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Abstract

Inspired by human cognitive behavior, we in-
troduce visual modality to enhance the perfor-
mance of pure text-based question-answering
tasks with the development of multimodal mod-
els. However, obtaining corresponding images
through manual annotation often entails high
costs. Faced with this challenge, an intuitive
strategy is to use search engines or use web
scraping techniques to automatically obtain rel-
evant image information. However, the images
obtained by this strategy may be of low quality
and may not match the context of the origi-
nal task, which could fail to improve or even
decrease performance on downstream tasks.
In this paper, we propose a novel framework
named "ITERATE", aimed at retrieving and op-
timizing the quality of images to improve the
alignment between text and images. Inspired
by evolutionary algorithms in reinforcement
learning and driven by the synergy of large lan-
guage models (LLMs) and multimodal models,
ITERATE employs a series of strategic actions
such as filtering, optimizing, and retrieving to
acquire higher quality images, and repeats this
process over multiple generations to enhance
the quality of the entire image cluster. Our
experimental results on the ScienceQA, ARC-
Easy, and OpenDataEval datasets also verify
the effectiveness of our method, showing im-
provements of 3.5%, 5%, and 7%, respectively.

1 Introduction

In recent years, with the advancement of large lan-
guage models (LLMs), the field of Natural Lan-
guage Processing (NLP) has witnessed unparal-
leled progress (Floridi and Chiriatti, 2020; Ouyang
et al., 2022). From text generation and knowledge-
intensive question answering to sentiment analysis,
LLMs have demonstrated remarkable performance
across a wide range of NLP tasks. However, re-
lying solely on textual information may not be
sufficient in various scenarios. For instance, in

“kitten's 
fur”

Which characteristic describes 
the texture of a kitten's fur?

Answer：......

Figure 1: The inspiration for ITERATE. When a person
is asked a question, the brain first associates it with the
visual information of the relevant content, rather than
the natural language itself.

a question-answering task, when the question re-
lates to the essence or characteristics of a subject,
merely depending on a text might fall short of cap-
turing the detailed information needed for this task.
This raises an interesting question: can we com-
bine other modalities, such as images, with text to
allow the model to better comprehend and answer
the question? Just as with human cognitive behav-
ior, when humans are asked a question, especially
about a specific object, the first thing that comes to
mind is the visual information of that object, rather
than its natural language description, as shown in
Figure 1. By understanding the visual content that
is conjured up, one can provide the correct answer.
This is one of the inspirations behind the work pre-
sented in this paper.

Multimodal question-answering datasets have
emerged, such as ScienceQA (Lu et al., 2022),
which provides paired images for the questions or
options of some examples. However, not all exam-
ples in ScienceQA are provided with images, pre-
senting a challenge of missing images. Similarly,
for general pure natural language QA tasks, incor-
porating additional relevant image information can
also enhance the model’s answering capability.
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Inspired by retrieval-enhanced technolo-
gies (Guu et al., 2020; Lewis et al., 2020; Izacard
and Grave, 2020; Lin and Byrne, 2022; Chen
et al., 2022), instead of the traditional method
of searching for relevant documents or answers
through question texts (or search for related images
through a database), we consider a novel approach
to align the question text with relevant images
to assist the model in answering. However, this
strategy brings forth a new challenge: how can we
effectively get images that best match the text?

A direct solution is to utilize search engines or
web crawlers to obtain images. Yet, there are obvi-
ous drawbacks to this approach. Images obtained
through search engines or web crawlers can vary in
quality, exhibit randomness, and most importantly,
may not align with the context of the original task
text. Such discrepancies in quality and mismatches
with context could lead the model to generate bi-
ases during the learning phase, potentially reducing
its accuracy and generalization capabilities, hinder-
ing the improvement of model performance or even
leading to a decrease. How to ensure a high degree
of consistency between the image and the text has
become our main concern.

Faced with the challenge of selecting the most
matched high-quality image for task text, we study
different search methods to obtain the image that
best matches the text. We find that searching solely
based on topic keywords may result in a multitude
of mismatches. Therefore, a more refined method
is needed to distinguish the internal connections
between text and images. Fortunately, Krishna et
al. (Krishna et al., 2017) provide invaluable inspi-
ration. They emphasize the profound and intrinsic
relationship between natural language and visual
content. Natural language can not only identify
objects within images but also describe the rela-
tionships between them, leading to the proposal of
the concept of Visual Genome(Krishna et al., 2017).
Using the idea of converting images into combi-
nations of words that describe objects, attributes,
and relationships, we can also view images as com-
posed of single or multiple object elements and
the relationships between them (ie. transmodal
conversion from vision to natural language). This
combination of elements and relationships can be
regarded as the “DNA" of an image.

In this paper, we draw inspiration from evolution-
ary algorithm (EAs) (Slowik and Kwasnicka, 2020)
and the approach of Krishna et al. to introduce an
iterative method named ITERATE. By integrating

the idea of image DNA with EAs, we continuously
iterate and refine our image selection, aiming for
the utmost consistency between the selected im-
ages and their corresponding task texts. Taking
advantage of LLMs’ expertise in NLP, we utilize
LLMs as a genetic evolutionary operator to gener-
ate new “DNA”, with the EAs guiding the entire
optimization process. Specifically, based on the ini-
tial “DNA” (initial keywords) derived from the task
text, we search for related images using a search
engine API to create an image cluster. LLMs are
employed to imitate evolutionary operators in EAs
to generate new “DNA” (new keywords), to search
for the next generation of images, and replace those
of less quality within the image cluster. We iterate
on the updated image cluster to improve its overall
quality. To validate the efficacy of the ITERATE
method, we implement it on the ScienceQA (Lu
et al., 2022), ARC-Easy (Clark et al., 2018) and
OpenDataEval dataset. The experimental results
indicate that this method not only improves the
model’s answering accuracy across the three task
sets but also achieves effective performance en-
hancement on single modal tasks.

2 Related Work

Retrieval Augmented Models For a long time, the
combination of image data with text has been a
focal point of research, as images encapsulate a
wealth of worldly knowledge. Initial research on
pre-trained models provided fresh insights for mul-
timodal models. For instance, Flamingo (Alayrac
et al., 2022) can generate descriptions from input
images. FIBER (Dou et al., 2022) introduced a
two-stage visual-language (VL) pre-training strat-
egy suitable for various levels of VL tasks. DALL-
E (Ramesh et al., 2021) and Parti (Yu et al., 2022)
can generate images based on given text. Blip-2 (Li
et al., 2023) initiated language-image pre-training
from pre-existing frozen visual and language mod-
els. However, these models come with extensive
parameter sizes and high pre-training computa-
tional costs, and they struggle with unseen knowl-
edge. As a result, many retrieval-augmented ap-
proaches emerged to integrate external knowledge
from both images and textual documents. For open-
domain visual question answering, RA-VQA (Lin
and Byrne, 2022) extracts related textual docu-
ments from databases through Dense Passage Re-
trieval (DPR) (Karpukhin et al., 2020) and jointly
trains document retrievers and answer generation



1367

keywordstask

keywords

 image cluster

  parent images  child images

 gene evolver

 natural
selector

 gene extractor

 best cluster

Figure 2: Flow Chart of ITERATE. The “natural selector” is the multimodal model used to filter out the parent
images for evolution, the “gene extractor” is the multimodal model used to extract the visual content description
from the parent images, and the “gene evolver” is the LLM used to execute the evolution operator.

modules. Meanwhile, PICa (Yang et al., 2022) and
KAT (Gui et al., 2021) also consider LLMs as im-
plicit knowledge bases. Plug-and-Play (Tiong et al.,
2022) utilizes GradCAM (Selvaraju et al., 2017)
based on initial questions to locate relevant parts,
retrieving associated image patches. Beyond pure
text-augmented contexts, MuRAG (Chen et al.,
2022) retrieves textual and image data from ex-
ternal storage systems, merging images as visual
tokens. In the medical field, RAMM (Yuan et al.,
2023) retrieves similar biomedical images and tex-
tual descriptions, encoding both modalities through
distinct networks. However, these methods’ limita-
tions lie in the need for specific multimodal storage
systems for retrieval. Another line of approaches,
such as REALM (Guu et al., 2020), RAG (Lewis
et al., 2020), and FiD (Izacard and Grave, 2020),
integrate Wikipedia articles as data storage, bene-
fiting downstream knowledge-intensive tasks like
question answering, but are confined to pure textual
knowledge.

Iterative Optimization Method In recent years,
significant advancements have been made in the
research on iterative optimization methods for
LLMs. Yang et al. introduced the “Deep-Thinking"
stage (Yang et al., 2023b), which enhances the rea-
soning abilities of LLMs at test time through the
iterative forward optimization of demonstrations.
DeepMind proposed the OPRO method (Yang et al.,
2023a), leveraging LLMs as optimizers to itera-
tively generate new solutions based on natural lan-
guage descriptions and previously discovered so-

lutions for optimization. Iter-RetGen (Shao et al.,
2023) enables LLMs to generate natural language
reasoning steps or Chains of Thought (CoT) to
answer multi-step questions through iterative op-
timization methods. Some works have also in-
tegrated with traditional algorithms in reinforce-
ment learning. PACE (Dong et al., 2023) com-
bines with the Actor-Critic algorithm (Konda and
Tsitsiklis, 1999) to realize automatic prompt edit-
ing. EVOPROMPT (Guo et al., 2023) is integrated
with evolutionary algorithms (Slowik and Kwas-
nicka, 2020) to achieve iterative optimization of
discrete prompts. Promptbreeder (Fernando et al.,
2023) is a general-purpose self-referential self-
improvement mechanism driven by LLMs, which
evolves and adapts prompts based on the given
domain. Iterative algorithms have shown their im-
portance in optimization engineering.

3 ITERATE

We consider a question-answering task set T =
{ t1, t2, t3, t4, . . . , tn−1, tn}. For each sample t,
given the input text x, which includes a question q
and several options c, the output is a correspond-
ing number (such as A, B, C, etc.) of a selected
option. For examples not accompanied by an im-
age, we use the ITERATE method to retrieve the
BestImage = ITERATE(x, n) to enhance the
model’s capacity to answer the question. Here,
ITERATE(·) denotes the iterative evolutionary
algorithm, and n represents the number of optimiza-
tion iterations.
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However, the inherent complexity and differ-
ences between visual content and textual data pose
substantial challenges. For instance, whereas nat-
ural language is sequential, images are pixel ma-
trices and inherently non-sequential. This nature
makes it challenging to obtain the optimal match-
ing image for a task text. According to the previ-
ous work of Guo et al. (Guo et al., 2023), it has
been established that evolutionary algorithms are
effectively applied for the iterative optimization
of phrase sequences in discrete prompts, which
are perceived as gene sequences in typical EAs.
Utilizing the simplified Visual Genome concept,
the visual content of images is transformed into a
combination of keywords which is regarded as the
image “DNA”, allowing evolutionary algorithms
to be employed at the level of natural language.

Following the ideas of Guo et al. (Guo et al.,
2023), we leverage the capabilities of LLMs to
evolve keyword-based “DNA”. Since the optimiza-
tion process involves cross-modal conversion, the
operations involving the two modalities of image
and text are implemented through multimodal mod-
els. To achieve the objective of obtaining the best
matching image for the task text, evolutionary al-
gorithms have been seamlessly incorporated into
the ITERATE method, resulting in the iterative im-
provement of image quality via the evolution of
cross-modal textual “DNA”.

3.1 Framework of ITERATE

Figure 2 depicted the architecture of our ITERATE.

Following the typical EAs, which generally start
from an initial cluster and then iterate to generate
new individuals by applying evolutionary operators
on the current cluster, with each iteration updating
the entire cluster, ITERATE primarily encompasses
three steps: Initialization, Evolution, and Update:

Initialization: Since there are no initial image
clusters corresponding to the samples in the current
task set, we need to manually initialize a cluster for
each sample. First, LLMs (such as GPT-4) are used
to extract the initial keywords from each question
text as the DNA of that cluster, represented as

keywords = Extr(q, c) , (1)

where q represents the question text in the sample,
and c represents the option text. The search for
images is then performed through search engines
(such as Google Search, Bing Search), which can

be represented as

imgs = search(keywords) , (2)

to initialize an image cluster, IC. The subsequent
iterative optimization process is conducted within
this cluster to improve its overall quality.

Evolution: In each iteration, our ITERATE uti-
lizes LLMs as evolutionary operators, which we
refer to as the “gene evolver”, and employs multi-
modal models as cross-modal auxiliary operators,
named the “natural selector” and “gene extractor”
based on their functions. We use fixed prompts
to guide the selection, reverse transcription, and
recombinant mutation steps, thereby obtaining new
images “DNA” of higher quality.

• Selection: Given that ITERATE is an itera-
tive technique involving cross-modal conver-
sion, we simply use the similarity between
text and images as a measure of image qual-
ity. We employ models (such as CLIP (Rad-
ford et al., 2021)) that understand the relation-
ship between images and text to calculate the
image-text similarity, represented as

similarity = Msel(IC, q) , (3)

where IC represents the image cluster, and
q represents the corresponding question text.
Subsequently, the top-2 images in the image
cluster are selected as parent images based on
the similarity, represented as

ParentImgs = top2(similarity) . (4)

• Reverse Transcription: The concept of re-
verse transcription originates from the rela-
tionship between RNA and DNA in biology,
where DNA is transcribed into RNA to pro-
duce proteins for gene expression, and RNA
serves as a template to be reverse-transcribed
back into DNA. Considering the combination
of natural language keywords as the “DNA”
of an image, the process of generating or ex-
tracting these natural language descriptions
from images can be viewed as a form of “re-
verse transcription” operation. Just as RNA is
reverse-transcribed back into DNA, images
are “reverse-transcribed” into the keyword
combinations in natural language form. We
use multimodal models (such as LLaVA (Liu
et al., 2023)) to perform this “reverse tran-
scription” operation, represented as

captions = Mextr(ParentImgs) (5)
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Demonstration of Iteration on a Example

How many legs does a cat have
Question：

?

[ "0", "2", "4" 
Choices：

]

 
ca

Initial Keywords：
t

Image 1 Description：
The image features a brown and white cat lying on a 

white sheet or blanket. The cat appears to be relaxed 
and comfortable, with its head turned to the side. 

Image 2 Description：
The image features a orange cat sitting on a white 

towel. The cat is positioned in a relaxed manner, with 
its front legs spread out on the towel. The towel is 
placed on a table, providing a comfortable surface for 
the cat to rest on. 

newKeywords：
cat, legs

Evo(keywords,captions,q)

search(keywords)

top2(Msel(IC,q))

Mextr(ParentImgs)

search(newKeywords)

I T E R A T E ( n )

Final Image Cluster

(IC,q)top1(Msel )

Extr(q,c)

Image Cluster (IC)

Figure 3: The Iterative Process of ITERATE Algorithm
on Demonstration Samples. The operators in the yellow
boxes on the right of the figure correspond to Algo-
rithm 1. ITERATE successfully retrieves the best image
for the “How many legs does a cat have?” problem.

• Recombination&Mutation Based on the two
sets of keywords derived from reverse tran-
scription, as well as the task text itself, LLMs
are used to “evolve” the original keyword com-
bination into a new set of keyword combina-
tions. The “evolution” operation is akin to
integrating the crossover and mutation oper-
ations found in evolutionary algorithms: ini-
tially, LLMs cross-analyze the commonali-
ties and individualities within the two images’
“DNA”s, and on the basis of retaining com-
mon keywords, further select individual ones
to construct a new keyword combination to-

Dataset Original ITERATE Ratio

ScienceQA 10332 16058 75.7%

ARC-Easy 0 2376 100%

OpenDataEval 0 470 100%

Table 1: Statistical data of examples from the original
datasets and after ITERATE image search processing.
The "Original" column shows the number of examples
with images initially, and the "ITERATE" column shows
the count after adding images via ITERATE.

gether with the previous keywords (i.e. Re-
combination); subsequently, Mutations are
applied to the individual keywords in conjunc-
tion with the question text to acquire a new
“DNA”. Following these principles, we utilize
fixed prompts to guide the behaviors of LLMs,
represented by the equation:

newKeywords =

Evo(keywords, captions, q) . (6)

Update: ITERATE iteratively generates new
keywords DNA and uses search engines to retrieve
new offspring images for updating the cluster:

ChildImgs = search(newKeywords). (7)

We consider a simple and direct updating strategy,
specifically, in each iteration, ITERATE searches
for N images (set to 2 in this paper) based on the
keywords. These new images replace the bottom-N
images in the image cluster (those with the lowest
text match), resulting in an updated image cluster.
This is akin to natural selection, where the fittest
survive and produce equally high-quality offspring.

Once ITERATE reaches a pre-set number of it-
erations, the algorithm stops. Appendix A pro-
vides the pseudocode for ITERATE and the fixed
prompts we used.

4 Experiments

In this section, we will evaluate our ITERATE
method on three datasets. We will then introduce
the benchmark dataset, implementation details, per-
formance baselines for comparison, and the final
experimental results.

4.1 Dataset

ScienceQA is the first large-scale multimodal
multiple-choice science dataset with 21,208 exam-
ples across natural science (NAT), social science
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Model Size NAT SOC LAN TXT IMG NO Avg

MCAN 95M 56.08 46.23 58.09 59.43 51.17 55.40 54.54
Top-Down 70M 59.50 54.33 61.82 62.90 54.88 59.79 59.02
BAN 112M 60.88 46.57 66.64 62.61 52.60 65.51 59.37
DFAF 74M 64.03 48.82 63.55 65.88 54.49 64.11 60.72
ViLT 113M 60.48 63.89 60.27 63.20 61.38 57.00 61.14
Patch-TRM 90M 65.19 46.79 65.55 66.96 55.28 64.95 61.42
VisualBERT 111M 59.33 69.18 61.18 62.71 62.17 58.54 61.87

UnifiedQABase 223M 68.16 69.18 74.91 63.78 61.38 77.84 70.12
UnifiedQABase w/ CoT 223M 71.00 76.04 78.91 66.42 66.53 81.81 74.11

GPT-3.5 175B 74.64 69.74 76.00 74.44 67.28 77.42 73.97
GPT-3.5 w/ CoT 175B 75.44 70.87 78.09 74.68 67.43 79.93 75.17

MM-CoTBase 223M 82.24 83.13 82.64 80.84 76.15 85.64 82.53

MM-CoTBase + ITERATE 223M 83.88 92.91 84.45 82.65 82.05 86.90 85.92

Table 2: The Results of Model Performance Comparison on ScienceQA (%). Size = backbone model size.
Question categories: NAT = natural science, SOC = social science, LAN = language science, TXT = with text
context, IMG = with image context, NO = with no context.

(SOC), and language science (LAN). The dataset
is split into training, validation, and testing sets
in a 60:20:20 ratio, with 12,726, 4,241, and 4,241
examples, respectively (Lu et al., 2022).

ARC-Easy is a multiple-choice dataset from
U.S. middle and elementary school science exams,
covering biology, chemistry, physics, earth science,
and astronomy.

OpenDataEval is a multiple-choice dataset cre-
ated by retrieving random articles from the Hug-
gingFace Wikipedia English dataset, constructing
chains of thought, and using large language models
to score and filter the questions.

4.2 Baseline Models

For the ARC-Easy and OpenDataEval datasets,
which are pure NLP tasks, we utilize models from
the Llama-2 family and the base model of LLaVA-
13B, with the ARC-Easy dataset also incorporating
the Mistral-7B (Jiang et al., 2023) model.

As for ScienceQA dataset, following the work of
Lu et al., we compare our ITERATE method with
the baselines of the following four methods:

(1) Visual question answering models:
MCAN (Yu et al., 2019), Top-Down (An-
derson et al., 2018), BAN (Kim et al.,
2018), DFAF (Gao et al., 2019), ViLT (Kim
et al., 2021), Patch-TRM (Lu et al., 2021),
VisualBERT (Li et al., 2019).

(2) Text-to-text LMs: UnifiedQA (Khashabi et al.,
2020), as well as UnifiedQA with Chain-of-
Thought (CoT) (Lu et al., 2022).

(3) GPT-3.5 models: GPT-3.5 based on the text-
davinci-002 engine (Chen et al., 2020), as well
as GPT-3.5 with CoT (Lu et al., 2022).

(4) Multimodal-CoTBase: MM-CoT running un-
der the same parameters as our experiments.

4.3 Implementation Details
For MM-CoT, we use GPT-4 for initial keyword
extraction and evolutionary operations. Clip-vit-
base-patch32 (Radford et al., 2021) is employed
for image-text matching, and LLaVA-Lightning-
MPT-7B (Liu et al., 2023) for extracting natural
language descriptions from images. Bing Search
v7, comparable in accuracy to Google, is used as
the search engine.

For LLaVA, its multimodal capabilities allow it
to handle keyword extraction, evolutionary opera-
tions, and natural language descriptions of parent
images independently, without external models.

To ensure a fair comparison, ITERATE optimiza-
tion on ScienceQA only searched for images for
examples without them, leaving existing images
unchanged. Since few images match the language
science category, ITERATE was not applied there.
For ARC-Easy and OpenDataEval, images were
supplemented for every question. Figure 3 illus-
trates ITERATE applied to the demonstration.
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Method ARC-Easy

Mistral-7B 80.0
LLaMA-7B 72.8
LLaMA-13B 78.9
LLaMA-33B 80.0

LLaVA-13B 78.0
LLaVA-13B + ITERATE 82.8

Table 3: The Results of Model Performance Comparison
on ARC-Easy (%).

Method OpenDataEval

Mistral-7B 66.7
LLaMA-7B 60.1
LLaMA-13B 66.5

LLaVA-13B 64.8
LLaVA-13B + ITERATE 72.0

Table 4: The Results of Model Performance Comparison
on OpenDataEval (%).

For the ScienceQA dataset, we fine-tuned the
Multimodal-CoT model (Zhang et al., 2023) to
evaluate our ITERATE method. DETR (Carion
et al., 2020) generated visual features, and FLan-
Alpaca-Base (Chia et al., 2023) served as the back-
bone. The models were fine-tuned for up to 20
epochs with a learning rate of 5e−5, a maximum
input length of 512, and a batch size of 8.

For the ARC-Easy and OpenDataEval datasets,
we adopte zero-shot learning on the LLaVA-v1.5-
13B model to test the robustness of our ITERATE
method in generalization and the helpfulness of
image modal in NLP question-answering tasks.

4.4 Original vs. Dataset after ITERATE
We also performed statistics on all examples in the
three datasets enhanced by the ITERATE algorithm,
as shown in Table 1.

For ScienceQA, the original dataset includes
10,332 examples (48.7%) with images. After
supplementing with images, the new dataset has
16,058 examples (75.7%) with images. The re-
maining 24.3% without images are mostly in the
language science category, where relevant images
couldn’t be found. The natural science category
saw the most significant increase, nearly doubling
the number of examples with images.

Both ARC-Easy and OpenDataEval are origi-
nally text-based QA datasets. In the new datasets,

MM-CoT 0-ITERATE 1-ITERATE 2-ITERATE 3-ITERATE 4-ITERATE82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

86.0

Ac
c

Figure 4: Ablation results of different iteration numbers
on overall performance.

100% of examples now include images, meaning
our method successfully found relevant images to
assist in answering the text questions.

4.5 Main Results

Table 2 presents the results of our experiment with
the ITERATE method. To ensure fairness, we
compare it with MM-CoTBase, using the same
experimental parameters. ITERATE improved
MM-CoTBase by 3.39% , outperforming all base-
line models. Notably, the TXT and NO cate-
gories within ScienceQA benefited significantly
from paired images, enhancing the model’s cogni-
tive abilities. The SOC category saw the largest
accuracy boost, nearly 10%.

It is worth noting that, despite no changes in
the LAN category examples, there was still a 1.8%
uptick in accuracy. A credible rationale for this
improvement can be found in the research by Lin
et al. (Lin et al., 2023), which suggests that cross-
modal understanding between different modalities
(like image-text) in multimodal learning can not
only enhance the performance of the model on
multimodal tasks, but also potentially enhance its
single-modal task performance.

The zero-shot performance improvements of IT-
ERATE are shown in Tables 3 and 4. Our ITER-
ATE method significantly enhanced LLaVA’s per-
formance on these NLP tasks, demonstrating the
value of the added image modality. LLaVA’s per-
formance improved by approximately 5% and 7%
across two datasets. Notably, LLaVA-13B with
ITERATE outperformed the 33B LLaMA and the
powerful Mistral-7B(matching the performance of
LLaMA-33B with only 7B parameters), also sur-
passing LLMs with similar parameter counts.
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Method NAT SOC LAN TXT IMG NO Avg

MM-CoTBase 82.24 83.13 82.64 80.84 76.15 85.64 82.53

MM-CoTBase + ITERATE 83.88 92.91 84.45 82.65 82.05 86.90 85.92
w/o top-2 images select 82.80 92.52 83.01 81.57 80.97 85.96 84.87

Table 5: Ablation results on the ScienceQA of top-2 images selection module in ITERATE (%).

Method ARC-E ODEval

LLaVA-13B 78.0 64.8

LLaVA-13B + ITERATE 82.8 72.0
w/ shuffled images 74.9 66.6

Table 6: Ablation results of whether the images are
correctly matched on ARC-Easy and OpenDataEval.

4.6 Ablation Analysis
Effect of Iteration Numbers In our ablation study
on the ScienceQA dataset, we examined the im-
pact of the ITERATE method and the number of
iterations on model performance, as shown in Fig-
ure 4. Even with 0 iterations (0-ITERATE), the
model’s accuracy increased from the baseline MM-
CoTBase model’s 82.53% to 84.41%, indicating
that the image retrieval enhancement provided by
ITERATE offers a certain performance advantage.
Performance continued to improve with more iter-
ations, reaching a peak accuracy of 85.92% at 3
iterations, indicating that iteration in ITERATE pro-
vides additional gains. We also analyze the impact
of varying iteration numbers within ITERATE on
the accuracy across six categories in ScienceQA,
as shown in Appendix B.

Effect of top-2 selection module We conducted
an ablation study on the top-2 selection module in
ITERATE, used for selecting parent images for
evolution. The number of iterations was set to
three, matching the best performance setup. The
control group used random sampling for parent
images, with results shown in Table 5. Removing
the top-2 selection module led to a 1.1% drop in
overall performance, similar to ITERATE without
iterations, highlighting the significance of the top-2
image selection module in enhancing the system’s
overall efficiency. The NAT category showed the
most significant performance decline, while the
SOC category was less affected, indicating that
SOC questions are less sensitive to image quality.

Effect of correct images pairing To prove that
it is indeed the aligned content in the images that

aids the model in answering, rather than just the
additional image information, we conducte corre-
sponding ablation experiment where we shuffle the
images for random pairing. The result as shown
in Table 6, indicates that the performance improve-
ment with shuffled image pairings is not significant,
and there was even a decline, which emphasizes
the correctness and effectiveness of our method.

5 Conclusions

In this paper, to improve the model’s performance
on question-answering tasks, we introduce an ad-
ditional visual modality (image) to enhance the
model’s understanding and answering capabilities.
Moreover, to obtain high-quality images, we intro-
duce a cross-modal evolutionary method for image-
text retrieval optimization, named ITERATE, in-
spired by evolutionary algorithms in reinforcement
learning and the concept of the Visual Genome.
Our experiments have demonstrated the helpful-
ness of additional modal information in enhancing
the performance of purely NLP tasks, as well as
the effectiveness of ITERATE in optimizing the
quality of retrieved images. Our work takes an
important step forward in improving the model’s
performance on question-answering tasks by intro-
ducing high-quality new modalities, with ITER-
ATE’s significant improvements in image retrieval
and quality optimization highlighting the value of
this approach and the potential of multimodal en-
hancements to task performance.

6 Limitations and Future Works

Our ITERATE method has proven effective across
three QA datasets, and we now seek to validate it
on more diverse tasks. However, ITERATE faces
challenges; ablation studies show performance may
decline after the third iteration, likely due to the
increasing complexity of image-text matching. Fu-
ture work could focus on selecting high-quality
image pairs by enhancing the model’s understand-
ing of task questions, rather than relying solely on
image-text similarity.
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A Pseudocode of ITERATE

In Algorithm 1, initial keyword extraction opera-
tion, Extr(·), and evolutionary operator, Evo(·),
are both conducted through few-shot learning in
LLMs. The corresponding prompts are as follows:

• Extr(·) : I have a question and its
options now. Please extract a keyword
for a noun or adjective from it
and use them to search for images
for data enhancement, making the QA
results better. The following are
some examples of keywords extraction:
Example 1: Question: {question
of Example 1}, Options: {options
of Example 1}, Keywords:{initial
keyword of Example 1}.
Example 2: Question: {question
of Example 2}, Options: {options
of Example 2}, keywords:{initial
keyword of Example 2}.
Now, give me the keywords based on
the following information:
Question: {question of QUERY},
Options: {options of QUERY}

• Evo(·) : Next, I will provide content
descriptions of two images, which
are obtained from a Bing search using
the original keywords. I hope you can
help me generate new keywords from
the given two description sentences
that encapsulate their differences.
These keywords will be used for
Bing image search to obtain higher
quality images to assist in answering
the question. The following is the
example:
Original Keywords: {Original
Keywords of Example}, Description
1: {content description of image-1},
Description 2: {content description
of image-2}, New Keywords: {New
Keywords of the Example}.
Now, give the new keywords based on
the following information:
Original Keywords: {Original
Keywords of QUERY}, Description
1: {content description of image-1},
Description 2: {content description
of image-2}

B Ablation results within six categories
examples of ScienceQA

Without any iterations, we find the SOC and IMG
categories to have the most substantial performance
gains, approximately 10% and 5%, respectively.
However, for the other four categories, the per-
formance of 0-ITERATE is only on par with the
baseline. One possible reason is that the images
retrieved without iteration optimization might be
of poor quality, failing to effectively enhance per-
formance, and even possibly harm the question-
answering capability of the model. Consequently,
after one single iteration, all these categories ex-
hibit significant performance improvement, sug-
gesting that this initial iteration plays a pivotal role
in optimizing the quality of paired images. For
instance, the accuracy increases by about 1.6% in
NAT, TXT, and NO categories.

As the number of iterations increases to 2-3
times, the performance progressively stabilizes.
This non-linear trend provides valuable reference
for iteration strategies in practical applications, in-
dicating that choosing the appropriate number of
iterations is crucial for ensuring both enhancement
and stability of model performance.
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Algorithm 1 Pseudocode of ITERATE(x,n).
Require: x represents the input of sample t from task T , including question q and choices c, LLM as an

evolutionary operator Evo(·), multimodal models denoted as Msel and Mextr, Search engine denoted
as search(·), empty image cluster IC

Ensure: Best Image img∗
1: Initial keywords = Extr(q, c) and imgs = search(keywords) −→ IC
2: for t = 1 to n do
3: Selection: select the best two images from the images cluster as parent.
4: similarity = Msel(IC, q)
5: ParentImgs = top2(similarity)
6: Reverse-Transcription: extract DNA described in natural language
7: captions = Mextr(ParentImgs)
8: Recombination: generate new keywords based on natural language DNA and question text
9: newKeywords = Evo(keywords, captions, q)

10: Update: ChildImgs = search(newKeywords) — replace −→ IC
11: end for
12: Return: the best image, img∗, matched from the cluster IC
13: img∗ = top1(Msel(IC, q) )
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Figure 5: Ablation results of different iteration numbers on examples across six categories.
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