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Abstract

Large language models (LLMs) have shown
significant potential for robotics applications,
particularly task planning, by harnessing their
language comprehension and text generation
capabilities. However, in applications such as
household robotics, a critical gap remains in
the personalization of these models to house-
hold preferences. For example, an LLM plan-
ner may find it challenging to perform tasks
that require personalization, such as deciding
where to place mugs in a kitchen based on
specific household preferences. We introduce
LLM-Personalize, a novel framework designed
to personalize LLM planners for household
robotics. LLM-Personalize uses an LLM plan-
ner to perform iterative planning in multi-room,
partially-observable household environments,
utilizing a scene graph built dynamically from
local observations. To personalize the LLM
planner towards user preferences, our optimiza-
tion pipeline integrates imitation learning and
reinforced Self-Training. We evaluate LLM-
Personalize on Housekeep, a challenging simu-
lated real-world 3D benchmark for household
rearrangements, demonstrating a more than 30
percent increase in success rate over existing
LLM planners, showcasing significantly im-
proved alignment with human preferences.

1 Introduction

The application of large language models (LLMs)
to the robotics domain has demonstrated substan-
tial potential, especially in the realm of task plan-
ning (Song et al., 2023; Ahn et al., 2022; Rana
et al., 2023; Huang et al., 2022a; Liang et al., 2023;
Mai et al., 2023; Huang et al., 2022b, 2023), by
leveraging their advanced language comprehension
and text generation capabilities. An important chal-
lenge of using LLM-powered planners is the align-
ment of the LLM with the specific task context.
While many studies have focused on grounding
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Figure 1: Illustration of LLM-Personalize. Agent archi-
tecture: The Context Generator constructs and updates
a scene graph from local observations. The LLM Plan-
ner uses the graph to produce a plan as a sequence of
high-level actions, and iteratively re-plans when the pre-
vious plan has been executed. Each high-level action is
translated to a sequence of control actions and executed
by the Controller. To personalize the LLM Planner, we
introduce an optimization pipeline integrating imitation
learning and iterative reinforced Self-Training to fine-
tune and align the planner with user preferences.

LLM planners to the physical contexts of the tasks
to ensure executability of the generated plans and
their relevance to the environment, our work aims
to further extend this foundation to study personal-
ization, an important aspect to household robotics
which tailors the functionality of the LLM planner
to the unique household needs and preferences.

Prior works on LLM grounding include align-
ing LLMs with the tasks’ physical context through
methods such as translating LLM generated plans
to executable actions (Huang et al., 2022a), integrat-
ing context information such as affordance (Ahn
et al., 2022; Huang et al., 2023), scene graph (Rana
et al., 2023) or environment feedback (Rana et al.,
2023; Huang et al., 2022b). Despite these advance-
ments, there is noticeable gap in grounding LLM
planners to personalized household preferences due
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to the inherent misalignment between the general-
purpose LLM knowledge, designed to reflect com-
mon preferences, and the unique household prefer-
ences, e.g., one household may prefer a coffee mug
to be placed on the dining table, whereas another
may prefer for it to be in a kitchen cabinet.

To address this, we propose LLM-Personalize, a
household robotic agent framework that performs
object rearrangements in multi-room and partially
observable household scenarios. As shown in
Fig. 1, the model integrates three key components:
context generator, LLM planner, and low-level con-
troller. Central to personalizing the LLM planner to
user preferences is our novel optimization pipeline
that combines imitation learning with reinforced
Self-Training (ReST) (Gulcehre et al., 2023). In the
first phase, imitation learning is used to bootstrap
the model in order to 1) guide the LLM planner to
interpret complex input contexts, 2) initial align-
ment of the planner’s behavior with example user
preferences, 3) bootstrap the LLM planner to gen-
erate plans that can be straightforwardly annotated
with user preferences, thus facilitating effective
Self-Training in the second phase, where the LLM
planner further explores by collecting datasets of
interactions, and refines itself based on the positive
interactions according to the user preferences.

We evaluate LLM-Personalize on House-
keep (Kant et al., 2022), a challenging, long-
horizon, partially observable household rearrange-
ments task suite, featuring diverse house layouts
and a wide variety of receptacles and objects. The
quality of object rearrangements are assessed ac-
cording to the rearrangement success according to
the Housekeep benchmark based on their collected
human preference data. We demonstrate that LLM-
Personalize outperforms state-of-the-art baseline
LLM planners (Song et al., 2023; Ahn et al., 2022;
Rana et al., 2023) with over a 30 percent increase in
success rate, as a result of improved understanding
and alignment with human preferences.

2 Related Works

LLM-Empowered Robotic Agents Recent works
in task planning have effectively utilised pre-
trained LLMs for generating executable plans for
robotic agents (Song et al., 2023; Ahn et al., 2022;
Rana et al., 2023; Huang et al., 2022a; Liang et al.,
2023; Mai et al., 2023; Huang et al., 2022b, 2023).
However, two key challenges that remain are the
scalability of these methods to long-horizon plan-

ning tasks in large scenes, and misalignment of
the LLM with the human preferences. Wu et al.
(2023) used LLMs for inferring rules summariz-
ing personalized user preferences. In contrast, our
work studies direct optimization and personaliza-
tion of LLM planners for complex planning in
multi-room household scenarios. Closely related to
our work, Ahn et al. (2022) performs grounding of
LLM planners with affordance functions. However,
it is applicable to small scenes and limited vocab-
ulary of objects. Rana et al. (2023) addresses the
scalability problem with a static scene graph. Song
et al. (2023) addresses the scalability problem by
allowing LLMs to plan iteratively. In this work,
we directly use LLM for plan generation similarly
to (Song et al., 2023). To address the long-horizon
planning and large scene problem, our agent starts
from an empty graph and dynamically updates the
graph as it explores the house, and iteratively re-
plan when the current plan finishes.
Aligning LLMs with Human Preference Recent
progress in LLM alignment are achieved via re-
inforcement learning (RL) (Ouyang et al., 2022;
Rafailov et al., 2023; Glaese et al., 2022; Akyürek
et al., 2023), or supervised learning (SL) (Dong
et al., 2023; Xu et al., 2022; Liu et al., 2023;
Scheurer et al., 2023). Notably reinforced Self-
Training (ReST) (Gulcehre et al., 2023) can utilize
either an RL or SL objective. In this work, we adopt
(supervised) imitation learning (IL) to bootstrap our
LLM planner. Then we adapt ReST to our LLM
planner which iteratively explores and aligns itself
with human preferences via supervised fine-tuning.
While pairwise-comparison methods like Direct
Preference Optimization (DPO) (Rafailov et al.,
2024) could theoretically be used for fine-tuning
the LLM planner, they require paired positive and
negative responses for each prompt, which is not
supported by our human preference dataset or use
case. Moreover, DPO demands custom loss func-
tions and access to model gradients, not supported
by online LLM fine-tuning APIs (e.g. GPT-3.5).
In contrast, ReST circumvents these limitations.
Therefore, we chose to use ReST for its simplicity
and versatility, leaving exploration of other feed-
back approaches for future work.

3 Method

3.1 Problem Formulation

In this paper, we address the lack of personaliza-
tion of LLM planners in household robotics tasks,
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Figure 2: The Context generator builds and updates the graph of the household state of rooms, receptacles and
objects, derived from the robot’s local observations at each timestep. The information is provided as a prompt to the
LLM planner. Top-down view of the scene is for illustration only, the robot only has access to the 1st-person view.

for this purpose, we use Housekeep (Kant et al.,
2022), a collection of 3D simulated household
tasks, where a robot is tasked to rearrange mis-
placed objects to suit collected user preferences.
A scene, as shown in Fig. 2 and Fig. 4, refers to
a household layout which includes a selection of
rooms and an arrangement of receptacles in each
room. Let j count through each receptacle, and
rec j denote high-level information about each re-
ceptacle (unique id, receptacle type, and the room
it is in, e.g., kitchen 0 table 6). Likewise, let i count
through each of the objects, and let obji denote the
high-level information about an object (its unique
id, object type, e.g., laptop 1). Finally, we use Mt

j
to denote the set of indices i of objects that are
on a receptacle j at time t – object locations will
change over time. This set can be empty, and for
some receptacles, Mt

j may be constrained in cardi-
nality. All the receptacles, objects and locations
must be discovered by the agent. Their existence
is not given a priori. Each task/episode is of 1000
timesteps and includes a scene with a random selec-
tion of objects, some are misplaced on the wrong
receptacles. The task for the agent is described as
“Give me the next steps to explore the house and
place misplaced objects on correct receptacles”.
The idea of misplacement has to be understood or
learnt by the agent.

At each timestep t, the robot receives an egocen-
tric (first-person) observation about a number of
receptacles and any objects located therein. We
collect the indices of the observed receptacles in
Rt . So the observation at time t consists of the
high level observation ot = {(rec j,obji | i ∈ Mt

j) |
j ∈ Rt}, which is a list of the observed recepta-
cles and the associated objects located on those
receptacles, along with additional lower-level in-
formation, such as the coordinates of the objects

etc. The robot can hold one object at a time and
selects an action from its (low-level) action space
A = {move forward, turn left, turn right, look up,
look down, grab/release}. It receives a reward +1
for placing an object on a correct receptacle, −1
for grabbing/removing an already correctly placed
object, else 0. The correctness of obj-rec placement
is decided by a human preference dataset collected
by Housekeep from human annotators.

3.2 Model

Our robotic agent model is designed to perform
long-horizon planning in the partially observable
household scenarios with three key components:
the context generator, the LLM planner and the
controller. Specifically, the context generator pro-
vides context information for decision-making in
the form of prompts, by maintaining a graph of
the household state derived from observations. For
decision making, we choose a two-level design
that integrates a high-level LLM planner and a con-
troller which executes the generated plans using
low-level control actions. Given our primary focus
on personalizing LLM planners, we use an off-the-
shelf controller from the simulator, and focus on
designing the context generator and LLM planner.

3.2.1 Context Generator
The context generator provides information of the
current household context and useful instructions
as a prompt for the downstream LLM planner.
Specifically, our context generator provides three
pieces of information: the current household state,
instructions, and examples for in-context learn-
ing (Brown et al., 2020). As the agent never ob-
serves the full state of the household, but only re-
ceives a partial view ot , it is important that the
agent maintains and refines an internal represen-
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tation of the household state to correctly choose
the placement of objects (e.g., only using local
observations can lead to a suboptimal placement
when the correct receptacle of a misplaced object
is in a different room). To this end, our context
generator maintains a graph G as shown in Fig. 2.
When a task starts, the context generator initial-
izes the graph G0 of the house with empty room
nodes. At each timestep t, the graph is updated
with the locally observed objects and receptacles
ot as the agent navigates around the house. To pro-
vide the information for decision-making, a prompt
is constructed with a natural language description
of Gt , the object held by the robot, instructions (a
description of the overall rearrangement task, the
role assigned to the LLM, and the available high-
level actions), and two examples, one for room
exploration and another one for moving an object
from one receptacle to another, allowing the LLM
planner to follow via in-context learning.

3.2.2 LLM Planner
The LLM planner is the core decision-making mod-
ule that generates a high-level plan as a sequence
of high-level actions, and each high-level action
is translated by the low-level controller to low-
level actions and executed. The set of available
high-level actions are: Ω = {go to obj/rec/room,
look at obj/rec, pick up obj, place obj on rec},
where the obj, rec, room are replaced by the ac-
tual names of these target entities, as introduced
in section 3.1. To handle partial observability in the
multi-room households, we adopt an iterative plan-
ning procedure which enables the LLM planner to
re-plan when the previous plan has finished execu-
tion. This allows the agent to obtain a more compre-
hensive understanding of the household state while
exploring and navigating the house, leading to im-
proved rearrangement decisions. On the other hand,
compared with single-step iterative planning where
each plan includes only one high-level action, our
approach builds cohesive plans that better account
for the inter-dependencies and the cumulative effect
of the action sequences. The iterative procedure
works as follows: Denote n ∈ N as a high-level
planning iteration. At iteration n, the LLM planner
receives a prompt from the context generator and
generates an immediate action plan as a sequence
of high-level actions ω ∈ Ω: pn = (ω0,ω1, . . .) (see
Fig. 3 for two example plans). The plan is sent to
the controller where the high-level actions are exe-
cuted sequentially. Each high-level action is trans-

lated to a sequence of low-level control actions
a ∈ A, e.g., go to pan 1 → (move forward, turn
left, . . .). Once the controller finished executing
all high-level actions in pn, say at timestep t = T ,
the next plan iteration n+1 starts where the LLM
planner is prompted again to generate a new plan
pn+1 and executed by the controller. This process
is repeated iteratively.

The LLM planner is implemented with an LLM
model and a parser. Upon receiving a prompt from
the context generator, the LLM returns a plan in
natural language as a sequence of high-level ac-
tions: go to pan 1, pick up pan 1, .... Specifically,
the first 10 high-level actions from the sequence
are used, as we often observe a decrease in quality
towards the end of a long response from the LLM.
The parser then extracts from each high-level ac-
tion the target action (i.e., one of go to, look at,
pick up, place) and the target entities (i.e., obj, rec,
room) and send to the controller to be translated
and executed as low-level control actions.

3.2.3 Controller
Given our primary focus on personalizing the LLM
planner, we use the off-the-shelf controller from the
Housekeep simulator, which maps each high-level
action to a sequence of low-level actions. More
details can be found in the Appendix A.2.

3.3 Personalizing the LLM Planner

Despite our model architecture being well-suited
to the partially observable household scenarios, we
observed two challenges that necessitated a tailored
optimization process. 1) LLM planners struggle
with effectively extracting precise information from
complex input contexts (e.g., resulting in plans
with partial object names). This is compounded
by the complexity of accurately sequencing high-
level actions to ensure executability. 2) Misalign-
ment between the LLM planners’ decisions and the
personalized preferences of users.

Reinforced Self-Training1 provides a promising
approach to optimizing and personalizing the LLM
planner with user preferences, by iteratively per-
forming a grow step where a training dataset is
collected by prompting the LLM to generate multi-
ple responses for each prompt, and an improve step,
where the dataset is filtered according to human
preferences, followed by fine-tuning the LLM on
the filtered dataset. However, direct application of

1For simplicity, we’ll refer to reinforced Self-Training
(ReST) as Self-Training (ST) in the sections that follow.
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Figure 3: Optimization pipeline of LLM-Personalize using imitation learning and iterative reinforced Self-Training.

ST to the LLM planner presents new, unique chal-
lenges: Unlike single-step generation tasks, e.g.,
ST’s initial application domain of machine trans-
lation), the household robotics tasks often involve
long-horizon planning, where the LLM planner
may generate a plan consisting of both correct and
incorrect placements actions, making it difficult to
annotate with human preferences and extract clean
training examples for automatic Self-Training.

To this end, we introduce a tailored optimiza-
tion pipeline that integrates imitation learning and
Self-Training. The imitation learning phase boot-
straps the LLM planner to effectively interpret the
complex context, produce executable plans, and
perform initial alignment with example user prefer-
ences. Moreover, the demonstrations are designed
to bootstrap the LLM planner to generate plans that
can be clearly annotated, thus facilitating effective
Self-Training in the second phase, which allows
the LLM planner to further explore and refine its
planning strategies based on user preferences.

3.3.1 Imitation Learning
As shown in Fig. 3, we build a demonstrator mod-
ule to generate demonstrated responses for the
LLM planner on a set of demonstration tasks. On
receiving a prompt x from the context generator,
the demonstrator produces a plan y which either
explores one of the rooms or rearrange a single
object, using the scene graph from the context gen-
erator and the correct object-receptacle mapping ac-
cording to the human preference dataset (described
in section 3.1). Specifically, when prompted at the
start of a task, the demonstrator produces a plan of
high-level actions to visit each of the rooms. After
the plan is executed, the agent will have discovered
some misplaced objects and receptacles in each
room. The demonstrator will be prompted again to
generate a plan, which rearranges one of the dis-

covered misplaced object (picked randomly) to a
discovered correct receptacle. The plan is executed
by the controller, and we iterate the procedure until
all discovered objects are correctly placed.

To bootstrap the LLM planner, we prepare the
collected demonstrations as pairs of prompts and
target responses, Ddemo = {(xi, yi)}N

i=1, where both
xi,yi are sequences of tokens, the response yi being
a plan by the demonstrator. Given a pre-trained
autoregressive LLM Pθ (y | x) parametrized by θ ,
we perform supervised fine-tuning on Ddemo by
minimizing the negative log likelihood (NLL) loss:

LNLL =−E(x,y)∈Ddemo

[
∑
|y|
τ=1 logPθ (yτ | y1:τ−1,x)

]
(1)

The above demonstration design guides the LLM
planner to more accurately extract information
from complex input contexts and improve plan ex-
ecutability. More importantly, it ensures that each
plan has a uniform objective (i.e, perform explo-
ration or rearrange a single object), allowing the
plan to be straightforwardly annotated with user
preferences during Self-Training.

3.3.2 Iterative Reinforced Self-Training
Next, we fine-tune the bootstrapped LLM plan-
ner to further improve personalization via iterative
Self-Training on a set of training tasks. This al-
lows the LLM planner to explore more rearrange-
ment options and improve its placement decisions
through imitating the positive examples. As shown
in Fig. 3, to start a Self-Training iteration, we use
the LLM planner to explore by collecting episodes
of experiences on the training tasks and we log M
interactions as tuples of prompt, response and out-
comes: {(xi,yi,out i)}M

i=1 (Example outcome: pan
1 moved from kitchen 0 table 6 to kitchen 0 counter
1). We annotate each prompt and response pair
(xi,yi) with the reward ri ∈ {1,0,−1} for the rear-
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rangement outcomes according to the user prefer-
ences. Then, we collect a Self-Training dataset by
picking the prompt and response pairs with positive
rewards Dself-train = {(xi,yi) | ri > 0}M

i=1 The final
step of this Self-Training iteration is to perform
supervised fine-tuning of the bootstrapped LLM
model over Dself-train with the NLL objective as de-
fined in Equation (1). This procedure is repeated
iteratively where each Self-Training iteration per-
forms interaction collection and fine-tuning over
the LLM obtained from the previous iteration.

4 Experiments

We aim to evaluate the hypothesis: Optimizing
LLM planner through imitation learning and Self-
Training allows the LLM planner to improve plan-
ning performance and alignment with user pref-
erences. We demonstrate this through improved
rearrangement success rate compared with base-
line LLM planners and provide qualitative results
that showcase the plans generated. Our ablations
studies further evaluate plan executability, explo-
ration and cross-domain (scene) generalisation of
LLM-Personalize in the different training phases.

4.1 Experiment Setup
We evaluate LLM-Personalize on 4 different scenes
in Housekeep, each featuring a unique layout of
rooms and receptacles, as shown in Fig. 4. A task
is instantiated with a random selection of 5−10 ob-
jects placed on different receptacles, among them
∼ 3−7 objects are misplaced and needs to be re-
arranged. For each object, there is a list of correct
receptacles not known to the agent. The task is
challenging as the agent must explore the house,
identify misplaced objects and their correct recepta-
cles, and avoid removing correctly placed objects.
Evaluation metrics: We evaluate the agent perfor-
mance via success rate (Kant et al., 2022), defined
as the percentage of misplaced objects that are cor-
rectly re-arranged at the end of the task, among all
misplaced objects at the start of the task.

Success Rate =
(

#correct at the end−#correct at the start
#total misplaced objects at the start

)
With the success rate defined in terms of difference,
an agent is judged fairly for its correct and wrong
placements: an agent which performed poorly that
resulted in more misplaced objects at the end of the
task will yield a negative success rate. We measure
the success rate on train and test tasks at each phase
of the optimization pipeline. For each scene, we

randomly sample three disjoint set of 10 demon-
stration tasks, 20 training tasks and 5 test tasks.
Hence the agent will encounter a random selection
of objects and placement configurations on each
task. During both training and testing, we collect
experiences of 5 episodes per task, and present the
mean and standard error of the metrics across all
collected episodes in the task sets.
Architecture and Baselines We compare LLM-
Personalize with the baseline LLM planning meth-
ods: LLM-Planner (Song et al., 2023), Say-
Plan (Rana et al., 2023) and SayCan (Ahn et al.,
2022). For all methods, we use GPT-3.5-turbo with
temperature set to 1 to reduce deterministic repe-
tition in LLM responses (default range is 0− 2).
The prompt includes the instruction, graph descrip-
tion and two examples. We allow all methods to
plan iteratively after the robot executed the previ-
ous plan. LLM-Planner with these configurations
is adopted as the base model of LLM-Personalize,
which we then optimize using imitation learning
and Self-Training. The fine-tuning as defined in
Eq.(1) is performed via the OpenAI fine-tune API.
For more details please refer to Appendix A.3.

4.2 Main Results

Quantitative Results We compare the average suc-
cess rate of LLM-Personalize with the baselines
in Table 1, and we show the effectiveness of our
optimization framework by comparing the perfor-
mance of LLM-Personalize at different optimiza-
tion phases, namely, the base version (using LLM-
Planner), imitation learning (IL), and various itera-
tions of Self-Training (ST). Each table entry shows
the mean and standard error of the mean across all
tasks in the train/test set and 5 runs per task. Over-
all, we observe that LLM-Personalize significantly
outperforms all baseline methods across the tested
scenes. For example, on the test set of Scene 1,
the success rate of the baselines are near zero or
negative, while LLM-Personalize achieved 29.6%
after imitation learning and two Self-Training iter-
ations. Similar trends can be observed across all
scenes. After examining some detailed prompts
and responses we identified that SayCan often has
difficulty picking the best high-level action from a
large number of available actions due to the large
number of objects, receptacles and rooms. LLM-
Planner is often able to produce correct pick and
place action sequences following the in-context
examples. Compared with LLM-Planner, SayPlan
improves slightly (on 5 out of 8 task sets) as a result



1471

(a) Scene 1 (kitchen, liv-
ing room, corridor, bathroom,
utility room, pantry room)

(b) Scene 2 (kitchen, living
room, dining room, child’s
room, bathroom, bedroom)

(c) Scene 3 (corridor, bath-
room, bedroom)

(d) Scene 4 (kitchen, living
room, bathroom, bedroom,
lobby)

Figure 4: The Housekeep scenes used in our experiment.

Scene ID Scene 1 Scene 2 Scene 3 Scene 4

Task Set train test train test train test train test

Baselines
SayCan -2.6 ± 1.9 0.0 ± 0.0 -1.2 ± 1.2 -10.6 ± 6.8 -3.3 ± 2.2 -8.0 ± 4.9 -1.6 ± 1.6 0.0 ± 0.0

SayPlan -7.0 ± 5.9 -5.0 ± 5.0 -6.8 ± 2.7 -1.6 ± 9.2 0.4 ± 4.5 -13.0 ± 8.3 -10.7 ± 3.8 -12.3 ± 15.3

LLM-Planner 5.3 ± 4.4 -3.6 ± 4.8 -8.4 ± 3.8 -9.8 ± 6.3 -14.2 ± 4.0 -4.0 ± 3.3 -29.6 ± 5.2 -30.2 ± 4.8

Ours
LLM-Personalize (IL) 4.1 ± 2.6 17.6 ± 6.1 -3.3 ± 3.0 12.6 ± 9.0 22.6 ± 2.6 24.3 ± 4.4 10.9 ± 3.3 25.7 ± 6.7

LLM-Personalize (ST iter=1) 17.9 ± 3.7 25.8 ± 6.6 19.4 ± 2.9 21.7 ± 5.6 32.4 ± 3.2 41.4 ± 6.3 24.2 ± 3.2 10.2 ± 6.7

LLM-Personalize (ST iter=2) 25.5 ± 3.1 29.6 ± 5.4 18.5 ± 2.6 25.2 ± 4.0 33.5 ± 3.8 43.3 ± 4.3 29.1 ± 2.9 20.4 ± 6.8

Table 1: Average success rate on train and test sets across scenes. Each entry denotes the mean ± standard error of
the mean across episodes. (Boldface: best variant across the task set, ST: self-training, IL: imitation learning)

of improvement in plan executability due to revi-
sion with feedback. However, all baselines have
difficulty knowing whether an object is misplaced
or correctly placed, as well as the correct recepta-
cles to place objects, due to lack of personalization.
As a result, the negative scores across the base-
line methods are often due to picking and placing
correctly placed objects onto wrong receptacles.

Comparing the different stages of LLM-
Personalize on the test sets, we observe a gen-
eral trend where the combination of imitation
learning and Self-Training lead to better results.
First, bootstrapping from demonstrations improves
over LLM-Planner (i.e., the base LLM-Personalize
model). For example, on Scene 1, the success rate
improved from −3.6% to 17.6%. This improve-
ment is a result of improved executability due to ac-
tion sequencing, better context understanding (e.g.,
agent correctly extracts and uses object names from
the prompt), and initial alignment to personalized
preferences shown in the demonstrations. Second,
the Self-Training iterations further improves perfor-
mance with improved alignment with personalized
preferences. For example, on Scene 1, the suc-
cess rate after two iteration of Self-Training grows
from 17.6% to 29.6% compared with the imitation
bootstrapped variant. We also observed that after
bootstrapping, the model learns to explore object
placements with improved accuracy during Self-
Training and with more Self-Training iterations,
the model exploits and commits to the learned cor-

rect placements while avoiding wrong ones.
Comparing the train and test performances of

LLM-Personalize, we observe that the testing per-
formance generally increases with increased train-
ing performance, except for Scene 3, where the test
performance drops as a result of overfitting. This
shows that our model is able to learn personalized
preferences seen during training, and generalize to
unseen object combinations and placements.
Qualitative Results In Fig. 5, we present plans
generated by LLM-Personalize and executed by
the robot on a test task in Housekeep and the result-
ing graph of the household scene after each plan
iteration. We can see that the agent learned to start
by exploring the house, then rearrange one mis-
placed object at a plan iteration, and successfully
rearranged 4 out of 5 misplaced objects.

4.3 Ablation Studies

In this section, we present ablation studies on LLM-
Personalize’s plan executability, exploration vs. ex-
ploitation and cross-domain transfer performance.
Cross-domain Transfer Results In addition to the

improved in-domain adaptation results in Table 1,
we show in Table 2 cross-domain transfer perfor-
mance of LLM-Personalize. In this experiment, we
train the model on a source scene (e.g., scene 2),
and observe the performance change on the test set
on a different scene (e.g., scene 1) with different
rooms and receptacles. From the table, we can
observe that through imitation learning and Self-
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Plan Iteration #2 LLM-Personalize RESPONSE
step 1: go to cracker box 1 
step 2: look at cracker box 1 
step 3: pick up cracker box 1 
step 4: go to pantry room 0 top cabinet 54 
step 5: look at pantry room 0 top cabinet 54 
step 6: place cracker box 1 on pantry room 0 top cabinet 54

Plan Iteration #3 LLM-Personalize RESPONSE
step 1: go to xylitol sweetener 1 
step 2: look at xylitol sweetener 1 
step 3: pick up xylitol sweetener 1 
step 4: go to pantry room 0 top cabinet 54 
step 5: look at pantry room 0 top cabinet 54 
step 6: place xylitol sweetener 1 on pantry room 0 top cabinet 54

Plan Iteration #8 LLM-Personalize RESPONSE
step 1: go to chocolate box 1 
step 2: look at chocolate box 1 
step 3: pick up chocolate box 1 
step 4: go to kitchen 0 bottom cabinet 30 
step 5: look at kitchen 0 bottom cabinet 30 
step 6: place chocolate box 1 on kitchen 0 bottom cabinet 30

Plan Iteration #1 LLM-Personalize RESPONSE
step 1: go to kitchen 0 
step 2: go to utility room 0 
step 3: go to pantry room 0 
step 4: go to corridor 0 
step 5: go to living room 0 
step 6: go to bathroom 0

… plan iterations #4 ~ #7 …

Figure 5: Demonstration of four planning iterations generated and executed by LLM-Personalize (top row) and the
resulting graphs (bottom row) on a test task in Housekeep. Green/red object (leaf) nodes indicate correct/wrong
placements. The object being moved is shown in boldface. This episode starts with 2 correctly placed objects and 5
misplaced objects (left), and changed to 6 correctly placed objects and only 1 misplaced objects after rearrangements
(right). For clarity, the graphs only show receptacles with objects and omit all other receptacles.
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Figure 6: Ablations (a) percentage of executable high-
level actions (b) unique placements executed. x-axis
refers to LLM-Personalize at different phases – Base:
before optimization, IL: imitation learning, ST: Self-
Training. Each point is an average value over 25
episodes (5 runs per task over 5 tasks in the test set)
and shaded area refers to standard error of the mean.

Training, LLM-Personalize is able to transfer to a
different scene with improved test performance.
Executability In Fig. 6a we present the executabil-
ity improvement of LLM-Personalize (IL, ST1,
ST2) compared to the base LLM-Planner (Base).
Each point refers to the average percentage of high-
level actions generated by the LLM planner that
are successfully executed per task. The IL boot-
strapping significantly improved the planner’s exe-
cutability, due to improved context understanding
and action sequencing, enabling LLM-Personalize
to produce high quality training examples for Self-
Training, and we can observe consistently high
executability from the LLM-Personalize(ST1) and
LLM-Personalize(ST2) variants.
Exploration vs. Exploitation To analyse how
the agent’s exploration vs. exploitation behavior
changes at different optimization phases, we show
in Fig. 6b the average number of unique place-
ments executed per episode, where each unique
placement refers to a pair of object and receptacle
where the agent placed the object on the receptacle.
Higher degree of exploration behavior is indicated
by higher number of unique placements, and in con-

Scene Pairs Scene 1 & 2 Scene 3 & 4

Task Set train(Scene2) test(Scene1) train(Scene4) test(Scene3)

LLM-Planner -8.4 ± 3.8 -3.6 ± 4.8 -29.6 ± 5.2 -4.0 ± 3.3

LLM-Personalize(IL) -3.3 ± 3.0 13.2 ± 6.5 10.9 ± 3.3 34.3 ± 5.4

LLM-Personalize(ST1) 19.4 ± 2.9 13.0 ± 4.6 24.2 ± 3.2 31.2 ± 4.9

LLM-Personalize(ST2) 18.5 ± 2.6 17.0 ± 4.5 29.1 ± 2.9 42.4 ± 3.8

Table 2: Ablation Study: Cross-domain generalisation
success rate. (Boldface: best across the task set, ST1/2:
self-training iteration 1 or 2, IL: imitation learning)

trary, lower number of unique placements indicates
more exploitation behavior. Fig. 6b shows an in-
crease in exploration from LLM-Planner (Base) to
LLM-Personalize(IL), partly due to improved plan
executability. From IL to ST1, the agent further in-
creased exploration, where it explores placements
beyond the behaviors learned from demonstrations.
For example, on Scene 3 the average unique place-
ments increased from 2.32 to 9.48. Compared with
ST1, ST2 typically shows more exploitation where
the agent learns to commit to the correct placement
combinations for better task success.

5 Conclusions

We proposed LLM-Personalize, an LLM-based
household robotics agent framework capable of
long-horizon planning in multi-room, partially ob-
servable household scenarios, and an optimization
pipeline that personalizes the LLM planner to user
preferences. This approach effectively addresses
the gap in personalizing LLM planners for house-
hold robotics. Our model achieves superior align-
ment with user preferences, outperforming existing
work in the challenging Housekeep rearrangement
tasks. Moving forward, the versatility and scalabil-
ity of the agent design and optimization pipeline
makes it a promising solution for a broad range of
personalized LLM-powered robotics applications.
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6 Limitations

There are two main limitations in this work. Firstly,
although our framework demonstrates significant
improvements in aligning LLM planners with hu-
man preferences, the current scale of our experi-
ments was constrained by computational resources,
(e.g., the LLM API budget). More extensive eval-
uations involving larger, more diverse household
environments could offer further opportunities for
enhancing scalability and robustness.

Secondly, while the simulated environment pro-
vides valuable insights into the effectiveness of
LLM-Personalize, the absence of real-world test-
ing on physical robots and real-world household
scenarios leaves room for further validation in dy-
namic real-world settings. An interesting future
direction can aim to address this by deploying our
approach on actual robots in household scenarios.

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen

Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691.

Afra Feyza Akyürek, Ekin Akyürek, Aman Madaan,
Ashwin Kalyan, Peter Clark, Derry Wijaya, and Niket
Tandon. 2023. Rl4f: Generating natural language
feedback with reinforcement learning for repairing
model outputs. arXiv preprint arXiv:2305.08844.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan,
Shizhe Diao, Jipeng Zhang, Kashun Shum, and
Tong Zhang. 2023. Raft: Reward ranked finetuning
for generative foundation model alignment. arXiv
preprint arXiv:2304.06767.

Amelia Glaese, Nat McAleese, Maja Trebacz, John
Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,
Laura Weidinger, Martin Chadwick, Phoebe Thacker,
et al. 2022. Improving alignment of dialogue agents
via targeted human judgements. arXiv preprint
arXiv:2209.14375.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, et al. 2023. Reinforced self-
training (rest) for language modeling. arXiv preprint
arXiv:2308.08998.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022a. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. In International Conference on
Machine Learning, pages 9118–9147. PMLR.

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess,
Andy Zeng, Yao Lu, Pete Florence, Igor Mor-
datch, Sergey Levine, Karol Hausman, et al. 2023.
Grounded decoding: Guiding text generation with
grounded models for robot control. arXiv preprint
arXiv:2303.00855.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan,
Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al.
2022b. Inner monologue: Embodied reasoning
through planning with language models. arXiv
preprint arXiv:2207.05608.

Yash Kant, Arun Ramachandran, Sriram Yenamandra,
Igor Gilitschenski, Dhruv Batra, Andrew Szot, and
Harsh Agrawal. 2022. Housekeep: Tidying virtual
households using commonsense reasoning. In Eu-
ropean Conference on Computer Vision, pages 355–
373. Springer.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2023. Code as policies: Language model
programs for embodied control. In 2023 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 9493–9500. IEEE.

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. 2023.
Chain of hindsight aligns language models with feed-
back. arXiv preprint arXiv:2302.02676, 3.

Jinjie Mai, Jun Chen, Bing Li, Guocheng Qian, Mo-
hamed Elhoseiny, and Bernard Ghanem. 2023. Llm
as a robotic brain: Unifying egocentric memory and
control. arXiv preprint arXiv:2304.09349.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Andrzej Pronobis and Patric Jensfelt. 2011. Hierar-
chical multi-modal place categorization. In ECMR,
pages 159–164.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. arXiv preprint
arXiv:2305.18290.



1474

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-
Chakra, Ian Reid, and Niko Suenderhauf. 2023.
Sayplan: Grounding large language models using
3d scene graphs for scalable task planning. arXiv
preprint arXiv:2307.06135.

Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak,
Jun Shern Chan, Angelica Chen, Kyunghyun Cho,
and Ethan Perez. 2023. Training language mod-
els with language feedback at scale. arXiv preprint
arXiv:2303.16755.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2998–3009.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Jimmy Wu, Rika Antonova, Adam Kan, Marion Lep-
ert, Andy Zeng, Shuran Song, Jeannette Bohg, Szy-
mon Rusinkiewicz, and Thomas Funkhouser. 2023.
Tidybot: Personalized robot assistance with large
language models. arXiv preprint arXiv:2305.05658.

Canwen Xu, Zexue He, Zhankui He, and Julian
McAuley. 2022. Leashing the inner demons: Self-
detoxification for language models. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 36, pages 11530–11537.

A Appendix

A.1 Preliminaries: LLMs and Self-training

An LLM (Brown et al., 2020) is a transformer-
based (Vaswani et al., 2017) language model
that is capable of performing general-purpose lan-
guage generation, e.g., GPT (Brown et al., 2020),
PaLM (Chowdhery et al., 2023), LLaMA (Touvron
et al., 2023). In practice, users interact with LLMs
by sending prompts and receiving responses.

Reinforced Self-Training Iterative (Gulcehre
et al., 2023) reinforced Self-Training is a sample

efficient algorithm for aligning LLMs with human
preferences, particularly for the domain of ma-
chine translation. The key mechanism involves
a grow step where a training dataset is collected by
prompting the LLM to generate multiple responses
for each prompt, and an improve step, where the
dataset is annotated and filtered according to hu-
man preferences, followed by fine-tuning the LLM
on the dataset using offline RL or supervised learn-
ing.

A.2 Controller
Given our primary focus on personalizing LLM
planners, we assume a room-level topological map
is available (e.g., via semantic mapping (Prono-
bis and Jensfelt, 2011)). We make use of the off-
the-shelf controller accessible from the Housekeep
simulator, which maps each high-level action to a
sequence of low-level actions. During a task, the
robot navigates and continually updates a room-
level topological map using egocentric observa-
tions, camera projection matrix, RGBD-aligned
pixel-wise instance and semantic masks and rela-
tionship sensor to localize objects and receptacles
to update the map. The high-level actions from
the LLM planner are carried out as follows: 1) for
go to, the controller uses the allocentric map and
the target entity (obj, rec, room), and executes a
sequence of navigation actions to reach the target;
2) for look at, the agent orients itself to face the
desired target via look up/down and turn left/right
actions; 3) to carry out pick/place, the agent in-
vokes a discrete grab/release action that casts a ray,
and if it intersects an obj or rec within 1.5m, it picks
or places an object. More details of the controller
can be found in (Kant et al., 2022).

A.3 Experiment Setup: Baselines
To adapt SayCan to Housekeep with large number
of available actions, we adopt the implementation
in (Song et al., 2023), where the list of affordable
high-level actions (e.g., go to a discovered object)
are provided in each prompt, together with the list
of previously executed actions. For SayPlan, we
additionally provide the state and affordance of the
receptacles and objects (e.g., pick up) as in (Rana
et al., 2023) and allow 10 LLM semantic search
steps and 5 revision (re-plan) retries for each plan
iteration where the final revised plan is executed,
and the revision feedback is provided by a verifica-
tion module (e.g., cannot pick up obj as the agent
is holding another object).
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