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Abstract

The dense video captioning task aims to de-
tect all events occurring in a video and de-
scribe each event using natural language. Un-
like most other video processing tasks, where
it is typically assumed that videos contain only
a single main event, this task deals with long,
untrimmed videos. Consequently, the speed
of processing videos in dense video caption-
ing is a critical aspect of the system. To the
best of our knowledge, all published work on
this task uses RGB frames to encode input
videos. In this work, we introduce the use
of compressed videos for the first time in this
task. Our experiments on the SoccerNet chal-
lenge demonstrate significant improvements in
both processing speed and GPU memory foot-
print while achieving competitive results. Ad-
ditionally, we leverage multilingual transcripts,
which seems to be effective. The encoder in
our proposed method achieves approximately
5.4× higher speed and 5.1× lower GPU mem-
ory usage during training, and 4.7× higher
speed and 7.8× lower GPU memory usage
during inference, compared to its RGB-based
counterpart. The code is publicly available
at https://github.com/mohammadjavadpirhadi/
CVT5.

1 Introduction

In the video captioning task, the input video is typ-
ically assumed to be very short, containing only
one main event. The desired output in this case
is a textual description of that event. However,
this assumption does not hold for most real-world
scenarios, where input videos are long, and mul-
tiple events occur at different times. The dense
video captioning task, first introduced by Krishna
et al. (2017), aims to detect all events in a long,
untrimmed video and generate a description for
each event using natural language. This task is
challenging because the model must not only rec-
ognize objects in the video but also understand the

(a) (b)

Figure 1: Comparison between two consecutive RGB
(left) and compressed frames (right). The upper frames
are identical and are the first frame of a video. The lower
frames are the second frames of the same video. In the
compressed format, the left frame represents the motion
vector, and the right frame represents the residual.

actions and interactions between them. Solving
this task bridges the fields of computer vision and
natural language processing, attracting increasing
attention. Dense video captioning has potential
applications for blind people, human-robot interac-
tion, and more. However, the proposed methods
must be fast and accurate, enabling the system to
detect and describe events in a timely manner using
reasonable computational resources.

To the best of our knowledge, all existing meth-
ods for dense video captioning use RGB frames
to encode the input video. However, there is a
significant amount of redundancy between consec-
utive RGB frames since most of the pixels remain
unchanged. This redundancy demands consider-
able processing time and resources while providing
minimal additional information. Video compres-
sion methods like H.264 significantly reduce the
resources required for storage and transmission by
keeping only a few frames intact and reconstructing
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the others using motion vectors and residuals. For
instance, consider a video corresponding to half of
a match in the SoccerNet dataset (Mkhallati et al.,
2023). With a frame rate of 2 frames per second
(FPS) and a resolution of 224× 224, the video con-
sists of 5,400 frames, requiring over 775MB of
storage without compression. However, compres-
sion reduces this size to approximately 78.5MB
making it about 10× smaller. Figure 1 illustrates
the comparison between two consecutive frames
when using RGB frames versus compressed ones.

To address these challenges, we propose an end-
to-end CNN-Transformer model to generate dense
captions using videos in the compressed domain.
Compressed videos consist of I-frames, motion vec-
tors, and residuals, with minimal redundancy be-
tween consecutive frames. As a result, our model
processes videos more efficiently, requiring less
time and fewer resources during both training and
inference. Additionally, we extract and utilize mul-
tilingual transcripts of the input video, which, as
our experiments show, positively impact the results.

The contributions of this paper are summarized
as follows:

1. We propose an end-to-end CNN-Transformer
model for solving the dense video captioning
task.

2. We leverage multilingual transcripts of the
videos.

3. Our experiments on the SoccerNet dataset
demonstrate significant improvements in pro-
cessing speed during both training (5.4×) and
inference (4.7×), along with a substantial re-
duction in GPU memory usage during both
training (5.1×) and inference (7.8×).

2 Related Work

2.1 Dense Video Captioning

Most previous work on dense video captioning fol-
lows a two-stage approach: first, event proposals
are generated, and then captions are created for
these events. E2vid (Huang et al., 2020) sepa-
rately extracts text and video features and passes
them to a decoder to generate captions. The video
frame features are extracted using a pretrained vi-
sion model on each RGB frame individually, which
are then passed through a transformer. This pa-
per employs three different pretraining tasks: text,
text-video, and segment alignment and ordering.

Similarly, PDVC (Wang et al., 2021) uses a pre-
trained RGB frame encoder followed by a trans-
former, along with N learnable queries to generate
N events. After predicting the number of events
in the video, it selects the most probable proposals
as final events. This work utilizes a deformable
transformer (Zhu et al., 2020) for faster conver-
gence. GVL (Wang et al., 2023) also employs
learnable queries after extracting features from
RGB frames. This paper extracts features from
ground truth labels and trains the model using two
tasks: event-to-text generation and text-to-event
generation and introduce semantic cost in addition
to localization cost to enhance robustness against
annotation noise. Vid2Seq (Yang et al., 2023) lever-
ages a vast amount of YouTube videos available
in the HowTo100M (Miech et al., 2019) and YT-
Temporal-1B (Zellers et al., 2022) datasets to pre-
train a transformer model with two objectives: gen-
eration and denoising. A key contribution of this
work is the use of time tokens to generate events in
a single stage, which proves effective. In our work,
we utilize the common two-stage model as training
a model for directly predicting event times requires
a substantial amount of data.

2.2 Compressed Video Processing

Compressed videos have primarily been used in
the action recognition task. Wu et al. (2017) first
demonstrated that processing videos in the com-
pressed domain improves both model speed and
accuracy in the context of action recognition. Pre-
vious work on compressed domain action recogni-
tion can be categorized into three main approaches:
using I-frames + residuals (e.g. Battash et al., 2020
and Abdari et al., 2019), using I-frames + motion
vectors (e.g. Wang and Torresani, 2022 and He
et al., 2022), and using I-frames + motion vectors
+ residuals (e.g. Wu et al., 2017 and Mou et al.,
2024). There are also a few rare works that utilize
macro-blocks (e.g. Chadha et al., 2017) or DCT
coefficients (e.g. Ming et al., 2023). However, the
common methods primarily rely on the three main
categories mentioned above. Our best model uses
I-frames and motion vectors only, as our experi-
ments show that, at least for the SoccerNet dataset,
including residuals has a negative effect.

3 Method

As mentioned above, the goal of our proposed
method is to leverage compressed videos to en-
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Figure 2: Two different possible structures of com-
pressed videos. P-frames only refer to their previous
frame, while B-frames can refer to any frame before or
after them within their GOP. (Ming et al., 2024)

hance processing speed and reduce GPU memory
usage. To achieve this, we first explain the struc-
ture of compressed videos in section 3.1. Then, we
introduce the proposed model in section 3.2.

3.1 Compressed Video Structure

Modern video codecs like H.264 utilize temporal
redundancy between successive video frames
to compress video data. These codecs break
down the video into multiple groups of pictures
(GOPs) based on the differences between frames.
Each GOP can be reconstructed independently
without relying on other GOPs. Higher rates of
change result in smaller GOPs, while lower rates
of change produce larger GOPs. The first frame
of each GOP is always an I-frame, which is a
complete RGB image that can be reconstructed
independently. The remaining frames can be either
P-frames (predictive coded frames) or B-frames
(bi-predictive coded frames). Both types of frames
consist of a motion vector and a residual. The
motion vector represents the movement of each
macro-block in the current frame relative to the
reference frame, and the residual captures the
difference in color between frames after applying
the motion vector to the reference frame. The
reconstruction process can be formulated as
follows:

Frec = ApplyMV (Fref ,mv) + res (1)

where Frec is the reconstructed frame,
ApplyMV applies the motion vector to the
reference frame, Fref is the reference frame,
mv is the motion vector and res is the residual.
Each macro-block typically consists of a group
of 4 × 4 pixels, so the number of elements in the
motion vector is 16× lower than in the original
RGB frame. The difference between P-frames
and B-frames is that a B-frame can refer to any
frame before or after it within its GOP, whereas a
P-frame only refers to the previous frame. Using
B-frames provides higher compression rates but
makes it more challenging for the model to learn
patterns. Therefore, we configure the FFMPEG
package (Tomar, 2006) to use only P-frames.

3.2 Model Architecture

Figure 3 presents an overview of the proposed
architecture. After preprocessing, extracting I-
frames, motion vectors, and residuals, and dividing
the input video into chunks, each chunk is pro-
cessed through the following stages: 1. Encoding
I-frames, motion vectors, and residuals separately.
2. Encoding the past, present, and future periods
separately using a common transformer encoder
(Vaswani et al., 2017). 3. Encoding the entire chunk
and predicting each event individually. 4. If an
event has occurred, generating a caption using the
encoded frames of the entire chunk and transcript
features from the present period.

Each of these steps is explained in more detail
in the following sections.

3.2.1 Preprocess Videos
First, we preprocess the original videos using the
FFMPEG package. After this processing, the
videos are H.264 encoded, include only I-frames
and P-frames, and have a resolution of 224× 224
with a frame rate of 2. Typically, the H.264 codec
creates GOPs of varying lengths based on the rate
of change between frames. We investigated the
impact of this behavior by comparing it to a setup
where we enforced a GOP size equal to our short
memory length. The experiments indicate that us-
ing a dynamic GOP size benefits the model. For
more details, refer to section 4.6.3.

3.2.2 Extract I/P-frames
We extract I-frames, motion vectors, and residuals
using the tool described in (Shen, 2023). I-frames
and residuals are saved in .jpg format, while motion
vectors are saved in .png format. This is because
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Figure 3: Architecture overview. The process involves multiple stages: Encoding I-frames, motion vectors, and
residuals separately; Encoding the past, present, and future periods using a common transformer encoder; Encoding
the entire chunk and predicting events individually; and, if any event occurs, generating captions using the encoded
frames of the entire chunk and transcript features from the present period.

motion vectors are more sensitive to noise, which
can be damaged through .jpg compression.

3.2.3 Extract I-frames Features

We use the pooler output of the CLIP-vit-base-
patch32 model (Radford et al., 2021), available
on HuggingFace (Wolf et al., 2020). Given that
soccer game frames share many common elements,
such as the ball, players, and pitch, we selected the
CLIP model over ResNet (He et al., 2015). CLIP
is more likely to provide well-distinguishable fea-
tures for different frames of a soccer game due
to its training on image-caption pairs, which con-
sider the relative positions of entities within an
image—important for generating captions. In con-

trast, ResNet is trained solely to predict the pres-
ence of a class in an image. To expedite the training
process, we save the extracted features to disk.

3.2.4 Extract Transcripts Features

Since the videos are multilingual, we extract
their transcripts using the Whisper-large-v3 model
(Radford et al., 2022), which can detect the lan-
guage of the input audio and perform automatic
speech recognition (ASR). We utilize the ’re-
turn_timestamps’ argument of this model to ob-
tain the timestamps for transcript chunks. These
timestamps are then used to align the transcript
chunks with the corresponding video frames. To
extract features from the transcripts, we first divide
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them into chunks and then use the UMT5 encoder
(Chung et al., 2023) , a multilingual version of T5.
As with the video features, we save the extracted
transcript features to expedite the training process.

3.2.5 Video Encoder
The video encoder has three stages:

1. Encode frames individually: I-frame features
are pre-extracted. Motion vectors and residu-
als are encoded using two separate ResNet-
18 models as they can be processed using
lightweight neural networks. Each frame in
the current chunk is encoded using its respec-
tive encoder. The motion vectors and resid-
uals of a P-frame are concatenated and pro-
jected to match the I-frame feature size using
a fully connected layer. Finally, frames are
arranged according to their positions in the
original video.

2. Encode periods: Frame type encodings, which
are learnable and help the model differentiate
between I-frames and P-frames, are added to
the frames. The frames are then divided into
three periods (past, present, future) of equal
size (short memory length). A common pe-
riod encoder, a transformer encoder, is used
to encode the frames within each period con-
cerning each other.

3. Encode the whole chunk: Period type encod-
ings, which are learnable and help the model
distinguish different periods, are added. A fi-
nal transformer encoder encodes the frames
of the entire chunk with respect to each other.

Note that all transformer encoders are standard,
utilizing sinusoidal positional encoding.

3.2.6 Event Spotting
A fully connected layer with a sigmoid activation
function is applied to the mean of the encoded
frames of each period to predict whether an event
has occurred in the current period. The present pe-
riod is the primary focus, while the past and future
periods aid in feature extraction. A softmax is not
used because events can occur simultaneously (e.g.,
a penalty and a yellow card).

3.2.7 Decoder
The decoder uses the UMT5 architecture and pre-
trained weights to generate captions. The input con-
sists of encoded video frames concatenated with

transcript features from the present period in time
dimension. The output is the caption corresponding
to the present period. Multiple captions for differ-
ent events within the same period are separated by
the ’@’ symbol. The decoder is trained solely on
positive samples.

4 Experiments

All experiments were conducted using a single
NVIDIA A100-SXM4-80GB GPU.

4.1 Two-stage Training
We use a standard two-stage training process: first,
training the encoder and the spotting head, then
freezing them and fine-tuning the decoder. End-
to-end training yielded worse results. In the first
stage, a weighted random sampling strategy is used,
and in the second stage, all positive samples are
utilized.

4.2 Sampling Strategy
As mentioned earlier, the video is divided into
chunks of length equal to the short memory length
(a hyperparameter). The model is also provided
with the previous and next chunks to utilize past
and future information. The SoccerNet dataset is
highly imbalanced, with far fewer chunks contain-
ing events than those without. To mitigate this, we
assign higher weights to positive samples during
sampling. The weights are calculated as follows:

ewc = (E − Ec)/E (2)

wi =
C∑
c=0

yic × ewc (3)

where E is the total number of events in chunks,
Ec is the number of events in class c, ewc is the
weight of event class c, yic is the c-th class of the
i-th sample’s label, and wi is i-th sample’s weight.

And negative sample weights are calculated as
follows:

nw =
N∑
i=0

wi/NS (4)

wi = nw/NS (5)

where nw is the total weight of the negative
samples, which equals the total weight of positive
samples, and NS is the number of negative sam-
ples. As a result, each epoch contains an equal
number of positive and negative samples.
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4.3 Loss Function
Despite this sampling strategy, the model still en-
counters more zeros than ones, as the number of
ones in a label is significantly smaller. Therefore,
we use the focal loss function to further address
the dataset imbalance, experimenting with different
values of alpha while keeping gamma fixed at 2.

4.4 Implementation Details
Our model is implemented using PyTorch. As men-
tioned, videos are resized to 224× 224 resulting in
motion vectors of size 56×56 and residuals of size
224× 224. The residuals are resized to 56× 56 to
match the size of the motion vectors. For ablation
studies, the model is trained on the SoccerNet train-
ing set and evaluated on the validation set. Each
training epoch in this phase contains 18,000 sam-
ples. For comparison with state-of-the-art models,
the model is trained on the combined training, vali-
dation, and test sets and evaluated on the challenge
set using the Eval.ai platform (EvalAI). Each train-
ing epoch in this part has 29000 samples for the
first training stage. Each training epoch in this
phase contains 29,000 samples. The batch size is
fixed at 16 for all experiments. Both the period
encoder and the video encoder are 2-layer trans-
former encoders with a hidden size of 1536 and 32
attention heads. We use the AdamW (Loshchilov
and Hutter, 2017) optimizer with β1 = 0.9 and
β1 = 0.999. The cosine learning rate scheduler
starts from 1e − 4 and ends at 0.35 of the cosine
cycle, yielding a final learning rate of 2e− 5.

4.5 Evaluation Metrics
We use the SoccerNet challenge metrics:
METEOR, BLEU@1, BLEU@2, BLEU@3,
BLEU@4, ROUGE_L, CIDEr, recall, and pre-
cision. BLEU@N measures n-gram precision,
METEOR assesses semantic accuracy, ROUGE
evaluates word order, and CIDEr measures
the degree to which the caption conveys key
information.

4.6 Ablation Study
We conducted multiple ablation studies to evalu-
ate the impact of various changes on model perfor-
mance. The best model from each part was selected
for further evaluation. In the tables, bold = best,
underline = second best, TS = 1 stage training or 2
stage training, SML = short memory length, GOP =
size of each group of pictures, Res = Use residuals,
Trans = Use transcripts.

4.6.1 Residuals and Transcripts
The first experiment assessed the usefulness of
residuals and transcripts. We tested all four possi-
ble combinations, and Table 1 shows the results.

As shown, using residuals degrades the model
accuracy a lot, possibly because this reason: as
residuals have visual structure as I-frames and the
differences between successive frames in soccer
videos are negligible, the residuals cannot add any
information.

Using transcripts, however, can be beneficial,
as indicated by the higher CIDEr score, which re-
flects better key point capture in generated captions.
Other metrics can be ignored for comparison, as
they are nearly identical and do not follow a con-
sistent pattern.

4.6.2 Short Memory Length
We cannot use a short memory length greater than
60 (30s) as the challenge evaluation uses a 30s
window around the ground truth. Table 2 shows
the results for two different short memory lengths.

Most metrics improve with a short memory
length of 60 as a larger chunk size provides the
model with more information for caption genera-
tion.

4.6.3 GOP Size
As mentioned earlier, the H.264 codec typically
uses a dynamic GOP (Group of Pictures) size,
which adjusts according to the frequency of
changes between successive frames. A higher fre-
quency of changes results in a smaller GOP size,
leading to more I-frames in areas with significant
changes, and vice versa. To evaluate the impact of
this, we conducted an experiment where we forced
the FFMPEG package to set the GOP size to a short
memory length. Table 3 presents the results.

The results demonstrate that forcing a short GOP
size significantly degrades performance, particu-
larly in the CIDEr metric, which measures the
alignment of key concepts. Thus, allowing FFM-
PEG to use a dynamic GOP size is beneficial for
the model’s performance.

4.6.4 Two Stage Training
We also investigated whether a two-stage training
approach is more effective than training the model
all at once. As shown in Table 4, two-stage training
yields better results. This is because negative sam-
ples can negatively impact the decoder component
of the model when trained simultaneously.
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TS SML GOP Res Trans α B@1 B@2 B@3 B@4 M R@L C recall precision
2 60 auto ✗ ✗ 0.9 33.29 27.50 24.11 21.63 19.21 26.40 18.38 82.95 62.11
2 60 auto ✗ ✓ 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
2 60 auto ✓ ✗ 0.9 30.24 25.13 22.28 20.09 18.00 22.48 13.61 91.86 60.30
2 60 auto ✓ ✓ 0.9 30.01 25.48 22.83 20.78 17.71 23.61 15.98 91.86 60.29

Table 1: Ablation study about impact of using residuals and transcripts.

TS SML GOP Res Trans α B@1 B@2 B@3 B@4 M R@L C recall precision
2 60 auto ✗ ✓ 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
2 40 auto ✗ ✓ 0.9 32.33 27.22 24.17 21.85 19.11 25.16 17.03 91.61 59.44

Table 2: Ablation study about impact of different length of short memory.

4.6.5 Focal Loss Alpha

We experimented with three different values of the
alpha parameter in focal loss. The results indicate
that a higher alpha increases recall at the cost of
lower precision, and vice versa. According to Table
5 the optimal alpha value is 0.6. The experiments
reveal a strong correlation between precision and
generation metrics.

4.6.6 Generation Method

Initially, we observed that samples with multiple
events often resulted in empty captions. We exam-
ined whether filtering these out would be benefi-
cial. Additionally, we experimented with different
generation strategies, including beam search and
top-k+top-p sampling. Table 6 shows that the best
configuration is to use greedy generation while ig-
noring blank captions.

4.7 Comparison with RGB

To assess the utility of using compressed videos,
we compared our proposed model with an RGB
variant where original RGB frames were used in-
stead of I/P-frames. Results in Table 7 show that
our proposed method achieves competitive results
compared to its RGB variant.

Moreover, to understand the impact of using
compressed videos on speed and GPU memory
consumption, we conducted another comparison
against the RGB variant. The results in Table 8 indi-
cate approximately 5.4× faster training speed and
5.1× lower GPU memory usage, as well as 4.7×
faster inference speed and 7.8× lower GPU mem-
ory usage compared to the RGB-based approach,
which is significant. These results were obtained
using the PyTorch profiler.

4.8 Comparison with SOTA methods

We evaluated our proposed model against state-of-
the-art (SOTA) models on the challenge set of the
SoccerNet dataset. The evaluation was conducted
using the best configuration, which includes two-
stage training, a short memory length of 60, auto
GOP size, no residuals, inclusion of transcripts, a
focal loss alpha of 0.6, and greedy generation while
ignoring blank captions.

Table 9 presents the results, where our model
ranks second in almost all metrics and exhibits
performance comparable to SOTA models. Once
again, a positive correlation between precision and
generation metrics is evident. These results suggest
that compressed video retains most of the necessary
information with minimal redundancy.

4.9 Qualitative Results

As discussed in the appendix, Table 10 provides ex-
amples comparing the model’s output to the ground
truth, highlighting the model’s bias towards corner
events and events with no comments. Similar re-
sults are shown in Figure 4, which presents the
confusion matrix. Further examples, along with
frames from the time intervals used for predictions,
are shown in Figures 5, 6, 7, and 8.

5 Conclusion

In this paper, we introduce a CNN-Transformer
architecture for dense video captioning using com-
pressed videos for the first time. The experiments
demonstrate that our proposed model not only
achieves competitive performance with SOTA mod-
els but also significantly reduces GPU memory us-
age and improves processing speed. This suggests
that compressed videos could potentially become
the standard for video processing, replacing tradi-
tional RGB frames processing.



17

TS SML GOP Res Trans α B@1 B@2 B@3 B@4 M R@L C recall precision
2 60 auto ✗ ✓ 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
2 60 60 ✗ ✓ 0.9 29.66 26.22 24.13 22.43 18.21 24.33 11.91 91.77 56.86

Table 3: Ablation study about impact of different different GOP sizes.

TS SML GOP Res Trans α B@1 B@2 B@3 B@4 M R@L C recall precision
2 60 auto ✗ ✓ 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
1 60 auto ✗ ✓ 0.9 32.17 26.31 23.02 20.57 20.24 25.20 17.02 93.60 56.86

Table 4: Ablation study about impact of different training strategies.

TS SML GOP Res Trans α B@1 B@2 B@3 B@4 M R@L C recall precision
2 60 auto ✗ ✓ 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
2 60 auto ✗ ✓ 0.6 36.70 30.12 26.24 23.32 21.94 32.48 28.77 32.44 72.46
2 60 auto ✗ ✓ 0.4 34.66 28.33 24.60 21.80 22.54 32.25 28.54 23.99 74.81

Table 5: Ablation study about impact of different values of alpha in focal loss.

IB NB TOP_K TOP_P α B@1 B@2 B@3 B@4 M R@L C recall precision
✗ 1 0 0 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
✓ 1 0 0 0.9 33.89 27.65 24.06 21.43 21.53 28.49 21.33 82.92 61.12
✓ 5 0 0 0.9 28.40 22.38 19.32 17.12 20.18 25.99 15.64 82.92 61.10
✓ 1 50 0.95 0.9 30.27 24.34 21.19 18.87 19.81 25.90 13.24 82.92 61.18

Table 6: Ablation study about impact of different generation strategies. (IB = Ignore blanks, NB = Number of
beams)

RGB TS SML GOP Res Trans α B@1 B@2 B@3 B@4 M R@L C recall precision
- 2 60 auto ✗ ✓ 0.9 33.30 27.17 23.63 21.05 19.87 26.31 19.23 82.92 62.11
✓ 2 60 auto - - 0.9 34.05 28.60 25.32 22.78 20.39 26.84 22.04 86.26 60.79

Table 7: Accuracy comparison with RGB variant of the same architecture.

Video Encoder Train Time (s) Train GPU Mem. (TB) Inference Time (s) Inference GPU Mem. (TB)
Compressed Video 15.13 1.5 8.67 0.29

RGB 81.77 7.63 40.90 2.26

Table 8: Speed and GPU memory footprint comparison with RGB variant of the same architecture. The values
shows the total time and total amount of GPU memory spent to encode the frames of all of the samples of a match
(Encoder part only).

Team B@1 B@2 B@3 B@4 M R@L C recall precision
OPPO 35.55 31.03 28.13 25.65 26.66 32.33 69.73 24.59 68.59
HZC 29.73 24.52 21.44 19.13 21.30 24.56 24.76 98.68 51.19

Baseline 2 30.01 24.80 21.74 19.44 21.25 24.65 25.68 98.68 51.21
justplay 29.83 24.68 21.66 19.38 21.20 24.34 25.89 98.68 50.99
aisoccer 29.53 24.42 21.42 19.15 21.02 24.31 23.72 98.63 50.83

Baseline 1 11.91 9.97 8.83 7.97 15.24 10.69 16.33 98.97 23.92
CVT5 (Ours) 36.64 29.60 25.55 22.59 22.17 32.02 26.84 42.16 72.97

Table 9: Comparison with state-of-the-art models (Leaderboard 2023) (Cioppa et al., 2023).
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6 Limitations

The primary limitation of this work is that it was
only evaluated on a single dataset. The results may
vary significantly on other benchmarks, as events
in a soccer game differ greatly from, for example,
cooking events. It would be beneficial to evaluate
the model on additional datasets.

Another limitation is that the quality of gener-
ated captions is heavily influenced by the low pre-
cision in event detection. This issue arises for sev-
eral reasons: 1. Low precision means the model
may predict an event where there is none, lead-
ing to incorrect captions. 2. Low precision also
makes it difficult for the encoder to distinguish be-
tween events, complicating the task of generating
distinct captions for different events. 3. The Soccer-
Net dataset has a highly imbalanced distribution of
events, where the model’s outputs are often biased
toward the majority class. As shown in Table 9 on
the 2023 leaderboard, achieving a certain accuracy
level is easy, but improving beyond that is challeng-
ing due to the difficulty in accurately predicting
minority class events. Future work could focus
on strategies to better learn and predict minority
classes.
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Confidence GT Event G Event GT Caption G Caption

0.88 corner corner [PLAYER] ([TEAM]) at-
tempts to find a teammate
with the corner, but the ef-
fort is snuffed out by the
goalkeeper.

[PLAYER] ([TEAM]) takes
the corner, but it’s inter-
cepted by the defender.

0.52 - corner [PLAYER] ([TEAM])
smashes the ball towards
goal from the edge of the
penalty box, but it fails to
bother the goalkeeper as it
hits the defensive wall.

[PLAYER] ([TEAM]) takes
the corner, but it’s inter-
cepted by the defender.

0.59 soccer-ball soccer-ball Goal! [PLAYER] feeds
[PLAYER] ([TEAM]), who
taps the ball into an empty
net. He makes it 1:0.

[PLAYER] ([TEAM]) is un-
able to feed a low pass into
the path of one of his team-
mates. The ball goes out of
play and [TEAM] will have
a goal kick.

0.81 corner corner [PLAYER] ([TEAM])
launches a powerful cross
from the corner into the box,
but the ball is intercepted by
the defender. The linesman
makes the right call and
[TEAM] will have a corner.

[PLAYER] ([TEAM]) takes
the corner, but it’s inter-
cepted by the defender.

0.89 substitution substitution The referee allows time for
a substitution. [PLAYER]
will be replaced by
[PLAYER] ([TEAM]).

[COACH] has decided to
introduce fresh legs, with
[PLAYER] ([TEAM]) re-
placing [PLAYER].

0.66 - - [PLAYER] ([TEAM]) is
having a lively performance.
He is causing problems and
wanting the ball at every op-
portunity.

[PLAYER] ([TEAM])
sends a cross into the box,
[TEAM]]]] ([TEAM]]),
[TEAM]] will have a
chance to score from a free
kick. [TEAM] will have a
chance

0.54 - - [PLAYER] ([TEAM])
whips the ball in from the
long-range free kick, but
the first man gets it clear.

[PLAYER] ([TEAM])
sends a pass into the box,
[PLAYER] ([TEAM]) is
REFEREE]REFEREE]
REFEREE]REFEREE]
REFEREE]REFEREE]
REFEREE]REFEREE]

0.68 - - [PLAYER] ([TEAM]) picks
up a rebound inside the
penalty area and drills a shot
to the bottom right corner,
but is denied by a reflex save
from [PLAYER]. [TEAM]
have been awarded a corner
kick. The referee and one of
his assistants both point at
the corner flag.

[PLAYER] ([TEAM])
sends a cross into the box,
but the opposition’s defence
clears the ball away to
eliminate the danger. The
referee blows his whistle,
[TEAM] are awarded a
corner kick

0.58 - - [PLAYER] ([TEAM]) re-
ceives a pass and decides
to smash the ball from long
range, but his poor effort
sails high over the bar.

[PLAYER] ([TEAM])
sends a cross into the box,
but [PLAYER] comes off
his line to gather the ball.

0.86 substitution substitution The manager makes a sub-
sitution with [PLAYER]
([TEAM]) coming on for
[PLAYER].

[COACH] has decided to
introduce fresh legs, with
[PLAYER] ([TEAM]) re-
placing [PLAYER].

0.67 - - [PLAYER] ([TEAM]) was
trying to get to the ball but
clattered into the legs of the
opponent as well. [REF-
EREE] blows his whistle for
an infringement. [TEAM]
are awarded a free kick.
Let’s see what they create
from this.

[PLAYER] ([TEAM])
sends a cross into the box,
but the opposition’s defence
clears the ball away to
eliminate the danger.

Confidence GT Event G Event GT Caption G Caption

0.82 corner corner [PLAYER] ([TEAM]) takes
the resulting corner which is
well defended.

[PLAYER] ([TEAM]) sends a
cross into the box, but the op-
position’s defence clears the
ball away to eliminate the dan-
ger. The referee and his assis-
tant both point at the corner
flag. [TEAM] will

0.69 - corner [PLAYER] ([TEAM]) whips
the ball in, but it fails to
reach any of his teammates
as the opposition’s defence
averts the threat. The lines-
man points to the corner flag,
[TEAM] are going to take it.

[PLAYER] ([TEAM]) sends a
cross into the box, but the op-
position’s defence clears the
ball away to eliminate the dan-
ger. The referee and his assis-
tant both point at the corner
flag. [TEAM] will

0.85 corner corner [PLAYER] ([TEAM]) swings
in a cross from the corner, but
[PLAYER] reads it well and
gathers the ball.

[PLAYER] ([TEAM]) sends a
cross into the box, but the op-
position’s defence clears the
ball to safety. The ball goes
out of play and [TEAM] have
been awarded a corner kick.

0.53 - - He should have done better.
[PLAYER] ([TEAM]) is af-
forded space to connect with
a [PLAYER] cross, but his
header from the centre of the
box flies well wide of the left
post.

[PLAYER] ([TEAM]) sends a
cross into the box, but the op-
position’s defence clears the
ball to safety.

0.68 corner - [PLAYER] ([TEAM]) goes
over to take the corner kick
and it looks like he will send
the ball into the penalty box.

[PLAYER] ([TEAM]) sends a
cross into the box, but the op-
position’s defence clears the
ball away to eliminate the dan-
ger. The referee and his assis-
tant both point at the corner
flag. [TEAM] will

0.54 - - What a goal-scoring opportu-
nity! [PLAYER] ([TEAM])
finds some space inside the
box and gets in a strike, but
the shot is brilliantly blocked
by one of the defending play-
ers sliding in.

[PLAYER] ([TEAM])
sends a pass into the box,
[PLAYER] ([TEAM]) is
REFEREE]REFEREE]
REFEREE]REFEREE]
REFEREE]REFEREE]
REFEREE]REFEREE]

0.50 - - [PLAYER] ([TEAM]) pro-
duces a lovely ball into the
penalty area but the defender
manages to intercept and com-
fortably averts the danger.

[PLAYER] ([TEAM])
sends a pass into the box,
[PLAYER] ([TEAM]) is
REFEREE]REFEREE]
REFEREE]REFEREE]
REFEREE]REFEREE]
REFEREE]REFEREE]

0.50 - - [PLAYER] ([TEAM]) at-
tempts to slip the ball through
the defence, but is unable to
find any of his teammates.

[PLAYER] ([TEAM]) sends
a cross into the box, but
[PLAYER] comes off his line
to gather the ball.

0.58 corner corner [PLAYER] ([TEAM]) swings
in the corner kick, but one of
the defenders leaps highest to
head the ball away.

[PLAYER] ([TEAM]) takes
the corner kick and sends a
lovely ball into the penalty
area, but the opposition’s de-
fence is ready and knocks the
ball to safety.

penalty Poor challenge! [PLAYER]
([TEAM]) is penalised for
tripping and [REFEREE]
blows his whistle. PENALTY
to [TEAM]! Great chance to
score.

0.58 y-card - [PLAYER] ([TEAM]) com-
mits a foul and is shown a yel-
low card without any hesita-
tion from the referee.

[PLAYER] ([TEAM]) is pe-
nalised for holding. [REF-
EREE] signals a set piece.

soccer-ball [PLAYER] ([TEAM]) sends
[PLAYER] the wrong way
and fires the penalty into the
middle of the goal!

Table 10: Some examples of the model’s output compared to the ground truth
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Figure 4: Confusion matrix on the SoccerNet validation set
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Figure 5: Model output: [PLAYER] ([TEAM]) takes the corner, but it’s intercepted by the defender. Ground truth:
[PLAYER] ([TEAM]) attempts to find a teammate with the corner, but the effort is snuffed out by the goalkeeper.

Figure 6: Model output: [PLAYER] ([TEAM]) takes the corner, but it’s intercepted by the defender. Ground truth:
[PLAYER] ([TEAM]) smashes the ball towards goal from the edge of the penalty box, but it fails to bother the
goalkeeper as it hits the defensive wall.
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Figure 7: Model output: [PLAYER] ([TEAM]) is unable to feed a low pass into the path of one of his teammates.
The ball goes out of play and [TEAM] will have a goal kick. Ground truth: Goal! [PLAYER] feeds [PLAYER]
([TEAM]), who taps the ball into an empty net. He makes it 1:0.

Figure 8: Model output: [COACH] has decided to introduce fresh legs, with [PLAYER] ([TEAM]) replacing
[PLAYER]. Ground truth: The referee allows time for a substitution. [PLAYER] will be replaced by [PLAYER]
([TEAM]).
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