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Abstract

This paper introduces the detailed description
of the submitted model by the team NAYEL to
Fake News Detection in Dravidian Languages
shared task. The proposed model uses a simple
character n-gram TF-IDF as a feature extraction
approach integrated with an ensemble of vari-
ous classical machine learning classification al-
gorithms. While the simplicity of the proposed
model structure, although it outperforms other
complex structure models as the shared task re-
sults observed. The proposed model achieved
a f1-score of 87.5% and secured the Sth rank.

1 Introduction

The growth of social media platforms have signifi-
cantly contributed to the widespread issue of fake
news across the globe. Fake news, which refers
to intentionally deceptive or inaccurate informa-
tion circulated through internet, presents serious
challenges to public trust, governance, and soci-
etal health (Ashraf et al., 2022). While most re-
search in fake news detection has concentrated on
widely spoken languages like English, the distinct
linguistic and cultural characteristics of regional
languages have been largely overlooked (Nayel and
Amer, 2021). Dravidian languages, spoken mainly
in southern India, have received research attention
in the context of automatically fake news detec-
tion (Subramanian et al., 2024; Devika et al., 2024;
Subramanian et al., 2023).

Dravidian languages, such as Tamil, Telugu,
Kannada, and Malayalam, are highly diverse in
terms of their linguistic structures, including syn-
tax, semantics, and morphology. These languages
create unique difficulties for natural language pro-
cessing (NLP) models, especially when applied
to tasks like fake news detection. The variety in
regional dialects, differences in scripts, and the
influence of local culture further complicate the
process of distinguishing between true and false
information (Hegde et al., 2024, 2023).

This paper explores the submitted model to
the Fake News Detection in Dravidian Languages
shared task. This shared task is divided into two
subtasks, the first subtask aimed at classifying a a
given social media text into original or fake. While,
the second subtask aimed at detecting the fake news
from Malayalam News into five fake categories as
well as original. Our team participated in the first
subtask, and have submitted three runs.

The rest of the paper demonstrates the structure
of the submitted model and the experimental results
that have been produced in the devolvement phase.

2 Literature Review

Research works in fake news detection have gained
interesting in last few years according to the mas-
sive usage of social media platforms.

Nayel and Amer (2021) used a simple Term
Frequency-Inverse Document Frequency (TF-IDF)
framework to extract the features of Urdu tweets
and integrate with a linear classifier that achieved
f1-score of 67.9% and outperformed all the submit-
ted runs. The basic frame work that combines TF-
IDF and ML algorithms has been used efficiently
in various tasks such as text classification (Ashraf
et al., 2024) and word level language identification
(Ismail et al., 2022; Fetouh and Nayel, 2023). In the
era of large language models (LLMs), they have
been adapted for fake news detection (Hu et al.,
2024; Su et al., 2024).

The research work has been done in fake news
detection in Dravidian languages varies from the
classical machine learning approaches (K et al.,
2024), deep learning approaches (M et al., 2024)
and transformer-based approach (Tabassum et al.,
2024). K et al. (2024) explored character n-gram
model with classical ML algorithms such as Lin-
ear Regression (LR), Support Vector Machines
(SVMs), Naive Bayes (NB) and an ensemble model.
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Figure 1: The structure of the proposed ML-based model

3 Dataset

The dataset has been used in this task was collected
from various social media platforms such as X (for-
merly Twitter), Facebook etc. Detailed description
of dataset, the methodology has been used to col-
lect comments statistics and detailed analysis are
given in (Subramanian et al., 2025). Table 1 shows
the statistics of the dataset for both subtasks.

Task Class Train Test Dev
Fake 1599 507 406

Task A
Original 1658 512 409
Half True 145 24 -
False 1251 149 -

Task B
Partly False 44 14 -
Mostly False 242 63 -

Table 1: Statistics of the dataset
4 Methods

The proposed model composite of an ensemble
of three base classifiers namely; SVMs, NB and
linear classifier with Stochastic Gradient Descent
(SGD) as an optimization algorithm. Majority vot-
ing mechanism has been used to combine the out-

puts of the base classifiers.

As shown in figure

1, the general structure of the base classifier con-
sists of dataset pre-processing, feature engineering,
model training and evaluation.

* Data pre-processing
Data pre-processing or text cleaning aims
at omitting the unwanted texts such as stop-
words, repeated letters, emojis and any unin-
formative tokens. In our model we employed a

simple pre-processing procedure that removes
the repeated characters, emojis and stopwords.

» Feature Engineering

This phase involves feature extraction and se-
lection. We employed a simple character n-
gram TF-IDF for feature extraction. A wide
range of n-grams including 3-gram, 4-gram,
5-gram and 6-gram have been extracted for
the given text. Each token is consumed as a
feature This approach reported improved re-
sultsin .

* Model Training

A set of classical machine learning classifica-
tion algorithms have been implemented. The
set of classifiers are: SVM, Naive Bayes and
SGD. A voting-based ensemble model has
been implemented using aforementioned clas-
sifiers as base classifiers. Ensemble learning is
a machine learning technique that aggregates
several individual models to produce more ac-
curate predictions than a single model alone
(Nayel and Shashirekha, 2017).

e Evaluation

Performance evaluation of the model has been
measured by fl-score, which is widely used
in such cases of text classification. F1-score
is a harmonic mean of precision (P) and recall
(R) and is calculated as follows:

2PR
1— - =
f score

The general structure of voting-based ensemble
model is shown in figure 2. The output of the base
classifiers are input to a majority voting function.
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Figure 2: The structure of the majority voting ensemble
model

5 Experimental Setting and Results

In this section experimental setting hyper parame-
ters and running environment have been discussed.
The code is freely available on GitHub repository'.

A free package for python implementation of
classical machine learning algorithms text features
extraction sklearn® has been used to implement
proposed model. In development phase and to fit
the hyper parameters, the development set provided
by shared task organizers has been used. To get the
same results at each run, we utilized the package
random and set the parameter random_state at 42.

The results of the applying the proposed mod-
els on development set are given in Table 2. The

Classifier Precision Recall F1-score
SGD 0.89 0.86 0.87
NB 0.84 0.88 0.85
SVM 0.90 0.85 0.88
voting 0.89 0.86 0.88

Table 2: Results of the proposed model on development
set

results on development set show that SGD-based
model reported the minimum results in terms of all
metrics. While, SVM outperforms other models in
terms of precision. NB-based model reported the
highest recall. SVM and voting classifiers reported
the highest f1-score. Voting-based model, as it is
clear, utilize the strength of all classifiers.

For test set, the majority voting based model
outperforms all baseline model and reported f1-
score of 0.875.

1https ://github.com/hamadanayel/NAYEL_
DRAVIDIAN

Zhttps://scikit-learn.org

6 Conclusion

Fake news detection is a vital task in the era
of social media expansion especially for low
resources languages such as Dravidian languages.
This work proposed a basic model that uses
character n-gram TF-IDF and ML algorithms.
The results obtained by the proposed model is a
promising according to its simplicity and the low
computational resources have been spent.

The model can be improved by applying more
pre-processing steps as well as surveying more clas-
sical ML algorithms. In addition, LLMs can be
tested in this case.

7 Limitations

The proposed model as clear uses character n-gram
TF-IDF as a feature extraction approach, which is
not efficient in the sense of semantic features. This
is a lexicographical feature, while the meaning of
the token is not used. In addition, The quality of
dataset is a very important factor to develop an
amenable systems.

LLMs can be applied to the task, but the limited
computational resources access leads to applying
the classical computational models such as ML and
deep learning.
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