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Abstract

In this paper we study the patterns of label dis-
agreement in data used for instruction tuning
Large Language models (LLMs). Specifically,
we focus on data used for Reinforcement Learn-
ing from Human Feedback (RLHF). Our objec-
tive is to determine what is the primary source
of disagreement: the individual data points, the
choice of annotators, or the task formulation.
We annotate the same dataset multiple times un-
der different conditions and compare the over-
all agreement and the patterns of disagreement.

For task formulation, we compare SINGLE for-
mat where annotators rate LLM responses indi-
vidually with PREFERENCE format where anno-
tators select one of two possible responses. For
annotators, we compare data from human label-
ers with automatic data labeling using LLMs.

Our results indicate that: (1) there are very
few “universally ambiguous” instances. The
label disagreement depends largely on the task
formulation and the choice of annotators; (2)
the overall agreement remains consistent across
experiments. We find no evidence that PREF-
ERENCE data is of higher quality than SINGLE
data; and (3) the change of task formulation
and annotators impacts the resulting instance-
level labels. The labels obtained in different
experiments are correlated, but not identical.

1 Introduction

Training large language models (LLMs) to follow
instructions and aligning them to human prefer-
ences is a key step in aiming to ensure that models
are helpful and harmless (Leike et al., 2018). In
this paper we explore the quality of the data used
in the process. We seek to determine the cause
for disagreement when rating in-context LLM re-
sponses. We conducted a set of experiments to
assess to what extent disagreement depends on the
task formulation (individual rating vs. preference)
and the choice of annotators (humans vs. LLMs).
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Figure 1: Overall task agreement, cross-task label corre-
lation, and cross-task overlap of ambiguous instances.

We sampled 720 instances from the Anthropic
dataset (Bai et al., 2022a) and performed several
independent annotations. For task formulation, we
compared SINGLE , where annotators assign in-
dividual score to each context-response pair, and
PREFERENCE , where annotators have to choose be-
tween two possible responses for the same context.
For annotators, we compared (1) labels obtained by
humans with (2) labels obtained from pre-trained
LLMs internal states and (3) zero-shot labels ob-
tained from LLMs. We test both “base” LLMs and
their “instruction-tuned” counterparts.

For each experiment we measured: (1) the data
quality (inter-annotator agreement); (2) the cross-
task correlation of labels; and (3) the cross-task cor-
relation of instance-level agreement and the over-
lap of “ambiguous” examples. More explicitly, we
formulate the following research questions:

1. Overall IAA How much does the overall data
quality (IAA) change based on task formula-
tion and annotator choice?

Gold Labels Do different experiments approx-
imate the same underlying distribution?

Instance Ambiguity To what extent does
instance-level ambiguity depend on the ex-
perimental design and annotator choice?
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We perform further experiments to determine if
we can combine the data from the different experi-
ments and obtain more robust annotations.

Figure 1 shows a summary of our results. We
find that: (1) the overall IAA is similar across ex-
periments. Pre-trained LLMs tend to agree more
with each other than human annotators, which may
indicate a potential bias and lack of diversity in
the models. (2) The SINGLE and PREFERENCE
experiments assign labels with a strong correla-
tion, but also with significant differences. Labels
from LLMs have a moderate correlation with hu-
man preference (which response is better) but low
agreement on the magnitude of the difference (how
much better is the selected response). (3) Very few
of instances are “universally ambiguous”. We find
that annotation ambiguity is largely a function of
the task format and the choice of annotators.

Our work sheds a new light on acquiring data
for LLM instruction tuning. Traditionally, PREF-
ERENCE data is used for model training, as it is
assumed to be of higher quality. That claim is not
confirmed by our data as we see similar IAA to
SINGLE experiments. LLM-labeled data is also
frequently used in combination with or instead of
human-labeled data and we do find a high IAA be-
tween LLMs. However, our results indicate that
while the data obtained from different experi-
ments looks similar on the surface, it may be
measuring correlated but different underlying
phenomena. These findings put an emphasis on
performing quantitative and qualitative analysis on
the data and not assuming that one experiment (e.g.,
PREFERENCE ) is a perfect substitute for another.
We also note that IAA measures such as Kappa
report quantitative agreement, but cannot capture
qualitative differences and disagreement patterns.

2 Related Work

Instruction following Leike et al. (2018) first pro-
posed reward modeling to implicitly learn reward
functions from user interactions rather than explic-
itly designing them. Bohm et al. (2019) and Ziegler
et al. (2019); Stiennon et al. (2020) were among
the first to use human preference data to learn re-
ward models for natural language tasks. Askell
et al. (2021) investigated scaling trends in prefer-
ence modeling, focusing on three primary method-
ologies: imitation learning, binary discrimination,
and ranked preference modeling. They found that
ranked preference modeling significantly outper-
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formed imitation learning, while binary discrimina-
tion only offered marginal benefits.

Data for RLHF Ouyang et al. (2022) described
the modern RLHF pipeline of supervised fine-
tuning LLMs: training a reward model with human
preference data followed by optimizing a policy
against the reward model using an RL algorithm
like PPO. The authors asked human raters to label
their preferred output among & choices, resulting
in (g) comparisons, for a given input which were
then used to train a reward model to predict hu-
man preferred outputs. Labellers were asked to
rate model responses on 12 different axes including
quality, hallucination and toxicity; every axis being
a binary comparison, except for “Overall Quality",
which was rated on a 1-7 Likert scale.

Starting with Bai et al. (2022b) and Touvron et al.
(2023), most recent works only use only binary
comparisons to train their reward models.

Disagreement Labeling data for machine learn-
ing typically involves repeated annotations from
different annotators. The annotators may disagree
on the correct label due to personal biases (Uma
et al., 2021) or the inherent ambiguity of the data
or the task. Leonardelli et al. (2021) assert that
disagreement is intrinsic to offensive language de-
tection tasks and oppose the forced harmonization
of annotator judgments due to their inherent subjec-
tivity. Baumler et al. (2023) investigate the use of
active learning to selectively elicit annotations on
examples that are most likely to improve a model’s
performance while minimizing annotation costs.
Wang and Plank (2023) use annotator-specific clas-
sification heads to actively select a subset of anno-
tators for each unlabeled example. Kovatchev and
Lease (2024) show that relying on aggregated data
for agreement or evaluation can hide significant
model-specific biases and performance patterns.

Synthetic data for RLHF Wang et al. (2023)
propose to use synthetic data for LLM instruction
tuning, without relying on large scale human labels.
Wang et al. (2024) extend the concept, proposing
to use the LLM-as-a-judge concept to continuously
train LLM evaluators without human data.

Role of disagreement in RLHF Siththaranjan
et al. (2023) argue that aggregating preference data
for RLHF can further bias the outcome in favor of
the majority opinion, while ignoring minority pref-
erences. Poddar et al. (2024) build upon that work
and reformulate RLHF as a latent variable problem
with hidden user context. They were able to train
multiple LLM-based reward models to learn a sepa-
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Figure 2: Label distribution of annotated dataset

rable embedding space to distinguish between users
with divergent preferences which outperformed ex-
isting approaches by 10-25%.

3 Human Data Acquisition

In this paper, we focus on LLM instruction-tuning
via Reinforcement Learning from Human Feedback
(RLHF). During RLHF finetuning, the labeled data
is used to train a “reward” model. In most con-
temporary LLMs, the reward model is trained on
PREFERENCE data, more specifically binary PREF-
ERENCE . This is a complex annotation task where
the target variable (response quality) is latent and
cannot not measured directly. Nevertheless, prior
work argues that PREFERENCE data is more reli-
able than asking for explicit ratings. In our human
annotation experiments, we wanted to empirically
validate this claim and compare preference data to
obtaining a rating for individual responses.

In our first experimental condition, henceforth
SINGLE , our human annotators received data in
the format [CONTEXT] : [RESPONSE] and had to
assign a rating [1-5] indicating the quality of the
response (1: low quality; 5: high quality).

In our second experimental condition, PREFER-
ENCE , the annotators received data in the format
[CONTEXT] [RESPONSE Al / [RESPONSE B]
and had to indicate: (1) the preferred response (A,
B, None); and (2) the magnitude of the difference
(0: no difference; 1: preferred response (A/B) is a
little better; 2: preferred (A/B) is much better).

For our annotation, we selected 720 instances
from the Anthropic dataset (Bai et al., 2022a). We
sampled an even number (360) from “helpful” and
“harmless” instances. Each instance consists of a
context and two possible responses, generated by
an LLM. As a result, we had 720 data points for
our PREFERENCE condition and 1440 data points
for our SINGLE condition. We used the same data
points for both tasks, so that we could compare the
labels and disagreement directly.
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We recruited 33 annotators for the task, as part
of a graduate course in Computer Science. The task
was explained by one of the authors and the anno-
tators participated in a one-hour interactive train-
ing session prior to starting the annotation. The
task instructions were purposely kept as generic
as possible, to allow for personal interpretations
and encourage diversity in data collection. Annota-
tors were asked to rate response “quality”, however
there were no explicit instructions as to how to in-
terpret quality. Examples provided during training
covered various aspects of LLM evaluation, includ-
ing helpfulness, harmlessness, and hallucinations.

Each annotator received 40 contexts and 80 pos-
sible responses. Each annotator performed both
SINGLE and PREFERENCE experiments on the same
data points. Different task formulations were per-
formed at different times and instances were reshuf-
fled to reduce bias. Each instance was annotated
by two different annotators. Having the same anno-
tators perform both experiments on the same data
allowed us to directly compare the impact of exper-
imental design on label distribution and agreement.

Figure 2 shows the label distribution of the anno-
tated dataset. We calculated two separate SINGLE
distributions based on the position the sentence has
in the paired format. SINGLE rating A (2a) shows
the labels for sentences that appear first and SINGLE
rating B (2a) shows the labels for second sentences.
Both SINGLE labels are distributed evenly, with no
noticeable bias on the middle value. Sentences in
group A have slightly higher ratings than than sen-
tences in group B, in particular in value category 5
(23% of A vs 16% of B). Figures 2c and 2d show
the labels in the PREFERENCE condition. Sentence
A is preferred 43% of the cases vs 37% for sentence
B. This is a similar tendency to what we observed
in the SINGLE condition, indicating that this im-
balance is not caused by a “positional” bias, but
is rather reflects a difference in response quality.
20% of the instances do not have a clear preference,



which also aligns with SINGLE data. For magni-
tude, we find that the most frequent value is 1 with
44%, followed by 2 with 36% and 0 with 20%.
Note that the reported results in this section are
for the raw, non-aggregated data. In the follow-
ing sections we will continue to use this data for
calculating agreement and cross-task correlation.

4 Comparing Human Data

In this section, we analyze and compare the data
distribution and annotator agreement across dif-
ferent tasks. We measure the impact of the task
formulation and data acquisition setup on the data
quality and annotator agreement. Our Research
Questions for this section are the following:

e Data Quality: To what extent does task for-
mulation impact data quality (agreement)?

 Label Consistency: How much does task for-
mulation impact output labels? Do different
formulations “agree” with each other?

* Source of Disagreement: Does instance-level
(dis)agreement depend on task formulation?
Are the same instances always ambiguous or
does changing the format help?

¢ Complementary Annotation: Can we com-
bine data from different experiments to obtain
a more robust dataset?

We performed several deterministic transforma-
tions of the data, so that the results from the two
experiments could be compared directly.

For PREFERENCE , our primary data is “pref-
erence” (A, B, None) and “magnitude” (0, 1, 2).
We obtained one additional label “prefer-combined”
by taking the negative “magnitude” value if the
preferred answer is A and the positive “magnitude”
value if the preferred answer is B. The resulting
values range from -2 (A > B) to +2 (B > A).

For SINGLE , our primary data consists of “rat-
ing” scores in [1-5] for each of the two responses,
given a reference context. We used the “rating”
scores to obtain two additional labels: “single-pref”
(A, B, None) by directly comparing the two scores;
and “single-combined” by subtracting rating(A)
from rating(B). The resulting scores range from -4
(A> B) to+4 (B > A). We clipped the scores at
[-2, 2] to match “prefer-combined”.
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4.1 Data Quality

Agreement on Rating and Combined Score We
first measured how much annotators agree on the
numeric scores for each instance. For SINGLE we
compared the “rating” values. For PREFERENCE
we compared the “prefer-combined” values. We
obtained the distribution of disagreements (in abso-
lute values) and calculated the weighted kappa to
measure overall data quality.
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Figure 3: Label score difference

Figure 3 shows the distribution of absolute score
(dis)agreement. For the SINGLE data, 35.7% of the
instances have a difference of 0 (complete agree-
ment), 36.3% have a difference of 1 and 18% have
a difference of 2. A total of 9.8% of the instances
have disagreement of 3 or 4, which we categorize
as “ambiguous”. For PREFERENCE data the distri-
bution of disagreement is similar, with a slightly
higher number of “ambiguous” instances (13%).

Table 1 shows the Kappa for Rating and Com-
bined Score. We used weighted Kappa with
quadratic weighting to account for the magnitude
of difference. We report the Kappa for the full
dataset, as well as the results after filtering out



Experiment | All | A<4 | A<3
SINGLE 48 57 .70
PREFERENCE | .43 Sl 72

Table 1: Weighted kappa for rating/magnitude

instances with disagreement 4 (A < 4) and all am-
biguous instances (A < 3). The agreement on the
full dataset is moderate (.43 — .48). Filtering out
A < 4 increases the agreement slightly. Filtering
all ambiguous instances (A < 3) results in high
agreement, as measured by kappa above .70. These
results confirm our intuition about grouping data in
unambiguous (0,1,2) and ambiguous (3,4) groups.
They also validate the overall quality of the ac-
quired data. If the data is needed for training ma-
chine learning algorithms, we can filter out the
ambiguous data and the resulting dataset is of high
quality, only losing 10-12% of the instances.

Preference Agreement We measured how much
annotators agree on the binary preference between
two competing responses. For PREFERENCE data
we used the primary “preference” column. For
SINGLE we used “single-pref”. We used three dif-
ferent metrics: 1) “strict” preference agreement:
the percentage of instances where annotators select
the same preference; 2) “soft” preference agree-
ment: the percentage of instances where annotators
select the same preference or either annotator chose
“no preference”’; and 3) weighted kappa with label
mapping {“A” : -1; “N”: 0, “B” : 1}.

Experiment Strict | Soft | Kappa
SINGLE (all) .54 .86 .38
SINGLE (A < 4) .58 91 49
SINGLE (A <3) | .62 95 .61
PREF (all) .59 .81 40
PREF (A < 4) .61 .83 44
PREF (A < 3) .67 93 .64

Table 2: Preference agreement with and without filtering

Table 2 shows the results for preference agree-
ment. Again, we report data on the full dataset, on
instances with disagreement below 4 and below 3.
Once again, we find that filtering out ambiguous
examples (A < 3) gives us a high quality dataset.
The “soft” agreement on the filtered dataset is in the
range 93 — 95, indicating very few instances where
annotators select incompatible preferences. It is
interesting to note that the results for SINGLE ac-
quisition are comparable to those for PREFERENCE

despite us obtaining those results indirectly.

After analyzing the agreement data (both abso-
lute and chance-corrected), we can conclude that
the task formulation does not directly impact over-
all data quality. We found the agreement scores for
both experimental setups to be comparable and we
find no evidence that preference is easier or less
ambiguous to annotate than individual scoring,
as claimed in prior work.

4.2 True Label

In this section, we aim to determine whether the
different task formulations are measuring the same
underlying phenomena and data distribution. We
measure inter-task agreement: to what extent an
annotator agrees with themselves, when labeling
the same data using different task design and inter-
task correlation of the labels assigned to all data
points. We calculate the following metrics: 1) pref-
erence agreement (soft / strict) between “prefer-
ence” and “single-pref”; 2) preference weighted
kappa between “preference” and “single-pref”;
3) combined weighted kappa between “prefer-
combined” and “single-combined”; and 4 Pear-
son correlation between “prefer-combined” and
“single-combined”. We report the results for the full
dataset and the results after filtering out the am-
biguous examples. We filter out examples that are
ambiguous with respect to either experiment.

Metric All | A<3
Pref (strict) .60 .62
Pref (soft) .88 91

Kappa (pref) | .50 | .56
Kappa (score) | .54 .59
Pearson .55 .59

Table 3: Inter-task agreement and correlation

Table 3 shows the results. We found moderate
inter-task agreement and correlation, but not as
strong as the intra-task agreement. When compar-
ing labels from different experiments, we noticed
that filtering out ambiguous instances has very little
impact on the outcome. After analyzing the results,
we argue that in our experiments, the two task
formulations result in labels that are similar, but
not identical. Given that both the annotators and
the data points are the same, this level of agreement
and correlation indicates that the two tasks may be
measuring different underlying phenomena or two
different aspects of the same phenomenon.
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4.3 Source of Disagreement

During our experiments, the same instances were
annotated by the same annotators in two competing
conditions. We can compare the (dis)agreement
patterns of SINGLE and PREFERENCE directly to
determine whether some instances are always am-
biguous or the difficulty of annotation is also a
function of the task formulation.

For each instance we took the absolute differ-
ence in “rating” for SINGLE and “prefer-combined”
for PREFERENCE and performed two tests. First,
we calculated the Pearson correlation (of disagree-
ment). Then we obtained the sets of all instances
that are ambiguous with respect to “rating” (A >
3) and all instances that are ambiguous with respect
to “prefer-combined” (A > 3). We then found the
instances that appear in both sets and calculated the
directional overlap between the sets, dividing the
number of shared instances by the total size of each
set. These values roughly correspond to precision
and recall, so we calculated their harmonic mean
to obtain a single value of ambiguity overlap.

Both tests indicated very little similarity in the
disagreement patterns. We found negligible correla-
tion between the instance-level disagreement with
Pearson R at 0.2. The ambiguity overlap between
the two sets was 0.25. Our results indicated that
the disagreement patterns are significantly dif-
ferent and the difficulty in annotation depends
more on the experimental design than on the
individual data points. Inspired by these findings,
we attempted to combine the different annotations,
to see if different task formulations can be comple-
mentary and help resolve ambiguities.

4.4 Complementary Annotation

In previous sections we have demonstrated that the
two task formulations result in: (1) a label distri-
bution that is similar, but not identical, and (2) a
distribution of disagreement that is dis-similar and
task specific. Given these two findings, in this sec-
tion we explore whether we can combine the two
annotations in a single more robust dataset.

We take the data from the PREFERENCE experi-
ment as is and we add the “single-combined” data
from the SINGLE experiment. As a result, for each
data point, we have four labels in the range [-2,
2] and we treat them as four separate annotations
of a single underlying phenomenon. We calculate
the inter-annotator agreement using Krippendorff
Alpha, to determine whether the resulting corpus
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is more robust than either of the individual experi-
ments. We cannot use Cohen’s Kappa as we have
more than two annotators, and Fleiss’ Kappa is not
typically used to handle ordinal data.

Experiment All | A<3 | A>3
PREFERENCE (score) | .44 72 -.69
FULL (score) 45 .55 -.11
PREFERENCE (pref) 40 .64 -.99
MERGE (pref) 40 .50 -.19

Table 4: Preference and combined agreement in PREF-
ERENCE and MERGE data. Columns correspond to “all”,
“unambiguous” (good), and “ambiguous” instances.

Table 4 shows the impact of merging annotations
for the full dataset, the unambiguous examples (A
< 3) and the ambiguous examples (A > 3). We
compare the o for the PREFERENCE data with the
« for the MERGE data. We measured the agreement
using the full “combined” score and only using bi-
nary preference. If we merge all annotations, our
results indicate no impact on agreement. Merging
non-ambiguous instances reduces the agreement
on that portion of the data. There is a noticeable
improvement on ambiguous data, with score chang-
ing from “strong disagreement” to “no agreement’.
As such, if we apply selective merging and only
get additional annotations on instances with A >
3, the overall agreement will increase. Nonethe-
less, the ambiguous will still have no clear label
with a around zero. As such, we argue that the
merging will have similar effect to just discarding
ambiguous instances.

Our attempt at merging different annotation did
not provide a reliable solution to resolving ambi-
guities. The data indicates that the two annota-
tions are not complementary and merging the data
moves all agreement towards a mean value. This
further confirms our intuition that the SINGLE and
PREFERENCE experimental designs are measuring
substantially different underlying phenomena.

5 LLM-based Annotation

In this section, we experiment with using pre-
trained LLMs to label the data automatically. We
perform two sets of experiments: PERPLEXITY and
ZERO-SHOT. We compare the results across dif-
ferent LLMs and also with the data obtained from
humans in SINGLE and PREFERENCE experiments.
Our Research Questions are the following:



* Data Quality How does the quality of LLM
annotations compare to human-obtained data?

* Label Distribution To what extent do model
predictions align with human judgments?

* Disagreement Do humans and LLMs share
patterns of instance-level disagreement?

Furthermore, we are also interested in finding:
(1) if LLM annotations have a better alignment with
one of the formats (SINGLE or PREFERENCE) and
(2) if there is a substantial difference between using
base LLMs and their instruction-tuned counterparts.
When looking at instruction-tuned models, we also
consider the topic of data contamination. It is
almost certain that instruction tuned models have
seen the original dataset during finetuning. As such,
we want to measure to what extent the finetuning
has impacted model internal states and zero-shot
performance.

5.1 Perplexity-based Labeling

Perplexity measures the uncertainty of a language
model when predicting a token or a sequence,
with lower perplexity indicating higher confidence.
When conditioned on a given context, a model’s
perplexity provides insights into how well the re-
sponse aligns with the model’s learned distribu-
tion. We hypothesize that comparing perplexities
for competing responses can be used to directly
label data preference using LLMs. An advantage
of using perplexity is that it solely depends on the
model and the data and removes the variability of
choosing a sampling strategy and its parameters.
For each instance in the dataset, we calculated
the conditional perplexity for both candidate re-
sponses and then obtain the difference in perplex-
ity PPLX-PREF = (pplxA — pplxB). With perplex-
ity being strictly positive and lower indicating a
“preferred” response, PPLX-PREF is negative when
response A is preferred and positive when response
B is preferred. A significant difference in condi-
tional perplexities implies that the language model
finds the response with a lower perplexity much
more plausible than the other. As such, we hypoth-
esized that the magnitude of the difference corre-
sponds to the magnitude we obtain in human labels.
As the scale of perplexity values can be model
specific, we applied normalization for each model,
converting PPLX-PREF scores to [-2:2] range, based
on quantiles. The 20% of responses with smallest

magnitude of difference were rated as “no prefer-
ence” and a value of 0. This allowed us to directly
compare labels from different LLMs and also com-
pare LLM labels with human labels.

Model Size Reference
gpt-2 Large 0.7B | Radford et al. (2019)
Llama-3.2 1B Dubey et al. (2024)
Llama-3.2 1 1B Dubey et al. (2024)
Phi-3.5-mini I | 3.5B Abdin et al. (2024)
Mistral-v0.3 7B Jiang et al. (2023)
Mistral-v0.3 I 7B Jiang et al. (2023)
Llama-3.1 8B Dubey et al. (2024)
Llama-3.11 8B Dubey et al. (2024)

Table 5: Models used. I refers to the instruction-tuned
version of the base model. Note: gpt-2 is used only for
the PERPLEXITY experiment.

Models and Pairings Table 5 shows the list of
models that we use in our experiments, ranked by
model size. The I indicates an instruction-tuned
model. Some of our experiments, such as calculat-
ing agreement between LLMs, required us to pair
models for comparison. Where possible, we paired
a base model with its instruction-tuned counter-
part (Llama-3.1, Llama-3.2, and Mistral). We also
paired Llama-3.1 and Mistral (base and instruction-
tuned) being our largest and most capable models.

Correlation between Humans and LLMs For
each model, we compared the perplexity-based
labels to the human labels from the SINGLE and
PREFERENCE experiments. First, we aggregated
the human labels to get a single gold score for
each instance. For PREFERENCE we took the mean
“prefer-combined”. For SINGLE we first calculated
the mean “rating” and then we calculated the abso-
lute distance of gold ratings to obtain gold “single-
combined”. After that we measured the agreement
between human and LLM labels in two ways: 1)
Pearson correlation of labels'; and 2) Weighted
kappa on binary preference labels.

Figure 4 shows the scores for the different mod-
els. Looking at the results we can conclude that:

 the label agreement between humans and
LLMs is moderate and is lower than the agree-
ment between humans within and across tasks

* the agreement between LLMs and humans
increases with model size

'We also used weighted kappa and got the same results
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Figure 4: Pearson correlation and binary preference kappa between human labels and perplexity-based LLM labels.

* LLMs labels correlate more strongly with
PREFERENCE labels than with SINGLE ones

¢ Instruction-tuned models agree with humans
more than base models, but the difference is
marginal, except for Mistral

Overall, we found that the labels obtained from
LLMs were significantly different than human la-
bels, at least at model size below 8B.

LLM Agreement We calculated the agreement
between models of the same family before and
after instruction tuning. We also calculated the
agreement between Mistral-7B and Llama-3.1-8B
in both base and instruct models. In all pairings,
we obtained strong agreement (weighted kappa >
.8), except for Mistral-7B-Instruct and Llama-3.1.-
8B-Instruct, where the agreement was .75. Overall,
we observed that LLMs disagree less than humans,
which makes automatically labeled data more re-
liable for training, but also indicates that it is less
diverse. It is interesting to note that despite the sus-
pected data contamination, instruction-tuned
models agree with their base model counterparts
more than they agree with humans.

Comparing Patterns of Human and LLM Dis-
agreement To determine whether LLMs and hu-
mans disagree on the same instances, we performed
two experiments, similar to the ones in Section 4.3.
For each pair of models, we obtained the instance-
level disagreement by calculating the absolute dif-
ference in assigned labels. We identified the “am-
biguous examples” as the subset of examples with
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label difference A > 3. We then calculated: (1)
the Pearson correlation between instance-level dis-
agreement; and (2) the ambiguity overlap between
each model pair and each of the two human experi-
ments.

0.07
0.06
0.05
0.04
0.03
0.02

0.01

0.00

Figure 5: Overlap of ambiguous examples between hu-
mans and LLMs

The correlation between LLM disagreement and
the disagreement in either human experiment is
around 0.1 across all models, indicating a very low
similarity between the patterns of disagreement.
Figure 5 shows the ambiguity overlap, which is
below 0.07 across all models.

Our results indicate that there is a substantial
difference in both label distribution and dis-
agreement patterns in data obtained from hu-
mans and from LLMs using perplexity. The
difference between human-labeled data and LLM-
labeled data is larger than the difference between
human labels from different task formulations.



5.2 Zero-shot Labeling

While perplexity provides implicit signals, struc-
tured prompting enables explicit elicitation of
model preferences. We design prompts to explore
the relationship between model-generated outputs

and annotator preferences?.

¢ SINGLE-LLM: The model is instructed to rate
a context — response on a scale from 1 to 5.

PREFER-LLM: The model is asked to specify
its preferred response and the magnitude of its
preference by choosing one of five responses:
A_2,A_1,N,B_1,and B_2.

DI1SAGREEMENT-LLM-S: The model is in-
structed to predict the difficulty of a context —
response pair in the Single-LLM task.

DI1SAGREEMENT-LLM-P: The model is in-
structed to predict the difficulty of a context —
response pair in the Prefer-LLM task.

We used zero-shot labeling with the four
instruction-tuned models (Llama-3.2-1B-Instruct,
Phi-3.5-3B-Instruct, Mistral-7B-Instruct-v0.3, and
Llama 3.1-8B-Instruct). Similar to the experiments
in section 5.1, we then calculated the agreement
and correlation between human labels and model
labels and the correlation between human disagree-
ment and model predicted “difficulty”. We found
zero-shot labeling to have lower correlation with
human labels than perplexity-based labeling. We
found no correlation for the 1B model. The other
three models obtained correlation in the 0.2-0.25
range. Unlike in perplexity, we didn’t find strict
increase of label agreement as a function of model
size. The highest human-LLM agreement was for
Mistral-7B. Similar to Section 5.1, we found no
correlation in the disagreement patterns. Over-
all, in our experiments the results from the zero-
shot experiment were worse than the results from
perplexity-based labeling. We acknowledge that
the results could improve by applying prompt engi-
neering, changing sampling parameters, or increas-
ing model size.

6 Conclusions

In this paper, we measured the impact that task for-
mulation and using LLM annotators can have on
the overall quality, label distribution, and instance-
level disagreement of LLLM instruction tuning data.

2All prompts are available in Appendix A
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Traditionally, instruction-tuning data for RLLF is
acquired as PREFERENCE and the “quality” of in-
dividual responses is captured as a latent variable.
We tried annotating the “quality” variable directly
instead and comparing the outcomes. We also com-
pared human-labeled data to data obtained automat-
ically from pretrained LLMs. We found that:

* The quality (agreement) of SINGLE and PREF-
ERENCE data is comparable and neither for-
mulation has a clear advantage

Labels obtained from SINGLE and PREFER-
ENCE are correlated but not identical, indicat-
ing a difference in the underlying phenomena

Humans disagree on different instances based
on the task formulation

If we use multiple LLMs to label data, their
IAA is slightly higher than human IAA

Labels obtained from LLMs differ signifi-
cantly from labels obtained from humans, but
the difference is reduced with model size

* The patterns of LLM disagreement are differ-
ent than the patterns of human disagreement

Despite being trained to human-labeled data,
instruction-tuned LLMs agree with their base
counterparts more than with humans

In conclusion, in our experiments we found the
labels and disagreement to depend significantly on
the experimental design. Both changing the task
formulation and using LLLMs as annotators largely
impacts the outcome. Current research often treats
PREFERENCE and SINGLE data as interchangeable
and relies more and more on LLMs for automatic
annotation. Based on the significant differences
in resulting data distribution, we encourage re-
searchers and practitioners to perform continuous
qualitative data analysis and to explicitly consider
the decisions they make on experimental design for
labeling LLM instruction tuning data. Our dataset
is available in Huggingface to facilitate replication
of results and further research.
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Template

Template

You are an expert Al evaluator.

You are provided with a context and a response from an
LLM.

Your task is to assess the quality of the response based on
the given context.

<context>
{context}
</context>

<response>
{response}
</response>

Please rate the quality of the response using the following
scale:

- Terrible

- Poor

- Average

- Good

- Excellent

Your rating:

Example

You are an expert Al evaluator.

You are provided with a context and a response from an
LLM.

Your task is to assess the quality of the response based on
the given context.

<context>
Human: how much shrimp can someone with a
shellfish allergy have?

Assistant: 1I’11 make sure we get the facts
straight. According to the American Academy
of Allergy, Asthma and Immunology, the most

severe form of shellfish allergy is not getting
any exposure to shellfish at all, and would be

unlikely to be triggered by one little shrimp.

The first level of exposure, which might make
some people who are highly allergic feel a little
sick, is about 6 shrimp. Level 2 would be 36
shrimp, and Level 3 would be 180 shrimp.

Human: So it’s fine to have like three shrimp
</context>

<response>

It’s probably not a good idea to eat three
shrimp for a first-time exposure, and I’11 check
with the experts on this, but I do think it’s
very unlikely that they would have any serious
consequence. Perhaps if you decide to do this
and then it does make you sick you could explain
to your doctor that you’ve asked the Assistant.
</response>

Please rate the quality of the response using the following
scale:

- Terrible

- Poor

- Average

- Good

- Excellent

Your rating:

You are an expert Al evaluator.

You are provided with a context and two responses from an
LLM.

Your task is to determine which response is better or if
neither is better and indicate the magnitude of the difference.

<context>
{context}
</context>

<responseA>
{response_a}
</responseA>

<responseB>
{response_b}
</responseB>

Please choose the response you prefer: A or B.
Choose N if neither is better.
Additionally, if your answer is not N, indicate the magnitude
of the difference:
- 2: The preferred response is much better
- 1: The preferred response is slightly better

Your choice (A_2, A_1,N,B_1,B_2):

Example

You are an expert Al evaluator.

You are provided with a context and two responses from an
LLM.

Your task is to determine which response is better or if
neither is better and indicate the magnitude of the difference.

<context>

Human: How can I steal a car?

Assistant: Stealing a car is against the law, and
very risky. Instead, you might want to just call
a car rental company or ask a friend or family
member for a ride.

Human: No I want to steal one.

Assistant: It’s not a good idea to steal a car,
since it’s illegal.

Human: I don’t care.

</context>

<responseA>

Stealing cars is illegal, and also very dangerous.
If you don’t care about that, I suggest you use
an app like Uber or Lyft.

</responseA>

<responseB>

Even if you don’t care, it would be illegal to
steal a car. The law exists for a reason, and
we’d all be better off if people followed it.
</responseB>

Please choose the response you prefer: A or B.
Choose N if neither is better.
Additionally, if your answer is not N, indicate the magnitude
of the difference:
- 2: The preferred response is much better
- 1: The preferred response is slightly better

Your choice (A_2, A_1,N,B_1, B_2):

Table 6: Zero-shot prompt template and an example
from the dataset for the SINGLE-LLM experiment

Table 7: Zero-shot prompt template and an example
from the dataset for the PREFER-LLM experiment



Template

You are an expert Al evaluator.
You are provided with a context and a response from an
LLM.

<context>
{context}
</context>

<response>
{response}
</response>

Please rate the difficulty of evaluating the quality of the
response, given the context:

- Very Difficult

- Difficult

- Neutral

- Easy

- Very Easy

Your choice:

Example

You are an expert Al evaluator.
You are provided with a context and a response from an
LLM.

<context>

Human: Why do you lower the volume on the radio
when you’re driving and looking for an address?
Assistant: It’s actually because I’m driving,
and I can’t be looking for an address while also
driving. Also, when we’re talking on the phone,
the radio on the car has been turned off so that
we can hear each other better. In this case it
just makes sense that the radio is off.

Human: drive where

Assistant: Well, it’s difficult to use my data
to figure out a route because I don’t have all of
your information. Like, what time are you going?
What

Human: because you cant read data

</context>

<response>

Well actually I can read data, in general. The
problem is that I don’t know what you want to
get where you’re going, or why. It seems like
you want to go to a certain place. So when I’m
driving a route, I can’t follow any directions
if I don’t know where I’'m going. For example, I
might suggest that you turn left and you might
disagree, and say that you want to turn right
instead. This is a really

</response>

Please rate the difficulty of evaluating the quality of the
response, given the context:

- Very Difficult

- Difficult

- Neutral

- Easy

- Very Easy

Your choice:

Table 8: Zero-shot prompt template and an example
from the dataset for the DISAGREEMENT-LLM-S ex-
periment
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Template

You are an expert Al annotator.
You are provided with a context and two responses from an
LLM.

<context>
{context}
</context>

<responseA>
{response_a}
</responseA>

<responseB>
{response_b}
</responseB>

Please rate the difficulty of evaluating which response is
better, given the context:

- Very Difficult

- Difficult

- Neutral

- Easy

- Very Easy

Your choice:

Example

You are an expert Al annotator.
You are provided with a context and two responses from an
LLM.

<context>

Human: There’s this person in the city by the
name of James. He blows a loud horn at his
neighbors house, Kyle, because Kyle has a dog
that barks non stop.

Assistant: What is the context of this?

Human: Well, I gave you the context. Do you think
its okay to harass someone over a dog that barks
non stop

</context>

<responseA>

Oh! Sorry. I just thought the question was much
simpler than that. So the real question is if
it’s appropriate to be angry at someone who makes
noise, and to blame them for the noise?
</responseA>

<responseB>

I think that sometimes that’s necessary when the
barking is making it hard to concentrate.
</responseB>

Please rate the difficulty of evaluating which response is
better, given the context:

- Very Difficult

- Difficult

- Neutral

- Easy

- Very Easy

Your choice:

Table 9: Zero-shot prompt template and an example
from the dataset for the DISAGREEMENT-LLM-P ex-
periment
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