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Abstract

This research introduces an innovative At-
tention BILSTM-XLM-RoBERTa model for
tackling the challenge of fake news detec-
tion in Malayalam datasets. By fine-tuning
XLM-RoBERTa with Masked Language Mod-
eling (MLM) on transliteration-aware data, the
model effectively bridges linguistic and script
diversity, seamlessly integrating native, Roman-
ized, and mixed-script text. Although most of
the training data is monolingual, the proposed
approach demonstrates robust performance in
handling diverse script variations. Achieving
a macro Fl-score of 0.5775 and securing top
rankings in the shared task, this work highlights
the potential of multilingual models in address-
ing resource-scarce language challenges and
sets a foundation for future advancements in
fake news detection.

1 Introduction

The rapid growth of social media platforms has
revolutionized communication, enabling seamless
information exchange and real-time updates. How-
ever, this connectivity has also fueled the spread
of misinformation, or fake news. Detecting fake
news has become a pressing challenge, particularly
in resource-scarce languages like Malayalam.

The Fake News Detection in Dravidian Lan-
guages - DravidianLangTech@NAACL 2025'
(Subramanian et al., 2025, 2023, 2024b) shared task
provides a platform for researchers to tackle the crit-
ical challenge of detecting fake news in Malayalam-
language news articles. Task 2, the FakeDetect-
Malayalam shared task, focuses on classifying mis-
information into five nuanced categories. In an age
of information overload, accurate detection is cru-
cial for fostering trustworthy communication and
curbing the spread of misinformation. The task
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seeks to inspire the development of effective mod-
els designed to address the unique linguistic and
contextual complexities of Malayalam.

Our study presents a robust architecture combin-
ing fine-tuned XLM-RoBERTa embeddings with
a custom Attention-BiLSTM classifier to enhance
contextual understanding and capture complex se-
quential dependencies in multilingual text. The
embeddings, trained using Masked Language Mod-
eling (MLM), were derived from the Al4Bharath
dataset, incorporating diverse transliteration pat-
terns to handle linguistic and orthographic variabil-
ity. This approach enables effective processing of
native scripts, Romanized text, and mixed-script
data. Despite the monolingual dominance in train-
ing data, the model outperforms baselines, demon-
strating strong cross-lingual adaptability. The
Attention-BiLSTM classifier, leveraging general
attention mechanisms, ensures precise classifica-
tion in complex linguistic scenarios.

This study analyzes data preprocessing, MLM
training, and classifier design, introducing inno-
vations for improved accuracy and scalability. It
establishes a robust framework for fake news detec-
tion in Dravidian languages, offering insights into
model performance and deployment challenges.

2 Related Work

The growing challenge of disinformation has driven
extensive research into fake news detection. Raja
et al. (2023) explored detecting fake news in Dra-
vidian languages using transfer learning with adap-
tive fine-tuning, while Keya et al. (2022) employed
a pretrained BERT model with data augmentation,
benchmarking its performance against other mod-
els. Similarly, Goldani et al. (2021) investigated
capsule networks for extracting n-gram-based fea-
tures.

Research efforts have also addressed fake news
detection in low-resource languages. Gereme,
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Fantahun and Zhu, William and Ayall, Tewodros
and Alemu, Dagmawi (2021) and Saghayan et al.
(2021) focused on Amharic and Persian, respec-
tively, while Faustini and Covdes (2020) empha-
sized the importance of addressing fake news in
resource-poor languages, including Dravidian lan-
guages. Furthermore, Vijjali et al. (2020) proposed
a two-stage pipeline leveraging BERT and AL-
BERT for detecting COVID-19-related misinfor-
mation.

The shared tasks on Fake News Detec-
tion in Malayalam, organized by Dravidian-
LangTech@EACL 2023 (S et al., 2023; Subrama-
nian et al., 2023) and 2024 (Subramanian et al.,
2024a,b), focused on classifying fake news, low-
resource settings. The top-performing teams in
the 2024 challenge utilized pre-trained Malay-
alam BERT (Rahman et al., 2024; Tabassum et al.,
2024), and XLM-RoBERTa Base (Osama et al.,
2024) models, while in 2023, they relied on XLM-
RoBERTa (Luo and Wang, 2023), and MuRIL
(Bala and Krishnamurthy, 2023) models. These
tasks underscored challenges with transliterated
and mixed-script data, highlighting the need for
robust training and fine-tuned LLMs like XI.M-
RoBERTa, MuRIL and BERT, which effectively
handle linguistic nuances for accurate fake news
detection.

3 Dataset

The Fake News Detection from Malayalam News
(FakeDetect-Malayalam) shared task focuses on
detecting and classifying fake news in Malayalam-
language news articles. Accurate detection is crit-
ical for mitigating misinformation and ensuring
reliable communication. Task 2 involves classify-
ing news articles into five categories: False, Half
True, Mostly False, Partly False, and Mostly True
(Devika et al., 2024).

The dataset comprises social media comments
and news articles, annotated for these categories.
It is split into training and testing sets to ensure
balanced distribution, as shown in Table 1.

This dataset forms a strong foundation for train-
ing models to handle the linguistic and contextual
nuances of Malayalam, advancing fake news detec-
tion in low-resource settings.

4 Methodology

This section presents our proposed architecture,
combining fine-tuned XLM-RoBERTa embeddings

Label Train Test Total
FALSE 1386 100 1486
MOSTLY FALSE 295 56 351
HALF TRUE 162 37 199
PARTLY FALSE 57 7 64
Total 1900 200 2100

Table 1: Dataset distribution for Task 2: Fake news
detection in Malayalam.

with an Attention BILSTM classifier. The follow-
ing subsections detail our approach.

4.1 Fine-Tuning XLM-RoBERTa with MLM

XLM-RoBERTa, a multilingual transformer model
trained on 94 languages (Conneau et al., 2019),
was fine-tuned using Masked Language Modeling
(MLM) to enhance its contextual embeddings for
both multilingual and monolingual Malayalam text.
MLM involves masking portions of input text and
training the model to predict them, enabling it to
learn representations suited to the linguistic and
script challenges of Malayalam.

The fine-tuning dataset included monolingual
Malayalam text, fully Romanized transliterations,
and mixed-script data with 20-70% transliterated
words per sentence. This approach enabled the
model to effectively handle native scripts, Roman-
ized text, and mixed-script variations commonly
found in Malayalam social media. The fine-tuned
XLM-RoBERTa model® serves as a robust embed-
ding backbone, addressing both multilingual and
monolingual linguistic variability in Malayalam
text.

4.2 Attention BILSTM-XLM-RoBERTa
Model

This study proposes a hybrid Attention BiLSTM-
XLM-RoBERTa model (Liu and Guo, 2019;
Hochreiter and Schmidhuber, 1997; Graves
and Schmidhuber, 2005; Kodali et al., 2025;
Manukonda and Kodali, 2025, 2024a; Kodali and
Manukonda, 2024; Manukonda and Kodali, 2024b)
for multi-label classification. As illustrated in
Figure 1, the model integrates fine-tuned XLM-
RoBERTa embeddings with a BILSTM and atten-
tion mechanism to capture rich language-specific
features.

The input sequence is passed through XLM-
RoBERTa to generate contextual embeddings X €

2https ://huggingface.co/bytesizedllm/
MalayalamXLM_Roberta
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Figure 1: Architecture of the BILSTM-XLM-RoBERTa
Classifier Model. Residual components like layer nor-
malization and dropout regularization enhance general-
ization.

RTX 768.

X= XLMROBERTa(input_ids, attention_mask) (1)

These embeddings are processed by a BILSTM,
which produces forward and backward hidden
states H f,,q and Hy,,q. The combined hidden state
at each time step ¢ is:

H; = Hyya+; Hpwa t) 2

An attention mechanism assigns importance to
each hidden state, generating attention weights ay:

_ exp(ay)
Yoi— exp(ay)

The attention-weighted representation is com-
puted as:

a; = tanh(Wey-Hy), oy 3

T

Hattended = Z Qi - Ht (4)
t=1

Residual components such as layer normaliza-
tion and dropout are applied to the attention-
weighted representation to stabilize training and
reduce overfitting:

H gy opout = Dropout(LayerNorm(Hgttended))
(5)

Finally, a classification layer outputs logits:

lOgitS == WClS . Hdropout + bClS (6)

The model is trained using cross-entropy loss:

N
L=->Y yilog(y) (M
i=1

This architecture effectively combines fine tuned
XLM-RoBERTa base embeddings, BILSTM pro-
cessing, and attention to enhance multi-label clas-
sification performance.

5 Experiment Setup

The experiment employed transliteration-aware
fine-tuning for Malayalam fake news detection by
combining XLM-RoBERTa fine-tuning with MLM
and integrating embeddings into an Attention-
BiLSTM classifier.

5.1 Fine-Tuning the XLM-RoBERTa Model

XLM-RoBERTa was fine-tuned using MLM on a
transliteration-aware dataset derived from 340MB
of Malayalam monolingual text sourced from
Al4Bharath (Kunchukuttan et al., 2020). Using
IndicTrans (Bhat et al., 2015), the dataset was
transformed into three variants: original Malay-
alam script, fully transliterated Roman script, and
partially transliterated text with 20-70% transliter-
ated words per sentence. This ensured exposure to
transliteration patterns and orthographic variations
common in social media.

Fine-tuning used a 9:1 train-validation split, a
15% masking probability, a batch size of 16, and
a learning rate of 5 x 1075, Training ran for up to
10 epochs, with early stopping based on validation
perplexity to optimize embeddings for mixed-script
Malayalam text.

5.2 Integration into Attention BiLSTM

The fine-tuned embeddings, ‘Malay-
alamXL.M_Roberta‘, were input into an Attention
BiLSTM classifier with an input size of 768, a
hidden size of 512, and 3 LSTM layers. The
attention mechanism captured critical features and
dependencies in multilingual sequences.

Dropout (0.5) and layer normalization were ap-
plied to stabilize training and reduce overfitting.
The AdamW optimizer with a learning rate of
1 x 107° was used, with early stopping based on
validation loss and macro F1-score ensuring robust
performance.

This transliteration-aware MLM fine-tuning
and Attention BiLSTM setup effectively handled
transliterated and mixed-script Malayalam text.
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Label Precision Recall F1-Score Support
FALSE 0.67 0.83 0.74 100
HALF TRUE 0.48 0.30 0.37 37
PARTLY FALSE 1.00 0.57 0.73 7
MOSTLY FALSE 0.50 0.45 0.47 56
Accuracy - - 0.61 200
Macro Avg 0.66 0.54 0.58 200
Weighted Avg 0.60 0.61 0.60 200

Table 2: Classification Report on the Test Set for Fake News Detection

Team Name mF1 Rank
KCRL 0.6283 1
byteSizedLLM 0.5775 2
NLP_goats 0.5417 4

Table 3: Macro F1 (mF1) scores and ranks of top3
performing teams.

6 Results and Discussion

The proposed Attention BiLSTM-XLM-RoBERTa
model demonstrated competitive performance in
fake news detection on the Malayalam-English
code-mixed dataset’. As shown in Table 2, the
model achieved an overall accuracy of 61% with a
macro F1-score of 0.58. The ‘FALSE‘ label exhib-
ited the highest F1-score of 0.74, while the ‘HALF
TRUE"* label scored the lowest at 0.37, reflecting
challenges posed by imbalanced data.

The fine-tuned MalayalamXL.M_Roberta model,
optimized with Masked Language Modeling
(MLM), achieved a perplexity of 4.15, generating
effective contextual embeddings. When used in-
dependently, these embeddings achieved a macro
F1-score of 0.5394. Integrating them into the At-
tention BiLSTM classifier improved performance
to a macro F1-score of 0.5775 with an optimal con-
figuration of a learning rate of 1 x 10~°, an LSTM
hidden size of 512, and 3 LSTM layers. Other con-
figurations, such as a learning rate of 2 x 1072 with
256 hidden units and 2 LSTM layers, resulted in a
slightly lower F1-score of 0.5718. Comparatively,
an advanced encoder-decoder transformer model
achieved a macro F1-score of 0.5532, reaffirming
the efficiency of the Attention BiLSTM approach
for small datasets.

As shown in Table 3, our team, ByteSizedLLM,
secured second and third ranks in the shared task
with macro F1-scores of 0.5775 and 0.5718, re-

3https://github.com/mdpe999/
Fake-News-Detection/blob/main/task2.ipynb

spectively. Despite most of the training data be-
ing monolingual, the multilingual XLLM-RoBERTa
model exhibited remarkable robustness in handling
code-mixed scenarios, highlighting its adaptability
across diverse linguistic contexts.

7 Limitations and Future Work

The model’s performance was limited by the
dataset size, which was restricted to 340MB of
code-mixed text due to computational constraints.
Additionally, inaccuracies in the transliteration pro-
cess may have impacted the quality of embeddings.
The imbalanced label distribution also posed chal-
lenges, particularly for minority classes like ‘HALF
TRUE‘ and ‘PARTLY FALSE".

Future work aims to overcome limitations by us-
ing larger datasets, improving transliteration, and
exploring advanced architectures for better fake
news detection in multilingual and code-mixed con-
texts.

8 Conclusion

This study proposed an Attention BiLSTM-XLM-
RoBERTa model for fake news detection in Malay-
alam datasets. By fine-tuning XLM-RoBERTa
with MLM on transliteration-aware data and inte-
grating the embeddings into an attention-enhanced
BiLSTM architecture, the approach effectively ad-
dressed linguistic and script challenges in Malay-
alam text. The model achieved a macro F1-score
of 0.5775, securing top rankings in the shared
task and demonstrating its robustness in resource-
constrained settings.

Despite the predominantly monolingual nature
of the training data and transliteration limitations,
the model performed strongly, showcasing the abil-
ity of multilingual XLM-RoBERTa embeddings to
handle diverse script variations. These results un-
derscore the potential of multilingual models for
low-resource language tasks.
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