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Abstract

Visual Question-Answering (VQA) has be-
come key to user experience, particularly after
improved generalization capabilities of Vision-
Language Models (VLMs). But evaluating
VLMs for an application requirement using a
standardized framework in practical settings is
still challenging. This paper aims to solve that
using an end-to-end framework. We present
VQA360 – a novel dataset derived from estab-
lished VQA benchmarks, annotated with task
types, application domains, and knowledge
types, for a comprehensive evaluation. We
also introduce GoEval, a multimodal evalua-
tion metric developed using GPT-4o, achiev-
ing a correlation factor of 56.71% with hu-
man judgments. Our experiments with state-
of-the-art VLMs reveal that no single model
excels universally, thus, making a right choice
a key design decision. Proprietary models such
as Gemini-1.5-Pro and GPT-4o-mini generally
outperform others, but open-source models like
InternVL-2-8B and CogVLM-2-Llama-3-19B
also demonstrate competitive strengths, while
providing additional advantages. Our frame-
work can also be extended to other tasks1.

1 Introduction

Visual Question Answering (VQA) (Antol et al.,
2015) is the task of answering a question q about an
image I correctly. This field has been faced with
constant challenges in terms of the nature of the
problem. For example, the question q can be about
the image directly (Goyal et al., 2017a; Zhu et al.,
2016; Goyal et al., 2017b), or outside the scope of
the image with external knowledge (Marino et al.,
2019; Schwenk et al., 2022). The images I can be
a photograph, a mathematical chart (Masry et al.,

*Work does not relate to position at Meta.
†Work does not relate to position at Amazon.
1Code and dataset can be found in the following

link: https://github.com/neelabhsinha/vlm-selection-tasks-
domains-knowledge-type.

Figure 1: Examples of VQA360 tasks and their labels for
task types, application domains, and knowledge type in
our dataset.

2022; Li and Tajbakhsh, 2023), a document screen-
shot (Mathew et al., 2021), or more.

Dedicated methods (Zhu et al., 2016; Goyal
et al., 2017b; Kafle and Kanan, 2017) have long
existed to solve different challenges in VQA. But,
with the advancement of Vision-Language mod-
els (VLMs) (Chen et al., 2023; Bai et al., 2023;
Team et al., 2024; OpenAI et al., 2024; Liu et al.,
2023a) in multimodal research, several applications
have started adapting them due to their versatility.
This is because after pre-training (Lin et al., 2024;
Wei et al., 2024) on vast multimodal datasets (Chen
et al., 2015; Thomee et al., 2016; Changpinyo et al.,
2021; Masry et al., 2022; Mathew et al., 2021;
Marino et al., 2019), VLMs can effectively gen-
eralize across various types of images, and can also
incorporate external knowledge beyond the image.

But which VLM to utilize for a given VQA-
based requirement? The complexity of this stems

https://github.com/neelabhsinha/vlm-selection-tasks-domains-knowledge-type
https://github.com/neelabhsinha/vlm-selection-tasks-domains-knowledge-type
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from two directions - new VLMs being proposed
and the diverse nature of tasks in VQA. New VLMs
come up every month now (Liu et al., 2023a, 2024;
Bai et al., 2023; team, 2024; Chen et al., 2023,
2024; Wang et al., 2023; Hong et al., 2024), and
they differ in their architecture, training data, train-
ing strategy, size, etc., possessing different capa-
bilites. In addition, users often face technical and
business constraints in terms of compute, mem-
ory, cost of inference, data, and regulatory risks,
which can favor specific VLMs over others. Sec-
ond, tasks may vary from types such as Chart
Question-Answering (Masry et al., 2022) or Docu-
ment Understanding (Mathew et al., 2021), to ap-
plication domains such as Science, or Sports, and
the type of knowledge required, like Geographical
Information, Mathematical Reasoning, and beyond.
For an application that can fall into one or more
such categories, how do you identify the best suited
VLM? How to compare them meaningfully? These
are gaps in existing literature. Technical reports of
VLMs provide benchmarks and comparison, but
they are very theoretical and limited.

To bridge the gap in evaluating VLMs on VQA,
we propose an end-to-end framework that pro-
vides a standardized paradigm for evaluating vision-
language models (VLMs) across three key as-
pects: task type, application domain, and knowl-
edge type. Existing datasets like VQAv2 (Goyal
et al., 2017a), OK-VQA (Marino et al., 2019), and
ChartQA (Masry et al., 2022) offer task instances
for training and evaluation but lack labels for other
practical aspects. Our framework addresses this
by developing and sharing a dataset VQA360 de-
rived from the above benchmarks, where tasks are
also labeled with their application domains and
the knowledge types required for successful com-
pletion, as illustrated in Figure 1, allowing for a
evaluation 360◦ in practical settings. Each task
can have multiple tags for all these aspects. In
addition, traditional NLP evaluation metrics have
been shown to be poorly correlated with human
judgments for generative models (Kamalloo et al.,
2023; Liu et al., 2023b), an issue that extends to
VLM. To address this, we introduce GoEval, a mul-
timodal evaluation metric leveraging GPT-4o (Ope-
nAI et al., 2024), which demonstrates superior
alignment with human judgment compared to exist-
ing metrics. Together, they complement each other
to provide an end-to-end, completely multimodal
evaluation framework. Our framework evaluates 10
variations of 8 VLMs, accommodating diverse re-

quirements such as open-source, resource-efficient,
or privacy-compliant models.

In summary, our aim is to address the following
research questions (RQs): (1) How to compare
VLMs for different types of VQA tasks in practical
settings? (2) How to evaluate those VLM outputs
closely with human judgments? (3) As per current
SOTA, which VLM is suited for which application,
depending on various external constraints?

Our key contributions are as follows:
(i) We release VQA360 - a dataset of VQA tasks

with three labeled aspects: task types, application
domains, and knowledge type, enabling comparison
based on different practical requirements.

(ii) We propose GoEval, which is a multimodal
evaluation metric based on GPT-4o (OpenAI et al.,
2024), and aligns more closely with human judg-
ments for visual question-answering.

(iii) We analyze 10 variants of 8 state-of-the-art
VLMs of different sizes and families, using our
framework to compare their performance.

(iv) Using our analysis, we make recommenda-
tions on the best-suited VLMs for a given applica-
tion requirement under different constraints.

2 VQA360: A Practical Evaluation Dataset

In this section, we discuss our dataset creation steps
we followed in detail, which we propose to utilize
for evaluating VLMs for VQA.

2.1 Source Datasets

To be able to evaluate VLMs in a wide variety
of QA tasks, VQA360 is created from five stan-
dard datasets - VQAv2 (Goyal et al., 2017a), OK-
VQA (Marino et al., 2019), A-OKVQA (Schwenk
et al., 2022), ChartQA (Masry et al., 2022) and
DocumentVQA (Mathew et al., 2021). VQAv2
is an extensive VQA benchmark, while OK-VQA
and A-OKVQA are used primarily for knowledge-
based VQA, where the answer to the question does
not lie within the scope of the image. ChartQA
and DocumentVQA are taken to evaluate the per-
formance of VLMs on questions based on mathe-
matical graphs and charts, and documents, respec-
tively. From the test split of each dataset Dtest, we
take max(|Dtest|, 1145) task instances, randomly
sampled without replacement. 1145 was used as
it is the minimum size of test set among the five
datasets. Thus, our final experimental set contains
5725 task instances, with equal contributions from
each dataset.
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Aspect Considered Tags

Application Domains Anthropology, Formal logic, Economics, History, Law, Government and Politics, Linguistics, Computer
Science, Mathematics, Science, Books, Fiction, Movies, News, Reviews, Justice, Professions, Public
Places, Knowledge Base, Nature, Nutrition and Food, Social Media, Sports

Knowledge Types Commonsense Knowledge, Visual Knowledge, Cultural Knowledge, Geographical Knowledge, Temporal
Knowledge, Social Knowledge, Scientific Knowledge, Technical Knowledge, Mathematical Knowledge,
Literary Knowledge, Other

Table 1: Application domains and knowledge types considered to label all the task instances.

2.2 Instance Tags

Using the dataset mentioned above only allows us
to differentiate based on task types. But there are
more ways in which a practical application can be
classified. To enable that, we also classify VQA360
in two more aspects - application domains, and
knowledge types. This is inspired from a recent
work (Sinha et al., 2024), but adapted to suit this
task. The application domain is the field a task
belongs to, such as history, science, sports, etc., and
the knowledge type is a specific type of knowledge
required, such as geographic, common sense, etc.

Our initial set of tags is crafted manually, with
an aim to achieve a broad spectrum of application
domains and reasoning types. They are specified
in Table 1, and cover a wide range of domains and
knowledge types. We tag each of our task instances
in the dataset with one or more application domains
and knowledge types using the method described
in Figure 2 and discussed in the following.

2.3 Generating Instance Tags

For creating the tags for task types, we
map ChartQA to ‘Chart Understanding’, Doc-
umentVQA to ‘Document Understanding’, A-
OKVQA and OKVQA to ‘Knowledge-based Vi-
sual Question-Answering’ and VQAv2 to ‘Visual
Question-Answering’.

For application domains and knowledge types,
we use gpt-3.5-turbo (Brown et al., 2020; Ope-
nAI, 2023). To correctly generate instance tags,
we require key features of the image and question,
and also need to eliminate less useful information
from the image to avoid confusions. To achieve
this, following a recent work (Fu et al., 2023), we
generate captions of images from VIT-GPT22, and
object tags from the Azure Computer Vision API.
Using these two as the descriptors of the image
and the question, we prompt gpt-3.5-turbo to
get the application domains and knowledge type.

2https://huggingface.co/nlpconnect/vit-gpt2-image-
captioning

The prompt used for this task is given in Table 7 in
Appendix A.

After this, we post-process the tags by remov-
ing entries that do not belong to any of the entries
in Table 1. If all tags are removed for a task in-
stance, we add "Other" by default. Finally, we
manually go through each of the labels and ensure
that they are correctly tagged and replace any erro-
neous tag. The final set contains questions, images,
candidate answers, task type, application domains,
and knowledge type of all 5725 candidates.

From the instance tags, we remove the tags for
which number of instances are less than 300 from
our analyses. Please note, we do not remove the
task instances entirely, as they may contain other
tags included in the study, but just not consider
those tags in reporting our results in Section 4 due
to less number of instances. This gives a final
set of 5 task types, 14 application domains, and 9
knowledge types, which are shown in Figure 3. We
also report statistis of VQA360 in Table 2.

Statistic (per instance) Mean Std. Max

Caption Length 46.56 8.84 96
Object Tags 13.01 7.83 59
Application Domains 1.7 0.68 7
Knowledge Type 2.19 0.83 9

Table 2: Average, std. and maximum of length of cap-
tion and count of object tags in generated image descrip-
tors, and number of application domains and knowledge
types per instance. This clarifies that significant number
of task instances have multiple application domains and
knowledge type tags.

VQA360 allows extended analysis of diverse
VQA tasks and allows looking into performance
of VLMs from entirely new perspectives. Further,
the creation methodology can also be extended for
enriching other datasets and creating benchmarks
for evaluating VLMs in different settings.

We use VQA360 for rest of the analysis, and also
release it publicly (linked in footnote of Page 1), for
the research community to utilize in future research.
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Figure 2: An example with steps taken to generate the instance tags for application domains and knowledge type
(task type is mapped directly from the dataset the image is taken).

Figure 3: Number of task instances per application domain (left) and knowledge type (right) after generating the
instance tags using GPT-3.5-Turbo. All categories are represented by approx 400 instances, which is sufficient for
a representative analysis. Categories with < 300 instances are filtered out, and a task instance can be tagged to
multiple categories of a single aspect.

Although it contains instances of existing bench-
marks, it is a one-stop benchmark for an extended
evaluation with labels for task types, application
domains, and knowledge types. We also provide
object tags and captions.

3 GoEval: A VQA Evaluation Metric

Evaluating QA using lexical matching has signifi-
cant limitations, particularly when correct answers
don’t match with set of gold answers (Kamalloo
et al., 2023). A recent work (Kamalloo et al., 2023)
evaluated traditional VQA metrics against GPT-
based evaluation for open-domain QA, and found
it to be more aligned with human judgments.

Another alternative is to evaluate using NLG
metrics such as ROUGE (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005), and then use
a threshold to determine correct/wrong. However,
they also suffer from similar limitations, as evalu-
ated from previous work (Liu et al., 2023b). A prob-
able solution is to use BERTScore (Zhang et al.,
2019), which compares texts in embedding space,
focusing more on semantic similarity.

These metrics may be promising, but they are
not equipped to handle multimodal settings. To

fill this gap, we propose GoEval - a multimodal
metric based on GPT-4o, which can be used to
evaluate VQA. Similar to existing works (Kamal-
loo et al., 2023; Liu et al., 2023b), we create a
prompt, and ask GPT-4o if the generated answer is
correct. However, to incorporate the vision modal-
ity in making judgments, we also use the image.
We use zero-shot evaluation with prompting, using
both GPT-4o and GPT-4o-mini, to compare and
contrast performance v/s cost trade-offs.

Formally, we pick a prompt function P from the
first row of Table 8 of the Appendix A, and generate
a prompt p = P(q, r, c) based on question q, the
reference answer set r and the candidate response
c. Using this prompt and the image, we prompt
GPT-4o (OpenAI et al., 2024; OpenAI, 2024) to
ask if it is correct. We also compare our prompt
against two other ways – without using the image,
and without reference answers. This is to under-
stand which technique shows highest correlation
with human judgments. We don’t compare with tra-
ditional methods, as it is already done in the above
discussed works (Kamalloo et al., 2023; Liu et al.,
2023b), and our method without using the image is
similar to what is used in (Kamalloo et al., 2023).
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3.1 Validating GoEval

To validate GoEval, we first generate outputs on our
experimental dataset using Gemini-1.5-Pro (Team
et al., 2024), a state-of-the-art VLM. Then, we
manually evaluate all the answers on the validation
set, marking 0 for incorrect answer and 1 for correct
answer. These are the results of human evaluation.

We compare BERTScore precision, recall, F1-
score, and six variants of GoEval using GPT-4o and
GPT-4o mini (OpenAI et al., 2024), with and with-
out reference answers, and with and without using
images with human evaluations in terms of accu-
racy and Kendall Tau. The exact prompts that we
use are outlined in Table 8 of Appendix A. When
we don’t use the image, we also alter the template
text by a little to not ask model to refer the image.
The results are detailed in Table 3.

Method Acc (%) τ

BERTScore-p 1.30 36.21
BERTScore-r 1.30 12.68

BERTScore-f1 1.30 28.50

GoEval (-R, -I) 49.91 16.17
GoEval-mini (-R, -I) 52.70 10.84

GoEval (-R) 71.43 35.94
GoEval-mini (-R) 64.01 24.37

GoEval 78.48 52.43
GoEval-mini 80.33 56.71

Table 3: Comparison of different evaluation methods:
Accuracy (Acc.) and correlation (τ for Kendall’s Tau) of
evaluation metrics with human judgement. -R indicates
absence of reference answers, -I indicates absence of
image from the request. GoEval with all components
(reference answers, image) performs the best.

From the results, we can see that GoEval with
reference answer and image provides the best align-
ment with human judgment. Without using the
image (-R, -I), the performance proves to be very
weak, depicting that existing metrics that do not
utilize the image will perform poorly on VQA. We
believe this is because image context is crucial for
VQA, and in the absence of it, the model isn’t
able to reason well whether the provided answer is
correct or not. Moreover, the differences between
models are largely influenced by the amount of in-
formation. For example, performance of GoEval
and GoEval-mini with image but without reference
only has a difference of ∆τ = 11, but as soon as
the reference answers are added, τ increases by 20
units. This is because the reference answers serve
as an extra guidance in addition of the image to

determine the correctness of the candidate answer,
making the model perform better.

In summary, GoEval shows high accuracy and
Kendall’s Tau correlation with human evaluation,
and GoEval-mini marginally outperforms GoEval.
This complements VQA360 to provide an end-to-
end cohesive framework for VLM evaluation in
entirely multimodal settings.

4 Comparative Evaluation of VLMs

We evaluate state-of-the-art (SOTA) VLMs in prac-
tical settings using our framework using GoEval-
mini, since it demonstrated maximum correlation
with human judgments, and is more cost-efficient.

For VLMs, we use InternVL-2 1B and 8B (Chen
et al., 2023, 2024), PaliGemma-3B (Beyer* et al.,
2024), Qwen-2-VL 2B and 7B (Bai et al., 2023;
team, 2024), LlaVa-1.6-Mistral-7B (Liu et al.,
2024), CogVLM2-Llama-3-19B (Wang et al.,
2023; Hong et al., 2024), Gemini-1.5 Flash and
Pro (Team et al., 2024), and GPT-4o-Mini (Ope-
nAI et al., 2024). The rationale behind choosing
these models is to have sufficient diversity to al-
low users to choose the appropriate VLM based on
other constraints.

All models except Gemini-1.5 and GPT-4o are
open sourced, which gives freedom to customize
the models as desired, and host it in-house. It takes
away the privacy and regulatory risk of sending
data to a third-party, and reduces operational and
opportunity cost factor, as these APIs are costly
with rate limits. In-house hosting allows a rela-
tively fixed cost. We have taken smaller models
in the 1B-3B range which can be used in resource-
constrained environments and on-device AI.

For all open-source models, we use the Hugging-
Face implementation with the image and question
in a prompt recommended by the model card, since
we want to evaluate all scenarios uniformly. We
use Gemini APIs3 OpenAI API4 for Gemini and
GPT-4o-mini. The results are discussed in the fol-
lowing subsections. More details of the artifacts
used are given in Table 5 of the Appendix A.1.

4.1 Correlation Between VLM Outputs

Our first hypothesis was that all VLMs do not per-
form similarly with all task instances. They have
their own strengths and weaknesses. To establish
that, we evaluated the correlation between the out-

3https://ai.google.dev/gemini-api/docs
4https://platform.openai.com/docs/overview
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puts of different models for all tasks and document
the results in Figure 4.

Figure 4: Correlation of GoEval-mini values between
performance of different VLMs for all task instances.
The low correlation values for outputs between all mod-
els indicate different VLMs perform differently with
task instances.

From the figure, most of the correlations are
low. This shows that the performance difference
between VLMs is not just in terms of a global statis-
tic, but also differs for individual task instances.
Thus, some VLMs that might be great in a subset
of tasks may be poor in another subset.

The highest correlation is observed between
Gemini-1.5 Flash and Pro, followed by Qwen-2-
VL 2B and 7B, and InternVL-2-1B and 8B. Since
they are from the same family, they might have sim-
ilar training data, training strategy, and architecture.
Some open-source VLMs also exhibit higher corre-
lations (light blue) with Gemini and GPT, though
these correlations remain relatively low.

Since task types, application domains, and
knowledge types are key factors in which tasks
can be differentiated in practical settings, we move
to analyzing the performance on those factors.

4.2 Evaluation on Task Types
We evaluated VLMs on four different task
types: chart understanding using ChartQA
dataset (Masry et al., 2022), Document Un-
derstanding using DocVQA dataset (Mathew
et al., 2021), knowledge-based VQA using
A-OKVQA (Schwenk et al., 2022) and OK-
VQA (Marino et al., 2019), and general VQA using
VQAv2 (Goyal et al., 2017a). The performance of
VLMs across these is summarized in Table 4.

From the table, the closed models, which are
believed to be SOTA, outperform the smaller, open-
sourced models. This is expected considering that
those models are larger. Within them, we iden-
tify that Gemini-1.5-Pro performs significantly bet-
ter than GPT-4o-mini when extracting information
from an image is key, like interpreting documents
and charts. On the other hand, where knowledge
and comprehension are critical, GPT-4o-mini out-
performs Gemini-1.5-Pro. If processing cost is a
factor, Gemini-1.5-Flash can be chosen with ap-
proximately 7-10% performance loss.

Among open-source models, InternVL-2 shows
promising results with both 1B and 8B models
given their size, and can be chosen if open-source
models are needed. CogVLM-2-Llama-3-19B
also competes closely with Gemini-1.5-Flash in
Chart and Document understanding tasks. Llava-
1.6-Mistral-7B performs acceptable in knowledge-
based VQA and VQA, but the performance de-
grades drastically in the other two categories,
where visual comprehension is critical, exposing
its limitations in that area. Qwen-2-VL variants
and PaliGemma-3B surprisingly prove to be weak
in all tasks.

4.3 Evaluation on Application Domains

We evaluated the VLMs in all application domains
that had more than 300 task instances, and the re-
sults are shown in Figure 5.

Figure 5: Mean GoEval-mini scores for different ap-
plication domains for all VLMs. Gemini-1.5-Pro and
GPT-4o-mini are the best performing closed models,
with CogVLM-2-LlaMa-3-19B and InternVL-2-8B per-
forming the best amongst open models.
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Task Type Intern-
VL-2-
1B

Qwen-
2-VL-
2B

Pali-
Gemma-
3B

LLaVA-
1.6-
Mistral-
7B

Qwen-
2-VL-
7B

Intern-
VL-2-
8B

Cog-
VLM-
2-
Llama-
3-19B

Gemini-
1.5-
Flash

Gemini-
1.5-
Pro

GPT-
4o-
Mini

Chart U. 46.81 12.31 12.84 22.88 14.06 65.68 67.34 62.17 67.66 60.36
Document U. 45.68 15.81 12.49 30.07 20.00 65.76 68.17 64.36 70.53 54.68
KBQA 45.41 19.83 19.22 58.65 26.94 71.43 62.77 70.66 77.31 84.04
VQA 55.81 26.29 23.58 57.64 29.52 68.65 57.18 69.11 73.25 77.74

Table 4: Mean GoEval-mini scores for different task types for all VLMs. Bold numbers indicate best results.
Gemini-1.5-Pro performs better in chart and document understanding, while GPT-4o-mini performs better in the
other two (U. = Understanding, KBQA = Knowledge-based VQA).

If the VLMs were similar in all application
domains, their result would be perfectly circular.
However, we see that most of the VLM perfor-
mance graphs have aberrations in multiple cate-
gories, highlighting variance in strengths. In most
cases, the weakness of one of the few VLMs is com-
pensated for by the strength of others. So, choosing
a VLM wisely according to the application need
can help mitigate weaknesses.

Among the closed models, GPT-4o-mini proves
to be the best in four categories - Nature, Nu-
trition and Food, Social Media and Sports, and
Gemini-1.5-Pro proves to be the best in all other
categories. GPT-4o-mini doesn’t even remain sec-
ond best in some categories like Mathematics, Eco-
nomics, Law, and is outperformed by many open-
sourced models here. Gemini-1.5-Flash remains
strong with a performance deficit compared to Pro,
but in Social Media tasks, it almost matches Pro.
Therefore, while the appropriate model should be
selected based on requirements, the Gemini-1.5-
Pro generally looks to be the best overall choice.

In the open-source model category, InternVL-
2-8B and CogVLM-2-Llama-3-19B are the best
possible choices. CogVLM-2-Llama-3-19B gen-
erally performs well in more academic topics like
Mathematics, Computer Science, law, Government
and Politics, but suffers a lot of performance degra-
dation in more social topics like Nature, Nutrition
and Food, Social Media, Sports. InternVL-2-8B
also shows similar traits, but the difference is rela-
tively less. For academic topics, these models even
outperform some of the closed models. Llava-1.6-
Mistral-7B is one model that shows exactly oppo-
site trait than this, being limited in academic top-
ics as compared to social topics. Qwen-2 variants
and PaliGemma show weak results in all domains,
like in task types. InternVL-2-1B remains the best
choice if a small model is required, with decent

results using 1B parameters.

4.4 Evaluation on Knowledge Types

Similar to application domains, we evaluate all
VLMs on all knowledge types where number of
task instances is greater than 300. We demonstrate
the results using a similar radar chart in Figure 6.

Figure 6: Mean GoEval-mini scores for different knowl-
edge types for all VLMs. Gemini-1.5-Pro and GPT-4o-
mini perform the best in most knowledge types, while
InternVL-2 models also demonstrate competitive per-
formance based on their size.

In the closed models category, the SOTA per-
formance is again shared by Gemini-1.5-Pro and
GPT-4o-mini. But unlike in application domains,
GPT-4o-mini competes more strongly with Gemini-
1.5-Pro on several knowledge types. Visual, So-
cial and Commonsense knowledge is where the
advantage of GPT-4o-mini over Gemini-1.5-Pro
is maximum, again depicting its strength in social
knowledge types. It is still considerably weak in
temporal, scientific, and mathematical knowledge,
falling behind even some of the small open-source
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models. Gemini-1.5-Pro will still be the best over-
all choice, but different models can be selected
based on the results obtained for specific knowl-
edge types. Gemini-1.5-Flash again follows similar
trend, with slight performance difference from Pro.

Comparing open-source models, InternVL-2-8B
and CogVLM-2-Llama-3-8B are the best choices
here as well, but here we can see that InternVL-2-
8B outperforms the latter in all knowledge types.
InternVL-2-1B continues to be the best overall
choice if small models are required, and the Qwen-
2 variants and PaliGemma continue to be the least
effective. Therefore, InternVL-2-8B is the best
overall choice for open source models.

4.5 Overall Analysis and Recommendations
In subsections 4.2, 4.3 and 4.4, we evaluated all
vision-language models under three different as-
pects of task types, application domains and knowl-
edge types. We also discussed their strengths and
weaknesses in those categories and recommended
different VLMs to use under different requirements.
In this section, we will take a higher level look at
everything together.

We identified that Gemini-1.5-Pro and GPT-4o-
mini are different. In general, GPT-4o-mini is
weaker in analytical tasks, like tasks of Mathemat-
ics or Economics domain, or scientific or mathe-
matical knowledge types. It not only falls behind
Gemini-1.5-Pro in these tasks, but also behind open
models like InternVL-2-8B or CogVLM-2-Llama-
3-19B. However, it is strong is social and topical
tasks like Nature, Sports, Nutrition and Food do-
mains. Gemini-1.5-Pro proves strong more gener-
ally, but is expensive. It is either the best, or comes
close second or third best. Therefore, if cost is a
significant factor, Gemini-1.5-Flash can be consid-
ered as a decent alternative at a performance deficit
of around 7-10%.

InternVL-2-8B and CogVLM-2-Llama-3-19B
are strong open-source models. Due to size dif-
ferences, resource availability also contributes to
deciding which model to use. CogVLM-2-Llama-
3-19B is better at more academic tasks, that be-
long to domains like History, Law, Computer Sci-
ence, etc., or knowledge types like Temporal, Sci-
entific or Mathematical Knowledge. InternVL-2-
8B is a more general capable model that demon-
strates more suitability in broader application re-
quirements. In some cases, it outperforms GPT-4o-
mini as well. Possessing superior performance in
addition to other advantages of open-sourced model

makes it a strong choice. It can also be aligned for
downstream tasks to improve performance.

Among small models suited for on-device
AI, resource-efficient environments, InternVL-
2-1B proves is strongest overall, significantly
outperforming models like Qwen2-VL-2B and
PaliGemma-3B in all categories.

The Qwen-2-VL variants and PaliGemma-3B
did not prove fit for use in our experimental set-
tings, being very weak on all categories. LlaVa-
1.6-Mistral-7B also performs average, similar to
InternVL-2-1B, but is weak in all aspects compared
to InternVL-2-8B, a similar-sized model.

Since Gemini-1.5-Pro was the most successful
model, we demonstrate some of the qualitative
examples using that model in Table 9 in the Ap-
pendix A. Finally, Tables 10 and 11 of the Ap-
pendix A contain quantitative results on all appli-
cation domains and knowledge types, respectively,
including the categories that were excluded from
the study of the main paper.

5 Conclusion

In this paper, we propose a comprehensive frame-
work for evaluating Vision-Language Models
(VLMs) across diverse visual question-answering
(VQA) tasks, addressing specific application re-
quirements. Our framework introduces a novel
evaluation paradigm that classifies VQA tasks
along three dimensions: task types, application
domains, and knowledge types. To support this, we
release VQA360, a dataset annotated across 4 task
types, 22 application domains, and 15 knowledge
types, derived from established VQA benchmarks.
We also present GoEval, a new evaluation metric
to complement it, leveraging GPT-4o to integrate
visual and textual information, achieving a 56.71%
correlation with human judgments and outperform-
ing traditional metrics.

Through experiments with 10 state-of-the-art
VLMs, we observe significant performance varia-
tion across categories, with no single model prov-
ing universally optimal. Proprietary models like
Gemini-1.5-Pro and GPT-4o-mini achieve the high-
est overall performance, while open-source mod-
els such as InternVL-2-8B and CogVLM-2-Llama-
3-19B excel in specific scenarios. Our findings
provide actionable insights for task-specific VLM
selection, and establishes a evaluation framework
that can be extended to other vision-language tasks,
fostering progress in multimodal research.
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A Appendix

In this appendix, we provide additional details and
results related to our work. The implementation
details can be found in Section A.1. Table 7 pro-
vides prompts designed to classify tasks by domain
(e.g., "Anthropology," "Computer Science") and
by the type of knowledge required (e.g., "Com-
monsense Knowledge," "Visual Knowledge"). Ta-
ble 8 presents the prompts used in GoEval to verify
whether a candidate answer is correct, with or with-
out reference answers, both for visual and text-only
evaluation. Additionally, Table 9 details some qual-
itative examples using the best overall model that
we found - Gemini-1.5-Pro. Finally, Tables 10
and 11 contain quantitative results on all applica-
tion domains and knowledge types, respectively,
including the categories that were excluded from
the study of the main paper.

A.1 Implementation Details

In this subsection, we will discuss more details
around implementation. Table 5 contains all the
model cards, which contain exact details of how we
implemented all the VLMs, and the recommended
prompt templates that we used in our evaluation.

For all the models, we prepend the question with
a static text saying ‘Only answer the below ques-
tion. Do not provide any additional information. In
addition, we resize all images to 448× 448 before
sending them through the model. This is the input
to every model. For decoding the output, we use
Greedy sampling, since fluency is not a key factor
in VQA as long as the answers are correct. We use
max_new_tokens = 2048 for all models.

Artifact Link

VQAv2 Dataset
Card

OK-VQA Dataset
Card

A-OKVQA Dataset
Card

ChartQA Dataset
Card

DocumentVQA Dataset
Card

InternVL-2-1B Model Card
Qwen-2-VL-2B Model Card
PaliGemma-3B Model Card
Qwen-2-VL-7B Model Card
LLaVA-v1.6-Mistral-7B Model Card
InternVL-2-8B Model Card
CogVLM-2-Llama-3-19B Model Card
Gemini-1.5-Flash Model Card
Gemini-1.5-Pro Model Card
GPT-4o-Mini Model Card

BERTScore Doc (used
using
Roberta
Large)

Table 5: Details of artifacts used with artifact links.
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The implementation of executing all models and
our evaluation metric can be found in the Code
provided. We also provide the implementation of
captions and object tags that can be used if this
framework is being adapted to other tasks. All the
configuration parameters and hardware used are
detailed in Table 6.

Configuration Pa-
rameter

Specification

Number of GPUs 1, 2 for CogVLM-2
GPU Model Nvidia A40
GPU Memory Ca-
pacity

48 GB

Batch Size 8
Image Resolution 448 × 448 (224 for

PaliGemma)
Maximum New To-
kens

2048

Table 6: Hardware and model configuration details used
in the experiments, highlighting specialized settings for
certain models.

We also use 4-bit quantization and Flash Atten-
tion 2 (Dao, 2023) wherever supported for memory
and execution efficiency.

A.2 Using this Work to Select VLM

The prerequisite to using this work is to lay down
the problem statement and its scope along with
other system parameters that should include, but
should not be limited to resource availability, data
availability, system constraints, resource or data
processing budget, acceptable performance bounds,
etc.

Start with finding the task type, application do-
main and reasoning type closest to your require-
ment from Table 4, 10 and 11. Next, from your
design constraints, identify some sets of VLMs ac-
ceptable for your solution. For example, if using
on-device AI, you might only be able to use ei-
ther small VLMs, or closed model accessible by
APIs, depending on your acceptable performance
bounds, and regulatory aspects of being able to
share data across, having the inference budget for
using APIs, and so on. Refer to Section 4 for a
more detailed discussion around which models will
fit which needs. Between those, check the perfor-
mance of the subset of categories and subset of
models, and choose the best model.

These models provide a comparison on a uni-
form foundation so that a comparative analysis can
be done. These models can further be customized
as desired for best outputs as per other design pa-
rameters and needs.
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Aspect Prompt to Extract Tags

Prompt to Extract
Application Do-
mains

Following are source application domains:
Anthropology, Books, Computer Science, Economics, Fiction, Formal logic,
Government and Politics, History, Justice, Knowledge Base, Law, Linguistics,
Movies, Mathematics, Nature, News, Nutrition and Food, Professions, Public
Places, Reviews, Science, Social Media, Sports.
There is an image which can be described as: {caption}.
The image has the following objects: {object_tags}.
A user is asking the following question on the image: {question},
What type of application domain does this task belong to? Choose one or many
alternatives from the above options.
Return output as list of strings as JSON Object. Example: {{’applica-
tion_domain’: [’domain_a’, ’domain_b’]}}

Prompt to Extract
Knowledge Type

Following are the names and explanation of types of knowledge:
Commonsense Knowledge: Knowledge about the world that humans learn from
their everyday experiences (e.g., many donuts being made in a cart implies they
are for sale rather than for personal consumption).
Visual Knowledge: Knowledge of concepts represented visually (e.g., muted
color palettes are associated with the 1950s).
Cultural Knowledge: Understanding cultural references, norms, and practices
(e.g., knowing that a red envelope is associated with good luck in Chinese
culture).
Temporal Knowledge: Awareness of historical events, timelines, and changes
over time (e.g., recognizing a specific style of clothing as being from the 1980s).
Geographical Knowledge: Information about locations, landmarks, and regional
characteristics (e.g., identifying a famous monument like the Eiffel Tower in
Paris).
Social Knowledge: Understanding social interactions, relationships, and behav-
iors (e.g., recognizing that a handshake is a form of greeting).
Scientific Knowledge: Knowledge from various scientific domains like physics,
biology, chemistry, astronomy, etc. (e.g., understanding that certain plants are
poisonous).
Technical Knowledge: Familiarity with technology, machinery, and tools (e.g.,
identifying parts of a computer or types of construction equipment).
Mathematical Knowledge: Basic mathematical concepts and their applications
(e.g., understanding geometric shapes or calculating areas).
Literary Knowledge: Awareness of literature, authors, and genres (e.g., recog-
nizing characters from classic novels).
There is an image which can be described as: {caption}.
The image has the following objects: {object_tags}.
A user is asking the following question on the image: {question}.
What type of knowledge is required to answer the question? Choose one or
many alternatives from the above options.
Return output as list of strings as JSON Object. Example: {{’knowledge_type’:
[’knowledge_a’, ’knowledge_b’]}}

Table 7: Prompts used to generate domain and knowledge type tags using the question, image caption and object
tags.
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Prompt Reference Image

Question: {question}
Reference Answers: {reference}
Candidate Answer: {candidate}

Consider Reference Answers to be multiple answers provided
for the given question in context with the above image. If
there are multiple answers, they are separated by semi-colon(;).
Based on the image, is the candidate answer a correct answer for
the given question? Answer only ‘yes’ if the candidate answer
is correct or only ‘no’ if it is not.

✓ ✓

Question: {question}
Candidate Answer: {candidate}

Based on the image, is the candidate answer a correct answer for
the given question? Answer only ‘yes’ if the candidate answer
is correct or only ‘no’ if it is not.

× ✓

Question: {question}
Reference Answers: {reference}
Candidate Answer: {candidate}

Consider Reference Answers to be multiple answers provided
for the given question in context. If there are multiple answers,
they are separated by semi-colon(;). Based on the context, is
the candidate answer a correct answer for the given question?
Answer only ‘yes’ if the candidate answer is correct or only ‘no’
if it is not.

✓ ×

Question: {question}
Candidate Answer: {candidate}

Based on the context, is the candidate answer a correct answer
for the given question? Answer only ‘yes’ if the candidate
answer is correct or only ‘no’ if it is not.

× ×

Table 8: Prompts used with GoEval in different settings. (✓) represents included, (×) represents excluded.
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Image Question Labels Response Human
Evalu-
ated

Label

GoEval-
mini

The cat is doing
what?

laying down,
sleeping, laying
down, laying,

sleeping,
resting, laying,
laying, laying
down, resting

Lying
down

✓ ✓

What number
is closest to
the number of
people that are
pushing the
bus?

eight, eight,
eight, ten,

twelve, nine,
twenty, ten,

nine, 15

10 × ✓

Is there any
difference be-
tween the male
and female
values?

No No ✓ ×

What is the
name of the
company men-
tioned in logo?

golden tobacco
limited, Golden

Tobacco
Limited

The logo × ×

What is the
message writ-
ten on?

sign, sign,
metal sign, stop

sign, signs,
street sign,
sign, metal

sign, street sign

A sign ✓ ✓

Table 9: Some qualitative examples with Gemini-1.5-Pro. (✓) represents correct answer, saying that response
correctly answers the question, (×) represents incorrect answer.
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Domain Intern-
VL-2-
1B

Qwen-
2-VL-
2B

Pali-
Gemma-
3B

LLaVA-
v1.6-
Mistral-
7B

Qwen-
2-VL-
7B

Intern-
VL-2-
8B

Cog-
VLM-
2-
Llama-
3-19B

Gemini-
1.5-
Flash

Gemini-
1.5-
Pro

GPT-
4o-
Mini

Anthropology 46.47 20.33 16.60 60.58 21.99 73.86 63.18 71.91 74.69 82.16
Books 55.56 21.37 10.68 40.60 20.94 70.51 66.23 63.79 72.22 66.95
Computer Science 48.96 12.86 16.18 37.14 18.05 65.77 63.83 63.29 69.65 65.61
Economics 49.73 9.73 8.92 17.84 10.54 66.49 66.58 60.39 67.57 54.47
Fiction 53.70 22.22 24.07 61.11 29.63 81.48 57.41 62.96 70.37 83.33
Formal logic 31.96 23.71 14.43 37.50 22.68 56.70 50.00 58.33 63.92 58.76
Government and Politics 46.11 16.71 14.57 34.30 21.86 66.96 66.96 66.45 70.28 62.72
History 45.80 19.42 18.47 42.21 23.98 65.47 63.86 64.88 70.19 68.56
Justice 41.07 23.21 10.71 46.43 32.14 66.07 62.50 64.81 73.21 71.43
Knowledge Base 47.91 18.60 13.05 38.30 20.20 68.97 63.44 64.76 71.78 69.40
Law 47.29 17.98 14.04 38.18 23.40 65.27 65.17 67.92 70.79 62.34
Linguistics 48.00 17.78 20.89 44.89 21.33 67.56 58.04 63.64 75.00 79.46
Mathematics 33.33 13.12 12.69 23.71 15.70 57.85 60.00 52.99 62.80 50.44
Movies 53.80 22.78 20.89 51.90 32.91 69.62 63.29 66.24 76.58 78.06
Nature 50.98 25.92 22.22 61.05 29.41 71.99 61.50 74.34 78.14 84.32
News 54.59 17.84 11.35 31.89 17.84 68.11 68.51 70.79 71.74 62.78
Nutrition and Food 42.83 18.99 21.55 49.81 23.26 67.44 67.05 69.22 75.73 78.56
Other 48.46 19.39 23.64 52.96 24.35 68.32 58.91 67.46 71.63 78.10
Professions 51.53 17.88 17.55 47.18 24.35 69.65 64.62 70.24 75.03 75.15
Public Places 54.48 18.34 21.72 60.34 24.83 77.59 66.55 75.00 82.35 82.41
Reviews 52.86 18.57 23.19 50.00 24.29 64.29 60.00 69.12 70.00 72.46
Science 48.75 21.42 18.79 43.63 24.31 67.28 63.94 68.78 74.34 71.56
Social Media 51.34 23.47 21.52 56.72 29.58 70.42 63.88 73.27 74.26 82.06
Sports 51.55 22.33 21.36 60.53 29.26 73.53 64.50 69.98 78.79 81.46

Table 10: Mean GoEval-mini for various application domains across multiple VLMs. The best result in each domain
is represented in BOLD. Note, this also includes the domains that were excluded from main paper’s analysis because
of having less than 300 task instances.

Knowledge Type Intern-
VL-2-
1B

Qwen-
2-VL-
2B

Pali-
Gemma-
3B

LLaVA-
v1.6-
Mistral-
7B

Qwen-
2-VL-
7B

Intern-
VL-2-
8B

Cog-
VLM-
2-
Llama-
3-19B

Gemini-
1.5-
Flash

Gemini-
1.5-
Pro

GPT-
4o
mini

Commonsense 49.95 21.10 19.88 53.33 25.25 71.06 63.91 71.24 76.32 78.41
Cultural 48.36 18.70 15.57 49.65 23.26 70.54 66.70 70.21 75.77 75.31
Geographical 56.58 19.95 19.20 51.37 24.77 71.00 64.98 73.28 78.50 78.12
Literary 44.25 17.42 13.24 41.46 20.91 68.64 71.58 67.97 73.78 66.78
Mathematical 38.13 11.33 12.40 22.93 16.13 61.20 60.51 54.30 63.67 50.88
Other 41.82 13.64 20.00 45.45 16.36 62.73 57.27 63.30 67.59 76.85
Scientific 41.72 16.78 18.98 35.76 21.63 69.54 68.81 67.87 74.22 66.59
Social 48.12 21.49 19.23 55.04 27.87 70.09 63.57 70.63 74.24 77.20
Technical 46.15 17.74 15.31 42.13 24.29 69.17 61.32 64.19 71.87 72.10
Temporal 49.62 12.69 10.14 25.13 16.15 68.72 67.31 63.42 69.45 58.95
Visual 52.03 21.97 19.54 52.92 24.13 68.67 60.27 67.87 73.81 77.82

Table 11: Mean GoEval-mini for all knowledge types across multiple VLMs. The best result in each knowledge
type is represented in BOLD. Note, this also includes the knowledge types that were excluded from main paper’s
analysis because of having less than 300 task instances.
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