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Abstract
Recent years have witnessed a significant in-
terest in developing large multimodal mod-
els (LMMs) capable of performing various vi-
sual reasoning and understanding tasks. This
has led to the introduction of multiple LMM
benchmarks to evaluate LMMs on different
tasks. However, most existing LMM evalua-
tion benchmarks are predominantly English-
centric. In this work, we develop a comprehen-
sive LMM evaluation benchmark for the Ara-
bic language to represent a large population of
over 400 million speakers. The proposed bench-
mark, named CAMEL-Bench, comprises eight
diverse domains and 38 sub-domains including,
multi-image understanding, complex visual per-
ception, handwritten document understanding,
video understanding, medical imaging, plant
diseases, and remote sensing-based land use
understanding to evaluate broad scenario gen-
eralizability. Our CAMEL-Bench comprises
around 29,036 questions that are filtered from
a larger pool of samples, where the quality is
manually verified by native speakers to ensure
reliable model assessment. We conduct evalu-
ations of both closed-source, including GPT-4
series, and open-source LMMs. Our analysis
reveals the need for substantial improvement,
especially among the best open-source models,
with even the closed-source GPT-4o achieving
an overall score of 62%. Our benchmark is
publicly available on CAMEL-Bench page.

1 Introduction

Large multimodal models (LMMs) have recently
achieved significant advancements across a broad
spectrum of tasks, including visual reasoning, per-
ception, and multimodal understanding. Closed-
source models such as GPT-4V and open-source
LMMs, such as LLaVA (Liu et al., 2023) have
demonstrated effectiveness in tasks like image cap-
tioning (Radford et al., 2021), visual question an-
swering (VQA) (Li et al., 2022, 2023a), and com-
plex visual reasoning (Cho et al., 2021). These
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Figure 1: The proposed CAMEL-Bench covers eight di-
verse and challenging domains: multimodal understand-
ing and reasoning, OCR and document understanding,
chart and diagram understanding, video understanding,
cultural-specific understanding, medical imaging under-
standing, agricultural image understanding, and remote
sensing understanding in Arabic. CAMEL-Bench cov-
ers 38 sub-domains with over 29K questions carefully
curated by native Arabic speakers to rigorously evaluate
essential skills desired in Arabic LMMs.

recent developments have led to the introduction of
different benchmarks to evaluate the performance
of open and closed-source LMMs. Despite these
advances, most existing LMM benchmarks are
English-centric, limiting their applicability to other
languages (Rasheed et al., 2025).

With over 400 million speakers, Arabic is the
5th most widely spoken languages globally. In the
context of large language models (LLMs), there
exist various attempts in developing Arabic LLMs
(Sengupta et al., 2023; Huang et al., 2023) which
has also led to the introduction of Arabic LLM
benchmarks (Koto et al., 2024). In the context of
LMMs, few recent works explore Arabic-centric
evaluations in certain areas such as, scientific ex-
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ams (Das et al., 2024), cultural aspects (Romero
et al., 2024; Alwajih et al., 2024), Arabic ques-
tion answers and documents (Abdallah et al., 2024;
Mahmoud et al., 2014). However, there is still a
lack of comprehensive and diverse Arabic LMM
evaluation benchmarks (see Tab. 1) in the literature
to rigorously evaluate and study LMMs for Arabic.

To address the aforementioned issue, we intro-
duce the first comprehensive Arabic LMM evalua-
tion benchmark, named CAMEL-Bench. CAMEL-
Bench is designed to encompass a wide range of
tasks and focus on the Arabic-speaking population.
It spans eight diverse domains and 38 sub-domains
(see Fig. 1). The eight domains are: Multimodal
understanding and reasoning, OCR and document
understanding, chart and diagram understanding,
video understanding, cultural-specific understand-
ing, medical image understanding, Agricultural
image understanding, and remote sensing under-
standing. Further, the 38 sub-domains (see Fig. 1)
covered by our CAMEL-Bench are: visual under-
standing and reasoning, object hallucination evalua-
tion, math and logic reasoning, scientific reasoning,
VQA, infographics VQA, complex visual percep-
tion, real-world spatial understanding, multi-image
understanding, object-level perception, newsletter,
PowerPoint slides, scene text, handwriting, lines,
books, documents, charts, diagrams, tables, general
video scenes, cultural-specific occasions, countries
and landmarks in videos, countries and landmarks
in images, food, celebrities, cultural VQA, basic
medical science, clinical medicine, public health,
pharmacy, diagnosis, medical understanding, plant
types, fruit and veggies identification, plant illness,
and geospatial imagery subdomains (land, trans-
portation and construction).

Our CAMEL-Bench comprises 29,036 questions
and follows an extensive manual verification pro-
cess by native-speakers to ensure the resulting
benchmark is of high-quality. We conduct exten-
sive experiments using open and closed-source
LMMs. Our results reveal the need for substan-
tial improvement in handling of Arabic multimodal
data, shedding light on the areas requiring further
Arabic LMM improvements.

2 CAMEL-Bench

2.1 Data Collection

Our dataset encompasses eight diverse domains to
ensure a versatile multi-task Arabic LMM bench-
mark for different real-world scenarios. Each

Domain/Characteristics Exams-V* CVQA* Henna KHATT CAMEL-Bench
(ours)

Multimodal Und. & Reasoning ✓ ✗ ✓ ✗ ✓

OCR & Docs Und. ✗ ✗ ✗ ✓ ✓

Charts & Diagrams Und. ✓ ✗ ✗ ✗ ✓

Video Und. ✗ ✗ ✗ ✗ ✓

Medical Image Und. ✗ ✗ ✗ ✗ ✓

Agricultural Image Und. ✗ ✗ ✗ ✗ ✓

Remote-Sensing Und. ✗ ✗ ✗ ✗ ✓

Cultural-Specific Und. ✗ ✓ ✓ ✗ ✓

Open Source ✓ ✓ ✗ ✓ ✓

Question Numbers 823 200 1.1K 5K 29K

Table 1: Comparison of our CAMEL-Bench with ex-
isting Arabic LMM benchmarks: Exams-V (Das et al.,
2024), CVQA (Romero et al., 2024), Henna(Alwajih
et al., 2024), and KHATT (Mahmoud et al., 2014). Here
* denotes that only the Arabic part of the benchmark is
counted.

domain is further subdivided into different sub-
domains, each focusing on a distinct aspect. Dur-
ing the data collection process, we either utilize
available Arabic multimodal data samples or em-
ploy samples from existing English-centric LMM
benchmarks. These English samples are then trans-
lated to Arabic via GPT-4o and verified. Alterna-
tively, we manually collect and generate the Arabic
samples for the remaining sub-domains from the
internet. Tab. 3 in the Appendix presents the details
of different data sources used for data collection
for the 38 sub-domains corresponding to eight do-
mains, with around 29k questions in total.

2.2 Question-Answers Pairs Generation

We note that a major part of our original Ara-
bic data is not derived from ready-made VQA
datasets. Some sub-domains, such as celebrities
and food, consist of image-only data, while oth-
ers, like Pexel’s countries and landmarks, con-
tain image-caption pairs. To create a rich and di-
verse VQA corpus, we first ensure that each im-
age is accompanied by detailed contextual infor-
mation. This context is sourced from a combi-
nation of Wikipedia (e.g., for food-related data),
manual curation (e.g., for countries and landmarks
in videos), and AI-generated content based on a
manually provided context (e.g., for diagrams and
infographics). Next, we generate multiple-choice
questions (MCQs) for each sample using the GPT-
4o model. The prompt is meticulously crafted to
adhere to key criteria: each sample generates three
multiple-choice questions (MCQs), with four dis-
tinct, non-synonymous options per question, only
one of which is correct. The questions contain no
embedded hints, ensuring that answers are derived
exclusively from the image, without requiring prior
knowledge. Additionally, the image must provide
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Figure 2: The CAMEL-Bench Filtering and Verification Pipeline consists of two paths: Original Arabic and
translated Arabic. For original Arabic (top row), a 20% random sample undergoes manual verification; if errors are
below 40%, the data passes; otherwise, the entire sub-category is reviewed. For Translated Arabic (bottom row), We
employ the Qwen7B model (Bai et al., 2023a) to assess semantic similarity between the original and translated
question-answer pairs on fuzzy-basis evaluation. Pairs passing the evaluation proceed, while those that fail undergo
manual review. Based on this, data may require Manual Handling for manual re-translation, Refine & Verify for
refinement through the model, or Non-Translated Review where the data is re-sent for translation due to the absence
of an Arabic version.

enough information to fully support the correct an-
swer, eliminating the need for guesswork. In total,
this process produces a corpus of 4.4K generated
questions with 17.7K answers, enabling a compre-
hensive set of questions for evaluation.

2.3 Data Filtering and Verification

The data collection and question-answer pair gen-
eration process lead to over 41k questions in total
which then undergoes to filtering and verification
process. The CAMEL-Bench filtering and verifi-
cation process (see Fig. 2) is carefully conducted
based on whether the QA text is originally Arabic
or translated into Arabic from English language.
For all sub-domains derived from original Arabic
context, we take a 20% randomly sampled subset
for manual verification. In case the error remains
less than a 40% threshold, the sub-category is ac-
cepted into CAMEL-Bench. Alternatively, the en-
tire sub-category undergoes manual review.

In the case of the translated Arabic data from
English, the original English context is also incor-
porated into the filtering and verification process.
Here, Qwen7B (Bai et al., 2023a) is used to com-
pare the semantic similarity between the English
and the English-translated data at the QA-pair level
using fuzzy evaluation. To ensure the model un-
derstands semantic similarity in Arabic, we pro-
vided 5 few-shot prompts. Subsequently, QA-pairs
rejected by Qwen7B (Bai et al., 2023a) are manu-

ally reviewed, resulting in one of three outcomes.
Manual Handling implying that data requires full
re-translation. Refine and Verify referring that the
translation can be refined using the model. Non-
Translated Review implying that the non-translated
data is re-sent to the model for translation. Conse-
quently, we obtain 29,036 high-quality questions.

3 CAMEL-Bench Benchmark Evaluation

Evaluation Metrics: Our evaluation framework is
designed with three specialized metrics, each care-
fully aligned to different types of datasets and tasks.
For MCQ datasets like MMT (Ying et al., 2024)
and MMMU (Yue et al., 2024a), we utilize exact
match accuracy to ensure precise evaluation. For
optical character recognition (OCR) datasets, such
as PATS (Al-Muhtaseb, 2010) and Evarest (Hassan
et al., 2021), where accurate text extraction is crit-
ical, we adopt edit distance (Ristad and Yianilos,
1998) as the key metric. For more flexible datasets
like VQAv2 (Goyal et al., 2017), MathVista (Lu
et al., 2023), and GeoChat (Kuckreja et al., 2024),
where multiple synonymous answers can be con-
sidered correct. we implement a fuzzy evaluation
method for all such datasets. This approach uses
GPT-4o to compare the predicted answer with the
ground truth while accounting for the context of the
question. By incorporating these diverse metrics,
our evaluation provides a robust and comprehen-
sive assessment that adapts to the unique demands
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Method
MM Understanding OCR & Document Charts & Diagram Video Cultural Specific Medical Agro Remote Sensing

& Reasoning Understanding Understanding Understanding Understanding Imaging Specific Understanding

GPT-4o 57.90 59.11 73.57 74.27 80.86 49.90 80.75 22.85
GPT-4o-mini 48.82 42.89 64.98 68.11 65.92 47.37 79.58 16.93
Gemini-1.5-Pro 46.67 36.59 47.06 42.94 56.24 33.77 72.12 17.07
Gemini-1.5-Flash 45.58 33.59 48.25 53.31 46.54 42.86 76.06 14.95
Pangea-7B 40.09 26.47 38.87 49.01 20.34 31.99 74.51 6.67
Qwen2-VL-2B 40.59 25.68 27.83 38.90 34.27 29.12 52.02 12.56
InternVL2-8B 30.41 15.91 30.27 51.42 20.88 29.48 44.47 5.36
LLaVa-NeXt-7B 26.33 19.12 27.56 44.90 28.30 22.54 42.00 8.33

Table 2: Performance comparison of different closed-and open-source LMMs on CAMEL-Bench. We present
per-domain results of seven LMMs: GPT-4o (OpenAI, 2024), GPT-4o-mini (OpenAI, 2024), Gemini-1.5-Pro (AI,
2023), Gemini-1.5-Flash (AI, 2023), Pangea-7B (Yue et al., 2024b), Qwen2-VL (Bai et al., 2023b), InternVL2-
8B (Chen et al., 2023), and LLaVaNeXt-7B (Liu et al., 2024). GPT-4o excels in most domains, while GPT-4o-mini
offers an impressive balance of performance and model size. All models struggle with remote sensing, medical
imaging, OCR & document understanding, and general multimodal understanding and reasoning domains. Open-
source models like InternVL2-8B and LLaVaNeXt-7B show a decline in performance across domains, with their
best results in video understanding.

Figure 3: Qualitative example of various models on CAMEL-Bench sample. The green box means correct and red
means incorrect.

and response formats of each dataset.
Tab. 2 presents a comparative evaluation of five

different models on a range of multimodal (MM)
understanding tasks, each assessing the capabili-
ties of the models in distinct domains. The mod-
els include GPT-4o, GPT-4o-mini, Gemini-1.5-Pro,
Gemini-1.5-Flash, and Qwen2-VL-2B, evaluated
on key tasks such as multimodal reasoning, OCR &
document understanding, chart & diagram interpre-
tation, video analysis, and several domain-specific
tasks like cultural understanding, medical imag-
ing, agricultural (agro) understanding, and remote
sensing. GPT-4o excels across tasks, leading in
MM reasoning (57.90), chart/diagram understand-
ing (73.57), video analysis (74.27), cultural (80.86),
and agro-specific understanding (80.75). Models
perform well on MCQs and binary-option tasks due
to guessing probability and context. Infographics,
designed for easy interpretation, also see high ac-
curacy across all models. In contrast, Arabic OCR
tasks, particularly in datasets like Khatt, historical
documents prove exceptionally challenging. This
difficulty stems from the complex nature of Arabic
script, which uses ligatures and diacritics (small
markings that alter pronunciation and meaning).
Remote sensing understanding also remains diffi-
cult, with scores like 22.85 (GPT-4o) and 16.93

(Qwen2-VL-2B), highlighting the complexities of
interpreting satellite imagery.

The Fig. 3 highlights a critical challenge in Ara-
bic multimodal understanding, where all models,
failed to accurately interpret the linguistic context
in the provided CAMEL-Bench samples. This un-
derscores the complexity of Arabic linguistics, es-
pecially in multimodal tasks, and the need for more
robust language models that can effectively inte-
grate both visual and textual information in Arabic
contexts.

4 Conclusion, Limitations and Societal
Impact

We present a comprehensive and diverse bench-
mark, named CAMEL-Bench, for Arabic LMM
evaluation. To the best of our knowledge, CAMEL-
Bench is the first comprehensive Arabic LMM
benchmark comprising eight diverse domains and
38 sub-domains with around 29k questions that
are filtered from a larger pool of 41k samples with
the quality verified by native speakers. We con-
duct extensive evaluations of open- and closed-
source LMMs, highlighting the need for substantial
improvements in different areas for future Arabic
LMM development. Although our CAMEL-Bench
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strives to significantly contribute towards develop-
ing sophisticated Arabic LMMs, we note that it
mainly covers modern standard Arabic and does
not fully explore other Arabic dialects. As the data
samples are either based on existing datasets or new
data that is crawled from the internet, it is possible
that CAMEL-Bench exhibits biases already exist-
ing in the benchmarks. Nevertheless, we believe
CAMEL-Bench is a step towards the inclusion of
Arabic language and Arabic-speaking populations
in accessing the benefits of LMMs.
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A Appendix

B More on Dataset Curation

The dataset utilized in this work was carefully cu-
rated with a rigorous focus on data quality, rele-
vance, and diversity. Our curation process involved
selecting multimodal data from various domains,
including images, text, videos, and specialized
fields such as medical imaging, agriculture, and
remote sensing. To ensure the integrity and accu-
racy of the dataset, we employed multiple stages
of data verification. This process involved cross-
validation, thorough verification procedures for
Arabic content, and the integration of standardized
data sources where applicable.

C Dataset Overview and Task Splits

This section provides a comprehensive breakdown
of the datasets used across eight distinct categories,
illustrating the diversity and depth of our evaluation
framework. Each category is further divided into
sub-domains, ensuring that the multimodal models
are rigorously tested on a wide range of tasks and
datasets. This structure guarantees comprehensive
coverage and introduces varied challenges to thor-
oughly assess model performance. Refer to Tab. 3
for a detailed breakdown of the data categories with
their statistics.

C.1 Multimodal Understanding and
Reasoning

This category encompasses various sub-domains
such as visual understanding, object hallucination
evaluation, and complex visual perception. Key
datasets include MME, MMBench, ScienceQA-
IMG, and VQA2. These datasets test the model’s
ability to handle intricate reasoning tasks across
both visual and textual inputs, with a total of
3,971 questions under the visual understanding sub-
domain, and significant representation from other
tasks like scientific reasoning (1,624 questions) and
object-level perception (60 questions).

C.2 OCR and Document Understanding

Document understanding covers scanned docu-
ments, scene understanding, text extraction, and
more. This category emphasizes precise OCR
and textual recognition from images and scanned
materials. Datasets like ArabicDatasetOCR and
ISI-PPT-Dataset challenge the model to process
a diverse range of document types. A substantial

number of questions come from Handwritten Text
datasets (1,400 questions) and PPT OCR (2,354
questions), ensuring the model is evaluated across
both structured and unstructured document types.

C.3 Chart and Diagram Understanding

In chart and diagram interpretation, models are
tested on understanding visual representations of
data, such as charts, diagrams, and tables. This
includes datasets like ChartQA, MMMU, and BCE-
Arabic. The evaluation focuses on tasks such as
understanding diagrammatic reasoning and tabular
data with 1,994 questions from diagram datasets
and 745 questions involving charts, providing a ro-
bust examination of the model’s ability to interpret
visual data efficiently.

C.4 Video Understanding

This category assesses the model’s ability to pro-
cess and comprehend video data, focusing on tasks
like recognizing countries, landmarks, and occa-
sions. Video-MME is a prominent dataset, con-
tributing 654 questions to the evaluation. The in-
clusion of diverse sub-domains, such as recogniz-
ing cultural aspects through video, highlights the
importance of temporal and visual information syn-
thesis in multimodal reasoning.

C.5 Cultural Specific Understanding

The cultural understanding domain tests the
model’s capacity to handle tasks specific to certain
cultures, including food, landmarks, and celebrities.
Datasets like arabic-food-101 and Pexel challenge
the model to recognize culturally significant items,
with 444 questions focused on celebrities and 494
on countries/landmarks. These tasks highlight the
model’s ability to adapt and generalize across dif-
ferent cultural contexts.

C.6 Medical Imaging

Covering a range of sub-domains in the medical
field, this category includes tasks related to ba-
sic medical science, clinical medicine, and public
health, using datasets like MMMU and MMT-MI-
Bench. These datasets assess the model’s potential
in specialized medical contexts, with over 1,200
questions spanning diagnosis, medical understand-
ing, and pharmacy, ensuring a rigorous evaluation
of the model’s performance in handling critical
medical information.
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Domains Sub-Domains Source Number of Questions

Multimodal Understanding and Reasoning

Visual understanding/reasoning MME, MMBench, MMT-Bench-MI, SEED, MMMU 3,971
Object hallucination evaluation CountBench, MMT-Bench-MI, POPE 997
Math and logic reasoning MathVista 531
Scientific reasoning ScienceQA-IMG, Exams-V 1,624
Visual Question Answering GQA, VizWiz, VQAv2 3,840
InforGrahpics VQA AI-Generated (GPT-4o), Pinterest 120
Complex Visual Perception BLINK 1,422
Real-world Spatial Understanding RealWorldQA 624
Multi-image Understanding MMT-Bench-MI, MuirBench 1,062
Object-level Perception COCO, ImageNet, Mocheg, Snli-Ve 60

OCR and Document Understanding

Scanned Documents ArabicDatasetOCR 480
TextVQA MTVQA 703
Scene EvArEST 1,217
Books Historical Arabic Handwritten Text Recognition Dataset 40
PPTs (OCR) ISI-PPT-Dataset 2,354
PPTs (VQA) ISI-PPT-Dataset 711
Handwritten KHATT Line 1,400
Scanned Newsletters (VQA) PATD 506
OCR Lines PATS-01 520

Chart and Diagram Understanding
Charts ChartQA 745
Diagrams Understanding MMMU (diagrams), ICON-QA, AI-Generated, Pinterest, BCE-Arabic 1,994
Tables BCE-Arabic, Excel 81

Video Understanding
Countries/landmarks Pexel 111
Occasions Pexel
Video-MME Video-MME 654

Cultural Specific Understanding
Celebrities arab-celeb-dataset 444
Food arabic-food-101, Pexel 347
Countries/landmarks Pexel 494

Medical Imaging

Basic Medical Science MMMU 154
Clinical Medicine MMMU
Public Health MMMU
Pharmacy MMMU
Diagnosis MMMU
Medical Understanding MMT-MI-Bench 78
Basic Medical Science MMMU Pro 274
Clinical Medicine MMMU Pro

Agricultural Image Understanding Agriculture VQA AgroGPT 769
Remote Sensing Understanding GeoData VQA GeoChat 709
Total 29,036

Table 3: Different data sources used for 38 sub-domains corresponding to eight domains, with around 29k questions
in total. The different data sources are: MME (Fu et al., 2023), MMBench (Liu et al., 2025), MMT-Bench-MI (Ying
et al., 2024), SEED (Li et al., 2024), MMMU (Yue et al., 2024a), MMMU-Pro (Yue et al., 2024c), CountBench
(Paiss et al., 2023), POPE (Li et al., 2023b), MathVista (Lu et al., 2023), Exams-V (Arabic portion) (Das et al., 2024),
ScienceQA-IMG (Lu et al., 2022), GQA (Hudson and Manning, 2019), VizWiz (Bigham et al., 2010), VQAv2
(Goyal et al., 2017), BLINK (Fu et al., 2024), MuirBench (Wang et al., 2024), COCO (Lin et al., 2014), Imagenet
(Deng et al., 2009), Mocheg (Yao et al., 2023), Snli-Ve (Xie et al., 2019), Pinterest (Pinterest, 2024), RealWorldQA
(xAI, 2024), PATS-01 (Al-Muhtaseb, 2010), KHATT (Mahmoud et al., 2014), PATD (PATD, 2024), Historical
Arabic Handwritten Text Recognition Dataset (Najam and Faizullah, 2024), ISI-PPT-Dataset (Wu and Natarajan,
2017), EvArEST (Hassan et al., 2021), MTVQA (Tang et al., 2024), ChartQA (Masry et al., 2022), IconQA (Lu
et al., 2021), BEC-Arabic (Saad et al., 2016), Claude-3.5 (Anthropic, 2024), arab-celeb-dataset (Mohammad-Alfaifi,
n.d.), arabic-food-101 (Arar Tawil, 2023), Countries and landmarks (Wikipedia, 2024; Pexel, 2024; YouTube, 2024),
Pexel (Pexel, 2024), AgroGPT (Awais et al., 2024), GeoChat (Kuckreja et al., 2024).

C.7 Agricultural Image Understanding

The agricultural domain is represented through
datasets like AgroGPT, with 769 questions focused
on agricultural understanding tasks. These tasks
test the model’s capacity to process and interpret
images related to agricultural settings, reinforcing
the model’s ability to work with real-world sce-
narios in agriculture and environment-based chal-
lenges.

C.8 Remote Sensing Understanding

This category evaluates the model’s ability to han-
dle remote sensing data, specifically focusing on
geographical data interpretation through datasets

like GeoData VQA and GeoChat. With 709 ques-
tions in this domain, the model is tested on its
spatial reasoning and understanding of complex
remote-sensing imagery, crucial for applications in
fields like environmental monitoring and geogra-
phy.

In total, the dataset includes 29,036 questions
across all categories, providing a comprehensive
and diverse benchmark for evaluating the multi-
modal model’s performance across a wide spec-
trum of tasks. This balanced distribution ensures
that the model is tested thoroughly, with each do-
main offering unique challenges and insights into
the model’s strengths and areas for improvement.
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D CAMEL-Bench Data Samples

The Fig. 4 illustrates a rich variety of data samples
from CAMEL-Bench, highlighting its versatility
across eight distinct domains. These categories
span diverse tasks, including Chart & Diagram Un-
derstanding, Multimodal Reasoning, OCR & Docu-
ment Understanding, Cultural-Specific Knowledge
(with separate focuses on celebrities and food),
Agricultural Image Analysis, and Video Under-
standing of Landmarks. Each category showcases a
unique challenge, from interpreting medical X-rays
and reading handwritten Arabic text to recogniz-
ing plant diseases, famous landmarks, or culturally
significant items like food and celebrities.

This diversity emphasizes CAMEL-Bench’s
strength in addressing both linguistic and visual
understanding, particularly in contexts rich with
cultural nuance. Whether it’s identifying objects in
images, interpreting technical documents, or rec-
ognizing cultural symbols, the dataset is designed
to foster well-rounded, context-aware AI models.
These capabilities are essential for real-world appli-
cations, such as healthcare diagnostics, agriculture,
tourism, and cross-cultural interactions, making
CAMEL-Bench a powerful tool for advancing mul-
timodal AI systems.
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Figure 4: CAMEL-Bench data samples span eight diverse domains, encompassing a wide range of types and tasks.
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