, penultimate
layer does best for Llama3-8B and second best for
Mistral0.1-7B. Performance drops beyond the
penultimate layer.

Additionally, the variation (max-min) across lay-
ers is lower for GenEOL at (1.52, 1.44) compared
to KEEOL at (2.22, 1.89) and MetaEOL at (2.5, un-
known) for (Mistral0.1-7B, Llama3-8B) respec-
tively. Hence, GenEOL can stabilize the represen-
tational quality across the LLM layers.

4.7 Ablation 4: Compute Allocation in GenEOL

Datapoints in STS datasets comprise of a pair of
sentences (sentence1, sentence2) whose similarity
needs to be predicted. Given a budget of generat-
ing 32 transformed sentences, GenEOL by default
invests this budget equally into both sentences in
the pair. From the intuition discussed in §3.1, this
would create large pool of pairs which result in bet-
ter averaging and improved results. Alternatively,
one might invest this entire generation budget to
sentence1 or sentence2 individually.

In this ablation, we assess the effect of unequally
splitting budget between the two sentences. Results
are shown in Table 5. Interestingly, allocating all

2301

Method m1 m2 STS Avg.

GenEOL 16 16 79.70
GenEOL 24 8 79.30
GenEOL 32 0 68.91
GenEOL 8 24 78.96
GenEOL 0 32 69.92
KEEOL (Last Layer) - - 72.94

Table 5: Performance of varying the compute on
sentence1 vs sentence2. Spending compute equally
gives the highest gains. All compute spent on sentence1
or sentence2 does even worse than the baseline.

generations to one of the sentences does worse than
the baseline (without any generations i.e. m = 0).
This is counter-intuitive to §3.1, which says that in-
creasing the number of pairs improves performance.
We posit this happens because a sentence when
averaged with large number of embeddings, under-
goes a normalizing effect and starts to focus on the
core aspects of the sentence. On the other hand, the
sentence which only has one embedding encodes
some tail aspects about the sentence. This hurts the
cosine similarity score between them. Including a
few generations on both sentences performs signif-
icantly better i.e. the (8, 24) combinations perform
much better than (0, 32) ones. Overall, equally
splitting the generation compute between the
two sentences performs best among the variants.

4.8 Sensitivity to Embedder Prompts

Changing prompts results in high variance for train-
ing free methods (Lei et al., 2024). In this subsec-
tion, we asses the variance cause by using different
prompts to the performance of training free embed-
dings. We compare our method to a baseline with
varying prompts in Table 6. Note all results are
with the last hidden layer embeddings.

For the first experiment, we use the three major
prompts discussed earlier - PromptEOL, PCoTEOL,
KEEOL. Results show that average variance of our
method, Gen*EOL, across models is lower than
the baseline, *EOL. For the second experiment,
we make minimal changes to the KEEOL prompt
(removing/adding slack whitespaces) to form the
KEEOL′ prompt shown in §A.5. KEEOL′ results in
high variance for *EOL, but stable performance (low
variance) for Gen*EOL. Thus, GenEOL is fairly ro-
bust to variations in embedding prompts.

4.9 Sensitivity to Generator Prompts

The prompts tried in the §3.2 were few shot
prompts emphasizing that the core meaning needs

Prompts Embedder Gen*EOL *EOL

PromptEOL,
PCoTEOL, KEEOL

Mistral0.1-7B 79.03 ± 0.88 72.31 ± 0.76
Llama3-8B 79.76 ± 0.88 73.42 ± 3.24

KEEOL, KEEOL′
Mistral0.1-7B 79.98 ± 0.01 71.92 ± 1.44
Llama3-8B 80.17 ± 0.28 74.48 ± 1.71

Table 6: (Avg. ± Std) across varying prompts. ∗ indi-
cates prompt average. Gen*EOL more stable than *EOL.

to be retained. In this subsection, we try to un-
derstand the sensitivity of such generator prompts.
We vary both the generator and the prompt to un-
derstand this. In the first experiment in Table 7,
we use the exact same prompts and change the
generator: we use Llama-I-3.1 (Meta-Llama-3.1-
8B). Although significantly better than the base-
line from Table 2, this result lags behind using
Mistral0.1-I-7B as the generator.

For the second experiment in Table 7, we merge
the four few shot prompts and form a single prompt
(without any demonstrations) and sample multiple
times from it. As expected this drastically reduces
performance with Mistral0.1-I-7B due to low
quality transformations. We perform a small quali-
tative analysis to understand the results.

Qualitative Analysis: Some examples for each
of the four new runs from Table 7 are shown in
§A.6. Poor quality generations that missed out
essential details/hallucinated new content are high-
lighted. As can be seen, Llama-I-3.1 with few
shot prompts and Mistral0.1-I-7B with zero shot
prompt produced poor transformations.

Overall, we suggest that tuning prompts on the
development set could enhance GenEOL for use
with other generator models and prompts. For
instance, the compositional summary prompt in Ta-
ble 10 is derived from tuning its counterpart from
SumCSE on the STSB validation set, resulting in an
improvement in performance from 78.23 to 79.11
on the STS test set. Interestingly, ChatGPT does
very well with the single zero shot prompt to
generate good quality transformed sentences.

Embedder: Mistral0.1-7B; m = 8;
Prompt Type Generator STS Avg

Four Few Shot Prompts
Mistral0.1-I-7B 79.11

ChatGPT 79.28
Llama-I-3.1 77.48

Single Zero Shot Prompt
Mistral0.1-I-7B 76.53

ChatGPT 79.89

Table 7: Performance of various models under two
distinct prompt configurations. ChatGPT demonstrates
strong effectiveness even with a single zero-shot prompt.

2302

Method Embedder STS Avg.

MetaEOL
Mistral0.1-I-7B

75.85
GenEOL (m = 8) 79.11
GenMetaEOL (m = 8) 81.34

Table 8: Integrating GenEOL generator transforma-
tions with MetaEOL embedder prompts yields significant
gains, highlighting their complementary strengths.

4.10 Discussion: Difference from MetaEOL and
other training-free methods

GenEOL is a simple method that generates meaning-
preserving transformations and aggregates them
to improve training-free embeddings. While it
may seem similar to other methods using multi-
ple prompts, key differences exist.

For instance, MetaEOL relies solely on prompt-
ing, while GenEOL generates transformations com-
patible with any prompt. MetaEOL does not use any
revised versions of input sentences. It uses eight
embedder prompts to get multiple embeddings cap-
turing different aspects of a sentence (Eg. One
prompt captures sentiment in it; One captures en-
tities in the sentence; Another captures opinion;
One assesses the type of the sentence, i.e., if it be-
longs to education/business/environment classes,
etc.) GenEOL uses a single embedder prompt. It
uses multiple generator prompts to produce seman-
tically equivalent transformations. To validate their
synergy, we combine GenEOL transformations with
MetaEOL prompts, introducing GenMetaEOL. Table
8 shows that this combination yields significant
performance gains justifying the complementary
nature of the methods.
QA-SimCSE (Tu et al., 2024) is another method

that generates intermediate text before generating
embeddings for the given input. However, the work
deals with a completely different task of condi-
tional sentence similarity (An additional condition
is used to assess similarity between two sentences)
and it is not training-free. GenEOL produces m
meaning retaining transformations (as opposed to
one conditional answer in QA-SimCSE) that are all
used to embed the sentence.

4.11 Discussion: Addressing the extra
generation cost in GenEOL

GenEOL achieves superior performance over all
training-free methods on the STS and MTEB
benchmarks, demonstrating its effectiveness. How-
ever, this performance gain comes with increased
computational cost. Table 9 provides a detailed

Method Embedder Generator

PromptEOL 0.05 0.00
PCoTEOL 0.05 0.00
MetaEOL 0.24 0.00
GenEOL (m = 8) 0.18 1.60
GenEOL (m = 2) 0.08 0.40

Table 9: Average per example runtime (in seconds)
comparison on the STS. GenEOL incurs higher cost.

comparison of the per example runtime for embed-
ders and generators across methods, highlighting
the higher overhead associated with GenEOL.
GenEOL’s computational cost is higher due to

generation of multiple transformations. However,
this cost is incurred solely during inference, involv-
ing only forward passes, which are more readily
parallelizable (vs training-intensive methods requir-
ing backward passes) (Anil et al., 2018; McCan-
dlish et al., 2018; Thirukovalluru et al., 2024a).

Recently, larger models like GPT-4o (Achiam
et al., 2023) and LLMonkeys (Brown et al., 2024)
have leveraged extra inference time compute to
significantly improve reasoning tasks. Our work,
GenEOL, is the first such effort to use inference time
compute to improve text embeddings.

Moreover, techniques such as speculative decod-
ing (Li et al., 2024) and inference engines such as
vllm (Kwon et al., 2023) have made great strides
in reducing the cost and latency of sampling from
LLMs. Additionally, one might not need all 32
transformations to do a good job. One could adap-
tively scale compute for individual examples sim-
ilar to MRL (Kusupati et al., 2022). All of these
techniques can make GenEOL more efficient.

5 Conclusion

We introduce GenEOL, an effective method for lever-
aging the generative capabilities of large language
models (including black-box models) to enhance
sentence embeddings. Through extensive exper-
iments and ablations, we show that aggregating
embeddings of diverse meaning retaining transfor-
mations can significantly improve sentence embed-
dings. Even with very small number of transformed
sentences i.e. (m = 2), GenEOL beats all baselines.
GenEOL stabilizes representational quality across
LLM layers and is robust to perturbations of embed-
ding prompt. Despite gains on diverse MTEB tasks,
GenEOL falls short on classification tasks requiring
identification of specific aspects about original sen-
tence, such as emotion, subjectivity, or intent.

2303

6 Limitations

The main limitation of GenEOL is the cost associ-
ated with generating multiple transformations and
then embedding them. Section §4.11 discusses
a multiple techniques like parallel inference,
inference engines, speculative decoding, adaptive
compute scaling to address this issue and make
GenEOL computationally efficient.

Broader Impact and Discussion of Ethics:
While our model is not tied to any specific applica-
tions, it could be used in sensitive contexts such
as health-care, etc. Any work using our method is
requested to undertake extensive quality-assurance
and robustness testing before applying in their
setting. To the best of our knowledge, the datasets
used in our work do not contain any sensitive
information.

License: All datasets, methods used fall under
Apache License 2.0. This research work abides by
terms of the license. Research output of this paper
also falls under Apache License 2.0.

Replicability:
Sourcecode: https://github.com/raghavlite/GenEOL

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert
Ormandi, George E Dahl, and Geoffrey E Hin-
ton. 2018. Large scale distributed neural network
training through online distillation. arXiv preprint
arXiv:1804.03235.

Parishad BehnamGhader, Vaibhav Adlakha, Marius
Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. 2024. Llm2vec: Large language models
are secretly powerful text encoders. arXiv preprint
arXiv:2404.05961.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. arXiv preprint arXiv:1803.05449.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing
Wang, and Fuzhen Zhuang. 2023. Scaling sentence
embeddings with large language models. arXiv
preprint arXiv:2307.16645.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege,
Matthew Wallingford, Aditya Sinha, Vivek Ramanu-
jan, William Howard-Snyder, Kaifeng Chen, Sham
Kakade, Prateek Jain, et al. 2022. Matryoshka repre-
sentation learning. Advances in Neural Information
Processing Systems, 35:30233–30249.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen,
Daniel Cer, Jeremy R Cole, Kai Hui, Michael Bo-
ratko, Rajvi Kapadia, Wen Ding, et al. 2024. Gecko:
Versatile text embeddings distilled from large lan-
guage models. arXiv preprint arXiv:2403.20327.

Yibin Lei, Di Wu, Tianyi Zhou, Tao Shen, Yu Cao,
Chongyang Tao, and Andrew Yates. 2024. Meta-task
prompting elicits embedding from large language
models. arXiv preprint arXiv:2402.18458.

Xianming Li and Jing Li. 2024. Bellm: Backward
dependency enhanced large language model for sen-
tence embeddings. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
792–804.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024. Eagle: Speculative sampling re-
quires rethinking feature uncertainty. arXiv preprint
arXiv:2401.15077.

Zhenwen Liang, Ye Liu, Tong Niu, Xiangliang Zhang,
Yingbo Zhou, and Semih Yavuz. 2024. Improving
llm reasoning through scaling inference computa-
tion with collaborative verification. arXiv preprint
arXiv:2410.05318.

Sam McCandlish, Jared Kaplan, Dario Amodei,
and OpenAI Dota Team. 2018. An empirical
model of large-batch training. arXiv preprint
arXiv:1812.06162.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan
Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. 2024. Generative representational in-
struction tuning. arXiv preprint arXiv:2402.09906.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

2304

https://github.com/raghavlite/GenEOL

Jacob Mitchell Springer, Suhas Kotha, Daniel Fried,
Graham Neubig, and Aditi Raghunathan. 2024. Rep-
etition improves language model embeddings. arXiv
preprint arXiv:2402.15449.

Raghuveer Thirukovalluru, Nicholas Monath, Bhuwan
Dhingra, and Sam Wiseman. 2024a. Sequence re-
ducible holdout loss for language model pretrain-
ing. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 14705–14716.

Raghuveer Thirukovalluru, Xiaolan Wang, Jun Chen,
Shuyang Li, Jie Lei, Rong Jin, and Bhuwan Dhingra.
2024b. Sumcse: Summary as a transformation for
contrastive learning. In Findings of the Association
for Computational Linguistics: NAACL 2024, pages
3577–3588.

Jingxuan Tu, Keer Xu, Liulu Yue, Bingyang Ye,
Kyeongmin Rim, and James Pustejovsky. 2024. Lin-
guistically conditioned semantic textual similarity.
arXiv preprint arXiv:2406.03673.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2023. Improving
text embeddings with large language models. arXiv
preprint arXiv:2401.00368.

Bowen Zhang, Kehua Chang, and Chunping Li. 2024.
Simple techniques for enhancing sentence embed-
dings in generative language models. In Interna-
tional Conference on Intelligent Computing, pages
52–64. Springer.

Junlei Zhang, Zhenzhong Lan, and Junxian He. 2023a.
Contrastive learning of sentence embeddings from
scratch. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 3916–3932, Singapore. Association for Com-
putational Linguistics.

Yan Zhang, Zhaopeng Feng, Zhiyang Teng, Zuozhu
Liu, and Haizhou Li. 2023b. How well do text em-
bedding models understand syntax? arXiv preprint
arXiv:2311.07996.

A Appendix

A.1 Models and Parameters
Model names and parameter counts are as follows.
Generation Models Used: Mistral0.1-I-7B
(Mistral-7B-Instruct-v0.1); ChatGPT (gpt-3.5-
turbo-0125); Llama-I-3.1 (Meta-Llama-3.1-8B)
Embedder Models Used: Mistral0.1-7B
(Mistral-7B-v0.1), Llama2-7B (Llama-2-7b-hf),
Llama3-8B (Meta-Llama-3-8B).

A.2 Compute
All experiments were run on four A6000 GPUs
(48gb). Generating transformations for each of the

7 STS datasets using Mistral0.1-I-7B took 3 hrs
for GenEOL (m = 8) and 12 hrs for (m = 32).
ChatGPT timings were approximately same.

A.3 Datasets
MTEB: We pick the following tasks-
1. Classification: AmazonCounterFactualClassifi-
cation (AC), Banking77Classification (B7), Emo-
tionCLassification (EC).
2. Clustering: MedarxivP2P (MX), TwentyNews-
Clustering (TN).
3. Reranking: AskUbuntuDupQuestions (AU),
SciDocsRR (SD), StackOverflowDupQuestions
(SO).
4. Pair Classification: TwitterSemEval2015 (TS),
SprintDuplicateQuestions (SD).
Dataset sizes: Conneau and Kiela (2018); Muen-
nighoff et al. (2022)

A.4 Transformation Prompts
All transformation prompts used in the work are
listed in Table 10. For few shot prompts, demon-
strations would follow the given text.

A.5 Sensitivity to Embedder Prompts
§4.8 uses multiple prompts to check the sentitivity
of GenEOL to embedder prompts. These prompts
are listed in Table 13.

A.6 Sensitivity to Generator Prompts
Transformed sentences using the four LM prompt
combinations are shown in Table 12. Some poor
transformed sentences that either do not retain all
aspects from the original sentence or contain some
extra content compared to the original sentence are
highlighted. Llama3.1-I-8B with four few shot
prompts and Mistral0.1-I-7B have some poor
quality transformed sentences.

A.7 Task Specific Prompts for MTEB
§4.3 tuned the EOL prompts to be more applicable
to MTEB tasks. Thee tuned prompts collection
namely TSEOL is shown in Table 14.

2305

https://aclanthology.org/2023.emnlp-main.238
https://aclanthology.org/2023.emnlp-main.238

Task Code Description

T1
Rewrite the input sentence or phrase using different sentence structure and
different words while preserving its original meaning. Please do not provide
any alternative or reasoning or explanation.

T2
Create a sentence or phrase that is also true, assuming the provided input
sentence or phrase is true. Please do not provide any alternative or reasoning or
explanation.

T3

Provide a concise paraphrase of the input sentence or phrase, maintaining the
core meaning while altering the words and sentence structure. Feel free to
omit some of the non-essential details like adjectives or adverbs. Please do not
provide any alternative or reasoning or explanation.

T4
Paraphrase the input sentence or phrase, providing an alternative expression
with the same meaning. Please do not provide any alternative or reasoning or
explanation.

Composition
Summary

Summarize the input sentence while preserving the exact meaning of the sen-
tence. Do not output any additional explanation. Only output the summary.

Single Zero Shot
Prompt

Make changes to the following sentence to output 10 diverse sentences. Follow-
ing are some directions for the changes.
1. Paraphrase the input sentence or phrase, providing an alternative expression
with the same meaning.
2. Rewrite the input sentence or phrase using different sentence structure and
different words while preserving its original meaning.
3. Create a sentence or phrase that is also true, assuming the provided input
sentence or phrase is true.
4. Provide a concise paraphrase of the input sentence or phrase, maintaining
the core meaning while altering the words and sentence structure. Feel free to
omit some of the non-essential details like adjectives or adverbs.

With these possible transformations in mind, transform the following sentence.
Output the 10 transformed sentences in 10 new lines. Do not output any
explanation. Do not output anything else.

Table 10: For Few shot Prompts for the four transformations. Compositional Summary prompt also mentioned. Few
shot demonstrations provided in sourcecode. Single zero short prompt also mentioned.

2306

Transformation Transformed Sentence

Original Sentence
Aloes, like most succulents, are very hardy and will withstand considerable
neglect .

T _1
Like most succulents, aloes are very hardy and can tolerate considerable neglect.
Like most succulents, aloes are very hardy and can withstand a considerable
amount of neglect.

T _2
Aloes, like many succulents, are very resilient and can tolerate a lot of neglect.
Aloes, like most succulents, are hardy and can endure a lot of neglect.

T _3
Succulents are very hardy and will withstand neglect.
Aloes are very hardy and can tolerate considerable neglect.

T _4
Aloe plants, similar to other succulents, are extremely resilient and can tolerate
a significant level of neglect.
Aloes, like many succulents, are extremely resilient and can tolerate a great
deal of neglect.

Table 11: Examples of transformed sentences for each transformation with Mistral0.1-I-7B. While the transfor-
mations themselves are not easily distinguitable, smaller nuances are present within the data. E.g. T _1 sentences
have changed sentence structure; T _3 sentences are true statements based on original.

Generator Transformations
Sentence Aloes, like most succulents, are very hardy and will withstand considerable neglect .

ChatGPT
(Single Zero
Shot Prompt)

Aloes, similar to many other succulents, can tolerate a lot of neglect.
Aloes are extremely resilient plants, much like most succulents.
Aloes are known for their ability to thrive even when neglected, a common trait among succulents.
Most succulents, including aloes, are quite hardy and can survive neglect.
Aloes, along with most succulents, have a high tolerance for neglect.
Aloes, as with many succulents, are very resilient and can handle being neglected.
Aloes, much like the majority of succulents, are hardy plants that can withstand neglect.
Most succulents, such as aloes, are sturdy and can withstand neglect.

Mistral0.1-I-7B
(Four Few Shot

Prompts)

Aloe plants, similar to other succulents, are extremely resilient and can tolerate a significant level of neglect.
Aloes, like many succulents, are extremely resilient and can tolerate a great deal of neglect.
Like most succulents, aloes are very hardy and can tolerate considerable neglect.
Like most succulents, aloes are very hardy and can withstand a considerable amount of neglect.
Succulents are very hardy and will withstand neglect.
Aloes are very hardy and can tolerate considerable neglect.
Aloes, like many succulents, are very resilient and can tolerate a lot of neglect.
Aloes, like most succulents, are hardy and can endure a lot of neglect.

Llama3.1-I-8B
(Four Few Shot

Prompts)

Like most succulents, aloes are extremely resilient and can tolerate significant neglect.
Like most succulents, aloe plants are extremely resilient and can tolerate significant neglect.
Succulents, including aloes, are known for their remarkable hardiness and ability to thrive even when neglected.
Succulents, including aloes, are known for their remarkable hardiness and ability to thrive despite considerable neglect.
Many plants can tolerate some level of neglect.
Most succulents are very hardy plants.
Succulents, including aloes, are resilient plants.
Succulents like aloes are very resilient.

Mistral0.1-I-7B
(Single Zero
Shot Prompt)

Aloes are hardy like most succulents and can tolerate significant neglect.
Most succulents, including aloes, are hardy and can withstand considerable neglect.
Aloe vera, like most succulents, is very hardy and can endure considerable neglect.
Like most succulents, aloes are extremely hardy and can withstand significant neglect.
Aloe vera, being a succulent like most others, is very hardy and can tolerate considerable neglect.
Aloe vera, like the majority of succulents, is extremely hardy and can endure considerable neglect.
Aloe vera is very hardy, like most succulents, and can withstand considerable neglect.
Like most succulents, aloe vera is hardy and can endure significant neglect with ease.

Table 12: Some bad transformations are highlighted. They have one of the two problems - 1. Not all information
about the original sentence is retained. 2. LLM hallucinates some content.

2307

Prompt Version Prompt Text

PromptEOL This sentence : "{input_text}" means in one word:"
PCoTEOL After thinking step by step , this sentence : "{input_text}" means in one word:"

KEEOL
The essence of a sentence is often captured by its main subjects and actions,
while descriptive terms provide additional but less central details. With this in
mind , this sentence : "{input_text}" means in one word:"

KEEOL′
The essence of a sentence is often captured by its main subjects and actions,
while descriptive terms provide additional but less central details. With this in
mind, this sentence: "{input_text}" means in one word:"

Table 13: Table containing all prompts used in the work. KEEOLand KEEOL′ differ only by two whitespaces.

Task Name Description

AmazonCounterfactual
Classification

In this task, classify a given Amazon customer review text as either counterfac-
tual or not-counterfactual. For this task, this review: "{input_text}" means
in one word:

Banking77Classification
In this task, given an online banking query, find the corresponding intents. For
this task, this query: "{input_text}" means in one word:

EmotionClassification

In this task, classify the emotion expressed in the given Twitter message into
one of the six emotions: anger, fear, joy, love, sadness, and surprise. For this
task, this message: "{input_text}" means in one word:

MedrxivClusteringS2S
In this task, identify the main category of Medrxiv papers based on the titles.
For this task, this title: "{input_text}" means in one word:

TwentyNewsgroups
Clustering

In this task, identify the topic and theme of the news article. For this task, this
article: "{input_text}" means in one word:

AskUbuntuDupQuestions
In this task, you need to retrieve duplicate questions from AskUbuntu forum.
For this task, this question: "{input_text}" means in one word:

SciDocsRR
In this task, given a title of a scientific paper, retrieve the titles of other relevant
papers. For this task, this title: "{input_text}" means in one word:

StackOverflowDup
Questions

In this task, retrieve duplicate questions from StackOverflow forum. For this
task, this question: "{input_text}" means in one word:

TwitterSemEval2015
In this task, retrieve tweets that are semantically similar to the given tweet. For
this task, this tweet: "{input_text}" means in one word:

SprintDuplicateQuestions
In this task, retrieve duplicate questions from Sprint forum. For this task, this
question: "{input_text}" means in one word:

Table 14: TSEOL prompts

2308

