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Abstract

Existing toxic detection models face signifi-
cant limitations, such as lack of transparency,
customization, and reproducibility. These chal-
lenges stem from the closed-source nature of
their training data and the paucity of explana-
tions for their evaluation mechanism. To ad-
dress these issues, we propose a dataset cre-
ation mechanism that integrates voting and
chain-of-thought processes, producing a high-
quality open-source dataset for toxic content
detection. Our methodology ensures diverse
classification metrics for each sample and in-
cludes both classification scores and explana-
tory reasoning for the classifications.

We utilize the dataset created through our pro-
posed mechanism to train our model, which is
then compared against existing widely-used de-
tectors. Our approach not only enhances trans-
parency and customizability but also facilitates
better fine-tuning for specific use cases. This
work contributes a robust framework for devel-
oping toxic content detection models, empha-
sizing openness and adaptability, thus paving
the way for more effective and user-specific
content moderation solutions.

1 Introduction

Detecting toxicity in text generation to ensure safe
interactions between human and Large Language
Models (Radford et al., 2019; Brown et al., 2020;
Hoffmann et al., 2022; Chowdhery et al., 2023;
Achiam et al., 2023; Team et al., 2023) is a pivotal
research challenge. Despite numerous publications,
most contributions have focused on releasing toxi-
city benchmarking datasets (Gehman et al., 2020;
Hartvigsen et al., 2022; Luong et al., 2024). Re-
garding detection mechanisms, the research com-
munity still relies heavily on partially or fully
closed-source models such as Llama Guard (Inan
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et al., 2023) and OpenAl Moderations' (OAIM).
This dependency introduces significant limitations,
including a lack of transparency, customization,
and reproducibility.

For instance, users cannot fine-tune these mod-
els for their own use cases, such as adapting the
detection model to address novel forms of toxicity
relevant to unique community standards. Addition-
ally, these models often provide no explanation of
their evaluation methods, leading to misunderstand-
ings about the model’s performance and making
it challenging to control quality. Furthermore, the
training data for these models is predominantly
closed-source, which hampers efforts to customize
detection models or reproduce their results, thereby
hindering improvement in this crucial area.

To address these shortcomings, we need to make
the following observations. First, to address the
lack of interpretability, when the detection model
processes a sample, the output must include a clas-
sification score and an accompanying explanation
for the classification. Second, to facilitate user-
driven fine-tuning, the original model should be
diverse, covering a wide range of toxicity criteria
from its inception. To meet these desiderata, we de-
velop a toxic detection dataset creation mechanism
via voting and chain of thought.

Overall, our contributions are as follows:

a. We introduce the Toxicity Taxonomy Veting
(ToVo) dataset, a comprehensive resource that cat-
egorizes each sample using a diverse selection of
metrics from a pool of 42 derived from four dif-
ferent moderation tools. This extensive coverage
ensures that the dataset addresses multiple aspects
of toxic content detection. Each classification out-
come is generated by a set of open-source models
and includes an explanatory rationale, providing
valuable insights into the reasoning behind each
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Model/Dataset Metric Consensus Metric Consensus
Child Sexual Exploitation 85.484 Hate 82.353

Indiscriminate Weapons 92.761 Intellectual Property 94.840

Llama Guard 2 Non-Violent Crimes 83.279 Privacy 86.688
Sex-Related Crimes 82.353 Sexual Content 76.440

Specialized Advice 90.271  Suicide & Self-Harm 97.272

Violent Crimes 79.630 Overall 86.576

harassment 78,654 harassment/threatening 81.422

hate 88.090 hate/threatening 85.990

OAIM self-harm 96.677 self-harm/instructions 97.928
self-harm/intent 96.508 sexual 91.233

sexual/minors 94.634 violence 89.218

violence/graphic 90.612 Overall 90.045

Identity attack 87.158 Insult 75912

. Profanity 87.100 Severe Toxicity 74.336
Perspective APL 1y eat 90.060 Toxicity 72.063
Overall 81.013

BeaverTails 14 other metrics N/A  Overall N/A

Table 1: 42 toxicity metrics available in ToVo. The quantity Consensus denotes the percentage of agreement
between the original toxicity API/model and the voting outcomes from multiple LLMs. Note: The BeaverTails
dataset does not come with a model or API, so the consensus rate cannot be calculated.

classification. This dataset is crucial for developing
robust and adaptable toxicity detection models.

b. We leverage the ToVo dataset to develop adap-
tive taxonomy classification models, capable of
operating effectively with both predefined and user-
tailored metrics. To demonstrate their efficiency,
we benchmark our models against leading moder-
ation tools such as PerspectiveAPI?, OAIM, and
Llama Guard 2 on their respective predefined met-
rics. Additionally, we conduct rigorous Out-of-
Domain benchmarking using an evaluation dataset
with metrics unrelated to toxicity, showcasing the
versatility and robustness of our models.

2 Dataset Constructions

2.1 Dataset Sourcing

To create the ToVo dataset, we first compile a col-
lection of prompts paired with their respective re-
sponses. We begin by extracting prompts from the
chat-1lmsys-1M (Zheng et al., 2023) dataset, con-
sisting of 1 million conversations between multiple
LLMs and their users. Given that this is a general-
purpose dataset, many of its sentences do not con-
tain any toxicity. Therefore, we use HateBERT
(Caselli et al., 2020) to perform a preliminary fil-
tering process, retaining only prompts whose re-

Zhttps://www.perspectiveapi.com

sponses exceed a predefined threshold of toxicity
probability; this practice has been previously done
by Luong et al. (2024). Subsequently, we randomly
select 10,000 prompts from this filtered subset, in-
cluding 5,000 prompts from single-turn conver-
sations and 5,000 from multi-turn conversations.
From these, we obtain responses by prompting
open-source models such as Mistral-Instruct (Jiang
et al., 2023) and Zephyr (Tunstall et al., 2023).

2.2 Classification Label

To establish a gold-labeled taxonomy dataset, we
implement a rigorous voting procedure. One of our
motivations is to make our dataset similar to the
data users might use to fine-tune the model, which
can be heterogeneous in terms of the number and
type of toxicity metrics in each sample. As a result,
we collect a pool of 42 predefined toxicity metrics
from Llama Guard 2 - MLCommons (Vidgen et al.,
2024), OAIM, Perspective API, and BeaverTails
(Ji et al., 2024). For each sample in the filtered
subset, we randomly select 1 to 6 metrics to clas-
sify the sample on. Subsequently, three out of six
open-source LLMs, which are listed in Appendix
A.1 are randomly selected to vote on whether the
sample is positive for each of its selected metrics.
Criteria for selection include the model’s ability to
produce sufficiently accurate classifications while
avoiding excessively stringent criteria that might
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prematurely block prompts.

Following this selection, classification results
are generated for each chosen model based on the
previously selected metrics. To enhance the in-
terpretability of these results, a Chain-of-Thought
(Wei et al., 2022) prompting technique is applied
during the generation process. This method facil-
itates a more nuanced and comprehensive under-
standing of the classification outcomes.

2.3 Classification Rationale

As mentioned earlier, three LLMs determine the
classification labels for each sample. To select
whose rationale would be used as the primary ex-
planation, we engaged in a ranking procedure for
each of the six predetermined open-source mod-
els, assessing their consensus rates relative to other
models. The consensus rate quantifies the level
of agreement between the classification outputs of
the focal model and the aggregate classifications
generated by all selected models.

After gathering these consensus rates, we used
the rationale from the model with the highest con-
sensus rate among those that agreed with the major-
ity classification for each sample. This approach en-
sured that we chose the most consistent and harmo-
nized classification outcome across models, help-
ing to mitigate discrepancies.

3 Experiments

3.1 Dataset Alignment Evaluation

We evaluate the alignment of our dataset with other
moderation APIs and models, including Llama
Guard 2, OpenAl moderation, and the Perspec-
tive API. Specifically, for each metric, we mea-
sure the consensus rate, which is the percentage of
agreement between the gold labels obtained via our
voting process and the outputs from the original
API/model. The results are presented in Table 1.
OAIM shows the highest overall consensus, indi-
cating it is the most aligned with our dataset, while
Perspective API has the lowest, suggesting that
it might benefit from further alignment with our
voting-based gold labels.

Overall, the observed high consensus rates
demonstrate a high level of agreement between our
gold labels and the outputs from Llama Guard 2 and
OAIM, whereas Perspective API shows more vari-
ability. This suggests that our voting process pro-
duces reasonable and consistent gold labels for toxi-
city classifications, particularly among metrics with

high consensus rates, as predictions should align
closely with the reference models rather than be-
ing arbitrary. Additionally, this method is scalable,
enabling developers to create their own datasets
tailored to specific content and metrics.

3.2 Baseline Model Training & Evaluation
3.2.1 Training configuration

We trained two baseline models using the pre-
trained Mistral-Hermes-2-Pro 3 from NousRe-
search with 10,000 samples derived from the vot-
ing process, utilizing transformers library (Wolf
et al., 2019) and LoRA (Hu et al., 2022). One
model outputs reasoning for each classification,
while the other provides only the classification re-
sults. Both model variations—reasoning and non-
reasoning—were fine-tuned using LoRA, with a
rank of 16 and an « of 16. The training was con-
ducted on a single A100 GPU (40GB memory)
with a batch size of 4 and 8 gradient accumulation
steps, resulting in a global batch size of 32. The
learning rate was set to 1le — 4, and the models
were trained over 2 epochs. The prompt templates
used for training the reasoning and non-reasoning
models are detailed in Appendix A.3

3.2.2 Toxicity Taxonomy Evaluation

To evaluate our baseline models, we test them on a
set of 2,322 samples with toxicity-related metrics.
We compare the alignment of our baseline mod-
els with other moderation tools. The results are
presented in Table 2 and Appendix A.4. It is note-
worthy that lower consensus rates in certain metrics
when comparing our models with other tools (e.g.,
"Sexual Content" for Llama Guard 2 and "Toxic-
ity" for Perspective API) do not necessarily suggest
areas where our classification criteria might need
refinement. Instead, they could indicate that while
the metrics are the same, the level of toxicity toler-
ance that determines whether a sample should be
labeled as positive differs between our model and
the original API. We also benchmark our models
with the labels obtained from the voting process;
the details are presented in Appendix A.4.

3.2.3 Out-of-Domain Taxonomy Evaluation

Additionally, we construct an Out-of-Domain
(OOD) test set using metrics unrelated to toxicity.
This experiment aims to evaluate the generalization

3https://huggingface.co/NousResearch/Hermes-2-Pro-
Mistral-7B
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Model/Dataset Consensus | Model/Dataset Consensus | Model/Dataset Consensus
91.187 89.981 } 77.557
Llama Guard 2 02,264 OAIM 00.625 Perspective Al 80.87]

Table 2: The consensus rate between the outputs from our models and the gold labels obtained via the original
API/model. Italicized values denote results from the model trained with reasoning.

Model/Dataset Metric Consensus Consensus-R
Educational Content 90.751 92.741
Health and Wellness 98.057 99.297
Science and Technology 37.117 76.223
Arts and Culture 96.516 97.527
Out-of-Domain Travel and Adventure 97.245 98.087
Personal Development 98.590 99.167
Cooking and Recipes 91.887 95.009
Gardening and Horticulture 80.304 84.589
Fitness and Exercise 64.416 86.539
Financial Literacy 94.662 97.312
Overall 84.689 92.536

Table 3: The consensus rate between the outputs from our models and the gold labels obtained via our voting
process on the Out-of-Domain metrics. Italicized values denote results from the model trained with reasoning.

of the baseline models and their zero-shot perfor-
mance on user-custom metrics.

In the OOD test set, there are 10 metrics that
are unrelated to the toxicity metrics used in the
training set. Using the specific definitions of these
metrics, which are detailed in Appendix A.2, we
apply the construction process described in Section
2 to create a test set comprising 1741 samples. To
evaluate our models, we compare the consensus
rate between our models and the gold labels ac-
cording to the voting process described in Section
2. The result are available in Table 3.

Both models achieve high consensus rates for
several OOD metrics, especially the reasoning
model: it outperforms its non-reasoning counter-
part across all metrics. Additionally, some metrics
exhibit more variability in consensus rates between
the standard and reasoning models. The "Fitness
and Exercise" metric, for example, shows a no-
table improvement from 64.416% to 86.539% with
the reasoning model, suggesting that certain cat-
egories benefit significantly from the additional
interpretability provided by reasoning. The overall
consensus rate across all OOD metrics is 84.689%
for the non-reasoning model and 92.536% for the
reasoning model. This overall improvement un-
derscores the value of the reasoning approach in
achieving more reliable and consistent classifica-
tion outcomes for high-novelty metrics.

This experiment demonstrates that our mod-
els, particularly those incorporating reasoning, are
highly adaptable and effective in classifying con-
tent across a wide range of domains. This adaptabil-
ity is crucial for real-world applications, enhancing
the reliability of the models in handling diverse and
dynamic content types.

4 Conclusions

In this paper, to address significant limitations in
existing toxic content detection models, we intro-
duce the Toxicity Taxonomy Voting (ToVo) dataset,
developed through a rigorous voting mechanism
and Chain-of-Thought prompting to ensure high-
quality, explainable classification outcomes.

Utilizing ToVo, we train two taxonomy models
that perform exceptionally well on toxicity-related
metrics in the evaluation dataset. These models not
only align closely with the gold labels generated by
the voting process but also demonstrate a high level
of consensus with other moderation tools. Further-
more, our reasoning model achieves exceptional
results on the Out-of-Domain test set, affirming its
adaptability to user-specific custom metrics. This
underscores the model’s potential for fine-tuning
in diverse application scenarios.

Our work introduces a novel method for creat-
ing customized moderation tools effortlessly, using
an automated process that combines Voting and
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Chain-of-Thought techniques. By fostering safer
human-LLM interactions and empowering users
with customizable moderation tools, we hope this
work can pave the way for creating a safer and
more inclusive digital environment.

Limitations & Future Works

While the voting process with Chain-of-Thought
prompting is efficient, generating large amounts of
data remains time-consuming and labor-intensive.
Additionally, utilizing large language models
(LLMs) for taxonomy purposes results in slow in-
ference speeds. This slowdown is attributed to the
substantial size of the models (7 billion parameters)
and the inclusion of reasoning in some responses,
which further hampers processing speed.

Moreover, the current version of our taxonomy
only supports binary classification. This binary
approach can sometimes be insufficient, as classi-
fying metrics solely as O or 1 may not accurately
capture the nuances of their potential unsafety.

In the future, we aim to extend our research be-
yond large language models (LLMs) to widen its
range of applications. Specifically, we plan to apply
our toxicity detection framework to human-human
interactions, web content, and online forums. By
doing so, we must enhance the robustness and ver-
satility of our models, ensuring they can effectively
handle diverse and dynamic contexts of toxic con-
tent across various platforms. This expansion will
also involve refining our taxonomy to support more
nuanced classifications, enabling more accurate
and context-sensitive moderation. Ultimately, our
goal is to contribute to safer and more inclusive
digital environments through adaptable toxicity de-
tection solutions.
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A Appendix

A.1 Voting Models
The six LLMs we use during our Voting Process

described in Section 2.2 are:

e deepseek-11m-67b-chat
2024),

(DeepSeek-Al,

e dolphin-2. 5-mixtral-8x7bv?,

e Nous-Hermes-2-Mixtral-8x7B-DPO
("Teknium" et al.),

e WizardLM-2-8x22B°,
e Yi-34B-Chat (Al et al., 2024), and

* Mixtral-8x7B-Instruct-v@.1 (Jiang et al.,
2024).

A.2 Out-of-Domain Test Set

In the Out-of-Domain Test Set, there are 10 metrics
that are unrelated to the toxicity metrics used in the
training set. The specific descriptions of these 10
metrics are presented in Table 4. Using these defini-
tions, we apply the construction process described
in Section 2 to create a test set comprising 1741
samples.

A.3 Prompt Templates

The prompt templates used for training the rea-
soning and non-reasoning models are detailed in
Figures 1 and 2, respectively.

*https://huggingface.co/cognitivecomputations/dolphin-
2.5-mixtral-8x7b

Shttps://huggingface.co/alpindale/WizardLM-2-8x22B
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A.4 Additional Experimental Results

Table 5, 6, and 7 present the performance of our
models, using the gold labels from the original
toxicity detection API/model.

Table 8, 9, 10, and 11 present the performance of
our models, using the gold labels from our voting
process.

A.5 Experiments on BeaverTails-30K test set

To further evaluate our models against others such
as MD Judge and Llama Guard 2, we conduct ex-
periments using the BeaverTails-30K test set. It is
important to note that while our model is trained
on a dataset incorporating metrics similar to those
used in BeaverTails, it is not trained directly on the
BeaverTails dataset.

The results of our experiments are presented in
Table 12. From here we can make the following
observations:

* Solely relying on the metric’s description to
classify content as safe or unsafe is insuffi-
cient. It is crucial to also consider the degree
to which the content may be deemed unsafe.

* For instance, Some prompts in BeaverTails
involve "how to prank..." scenarios. While
most of these are classified as Non-Violence
Unethical Behaviors, which is safe, both our
models and the voting results from other mod-
els suggest that such content has the potential
to be unsafe. However, without specific de-
tails about the prank, it is challenging to clas-
sify the content as unsafe within the Beaver-
Tails framework. This suggests that the met-
ric descriptions in BeaverTails may not fully
capture the nuances of their manual labeling
process.

* We attempted to broaden the scope of the
metric descriptions to better classify poten-
tial cases as unsafe. This adjustment resulted
in a slight improvement in our model’s perfor-
mance on the BeaverTails-30K test set. Con-
sequently, we believe that obtaining metric de-
scriptions that more closely align with Beaver-
Tails’ labeling criteria could significantly en-
hance the accuracy of our models or others.
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Metric

Description

Educational Content

This includes content designed to educate and inform users on a variety
of topics, such as academic subjects, professional skills, hobbies, and
general knowledge. It aims to provide learning opportunities and im-
prove understanding.

Health and Wellness

This refers to content that promotes physical, mental, and emotional
well-being. It includes fitness tips, nutritional advice, mental health
resources, and general wellness information.

Science and Technology

This category encompasses content related to scientific discoveries, tech-
nological advancements, and innovations. It includes research findings,
tech reviews, and discussions on scientific topics.

Arts and Culture

This includes content that explores various forms of art and cultural
expressions. It covers topics such as visual arts, music, literature, theater,
and cultural traditions from around the world.

Travel and Adventure

This pertains to content that inspires and informs about travel destina-
tions, experiences, and adventures. It includes travel guides, adventure
stories, and tips for travelers.

Personal Development

This category includes content aimed at personal growth and self-
improvement. It covers topics such as goal setting, productivity, motiva-
tion, and skills development.

Cooking and Recipes

This includes content related to culinary arts, recipes, cooking tips, and
food preparation techniques. It aims to inspire and guide individuals in
creating delicious meals.

Gardening and Horticulture

This pertains to content about gardening practices, plant care, landscap-
ing, and horticultural techniques. It includes advice on growing flowers,
vegetables, and maintaining gardens.

Fitness and Exercise

This includes content focused on physical fitness, workout routines,
exercise techniques, and sports. It aims to promote an active lifestyle
and provide guidance on maintaining physical health.

Financial Literacy

This category includes content that educates individuals on managing
finances, budgeting, investing, and achieving financial goals. It aims to
improve financial understanding and decision-making.

Table 4: Descriptions of the Out-of-Domain metrics.
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Figure 1: Prompt template for the training of the reasoning model.

Figure 2: Prompt template for the training of the non-reasoning model.
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Model/Dataset Metric Consensus Consensus-R

Child Sexual Exploitation 90.659 90.643
Indiscriminate Weapons 97.959 97.850
Non-Violent Crimes 89.474 90.798
Sex-Related Crimes 82.486 87.500
Specialized Advice 96.809 97.802
Violent Crimes 89.286 91.926
Llama Guard 2 o o 86.700 87.113
Intellectual Property 99.471 96.757
Privacy 93.252 96.795
Sexual Content 77.515 77.640
Suicide & Self-Harm 97.382 98.387
Overall 91.187 92.264

Table 5: The consensus rate between the outputs from our models and the gold labels obtained via the original
API/model on the metrics from Llama Guard 2. [talicized values denote results from the model trained with
reasoning.

Model/Dataset Metric Consensus Consensus-R
Harassment 73.714 78.049
Hate 88.095 87.180
Self-Harm 98.305 97.647
Self-Harm/Intent 100.000 99.492
Sexual/Minors 93.367 95.676
OAIM Violence/Graphic 89.560 91.954
Harassment/Threatening 86.473 85.714
Hate/Threatening 84.536 84.946
Self-Harm/Instructions 95.238 94.479
Sexual 87.817 90.426
Violence 91.848 90.173
Overall 89.981 90.625

Table 6: The consensus rate between the outputs from our models and the gold labels obtained via the original
API/model on the metrics from OpenAl Moderation. Ifalicized values denote results from the model trained with
reasoning.

Model/Dataset Metric Consensus Consensus-R
Identity attack 91.667 93.902
Profanity 84.211 86.264
Threat 89.063 90.000
Perspective AI  Insult 68.023 73.913
Severe Toxicity 67.172 72.251
Toxicity 65.946 69.663
Overall 77.557 80.871

Table 7: The consensus rate between the outputs from our models and the gold labels obtained via the original
API/model on the metrics from Perspective APL. Italicized values denote results from the model trained with
reasoning.
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Model/Dataset Metric Consensus Consensus-R

Child Sexual Exploitation 96.133 97.647
Indiscriminate Weapons 100.000 99.462
Non-Violent Crimes 89.412 90.124
Sex-Related Crimes 93.220 90.533
Specialized Advice 97.340 96.721
Violent Crimes 94.048 95.652
Llama Guard 2o 94.555 92.228
Intellectual Property 99.471 99.460
Privacy 93.827 93.548
Sexual Content 97.024 98.125
Suicide & Self-Harm 97.906 97.861
Overall 95.833 95.657

Table 8: The consensus rate between the outputs from our models and the gold labels obtained via our voting
process on the metrics from Llama Guard 2. [talicized values denote results from the model trained with reasoning.

Model/Dataset Metric Consensus Consensus-R
Harassment 90.857 89.091
Hate 88.691 91.667
Self-Harm 98.864 99.412
Self-Harm/Intent 99.034 98.469
Sexual/Minors 96.939 96.216
OAIM Violence/Graphic 93.407 97.126
Harassment/Threatening 87.864 88.205
Hate/Threatening 86.598 88.172
Self-Harm/Instructions 99.405 99.387
Sexual 97.449 96.791
Violence 93.478 93.103
Overall 93.860 94.311

Table 9: The consensus rate between the outputs from our models and the gold labels obtained via our voting
process on the metrics from Open Al Moderation. [falicized values denote results from the model trained with
reasoning.

Model/Dataset Metric Consensus Consensus-R
Identity attack 93.413 93.865
Profanity 92.105 94.506
Threat 92.188 92.265
Perspective Al Insult 83.140 83.333
Severe Toxicity 87.374 87.958
Toxicity 85.946 84.358
Overall 89.040 89.414

Table 10: The consensus rate between the outputs from our models and the gold labels obtained via our voting
process on the metrics from Perspective API. Italicized values denote results from the model trained with reasoning.
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Model/Dataset Metric Consensus Consensus-R

Animal Abuse 99.490 99.465
Child Abuse 97.727 96.450
Controversial Topics, Politics 85.567 86.631
Discrimination, Stereotype, Injustice 89.618 88.571
Drug Abuse, Weapons, Banned Substance 99.320 99.254
Financial Crime, Property Crime, Theft 98.750 100.000
. Hate Speech, Offensive Language 89.130 85.876
BeaverTails . . . .
Misinformation Regarding Ethics, Laws, and Safety 93.258 95.210
Non-Violent Unethical Behavior 85.807 81.879
Privacy Violation 95.313 94.022
Self-Harm 08.438 98.387
Sexually Explicit, Adult Content 96.354 97.778
Terrorism, Organized Crime 99.435 99.408
Violence, Aiding and Abetting, Incitement 91.038 91.584

Table 11: The consensus rate between the outputs from our models and the gold labels obtained via our voting
process on the metrics from BeaverTails. Italicized values denote results from the model trained with reasoning.

Model Metrics Unsafe F1
Reasoning Default BeaverTails Metrics 0.4104
Reasoning Custom BeaverTails Metrics ~ 0.4164

Voting (200 samples) Default BeaverTails Metrics 0.4131

Table 12: Performance of Voting process and our reasoning model on BeaverTails-30K test set
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