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Abstract
The task of reviewer recommendation is in-
creasingly important, with main techniques uti-
lizing general models of text relevance. How-
ever, state of the art (SotA) systems still have
relatively high error rates. Two possible rea-
sons for this are: a lack of large datasets and the
fact that large language models (LLMs) have
not yet been applied. To fill these gaps, we first
create a substantial new dataset, in the domain
of Internet specification documents; then we
introduce the use of LLMs and evaluate their
performance. We find that LLMs with prompt-
ing can improve on SotA in some cases, but
that they are not a cure-all: this task provides a
challenging setting for prompt-based methods.

1 Introduction

Peer reviewing is critical to many processes—
including scientific publication—for maintaining
adequate standards (Thurner and Hanel, 2011;
Bianchi and Squazzoni, 2015), and even a small
numbers of poor-quality reviews can have consid-
erable impact on the peer-review process (Robert,
1968; Triggle and Triggle, 2007; Squazzoni and
Gandelli, 2012; Thurner and Hanel, 2011; Thorn-
gate and Chowdhury, 2014; Wicherts, 2016). As
the numbers of submissions and reviewers increase,
manual reviewer assignment becomes infeasible
(Shah, 2022). This sparks growing interest in meth-
ods to automate the reviewer assignment process
(see Stelmakh et al., 2019, for an overview). While
factors such as reviewer experience and conflicts of
interest play a role, the core of most approaches is
computing a relevance score for a reviewer-paper
pair, usually via the similarity between the text of
the paper and some text that characterises the exper-
tise of the potential reviewer (e.g., previous papers
authored or reviewed). The approach is therefore
quite general, and can be extended to many related
tasks: finding reviewers for other text types e.g.,
grant proposals; consultants in commercial settings;
or topic experts for journalists .

However, even recent reviewer recommendation
systems still have relatively high error rates (Stel-
makh et al., 2023). One reason is that relevant pub-
lic datasets are quite small (with just a few hundred
papers/reviewers). Another may be that pretrained
large language models (LLMs), which sometimes
achieve good performance with little task-specific
fine-tuning data on a range of tasks (Brown et al.,
2020; Zhu et al., 2023), have not yet been applied
to this task, and it is not clear how best to apply
them.

We aim to address these gaps. First, our primary
contribution is a new silver-labelled reviewer rec-
ommendation dataset, much larger than existing
resources (Section 3). Second, we use retrieval-
based generation and pairwise prompting to apply
LLMs to the task, and evaluate this on diverse avail-
able datasets to provide a preliminary benchmark
for LLMs in reviewer recommendation (Section 4).
Our code and data are publicly available.1

2 Related work

Reviewer recommendation Factors affecting
peer-review and choice of reviewers include (lack
of) reviewing experience (Stelmakh et al., 2021),
conflicts of interest (Resnik and Elmore, 2018), and
the Matthew (rich get richer) effect (Robert, 1968;
Squazzoni and Gandelli, 2012), but most auto-
mated paper-reviewer matching approaches rely on
a measure of text similarity between a paper and a
reviewer candidate, usually represented via the text
of their papers. Simple but effective approaches
can be found in the Toronto Paper Matching Sys-
tem (Charlin and Zemel, 2013), relying on count
vectors and regression models. Topic models can
also be used, e.g., latent Dirichlet allocation (Blei
et al., 2003) and advanced variants e.g., Mimno
and McCallum (2007)’s Author - Persona - Topic
model or Anjum et al. (2019)’s Common Topic

1https://github.com/sodestream/revrec



11423

Model. Some approaches use non-text features to
characterise papers/reviewers: Tran et al. (2017)
use citation networks, and Rodriguez and Bollen
(2008) co-authorship graphs. Some combine multi-
ple sources of information and/or consider multiple
recommendation goals (e.g., reviewer authority).
However, the appropriateness of these non-text fea-
tures depends on the domain; here, our interest is
in general relevance as captured from text.

Neural models Recently, results have been im-
proved by embedding the text using pretrained neu-
ral language models, e.g., ELMo (Peters et al.,
2018)’s generic embeddings; SPECTER (Cohan
et al., 2020), designed for scientific documents and
exploiting the citation graph; and the Multifacet-
Recommender (MFR) approach of Chang and Mc-
Callum (2021), which improves SPECTER by con-
structing separate embeddings for different facets
of the paper (and is used by the OpenReview plat-
form). Stelmakh et al. (2023) compare these and
show them to be strong baselines, but still with high
error rates, from 12%-30% for easy cases to 36%-
43% for hard cases. However, we are not aware of
attempts to apply more recent large language mod-
els (LLMs) to this problem, although they achieve
good results with limited data in related tasks (Hou
et al., 2023; Sun et al., 2023; Qin et al., 2023).

Existing Datasets Here, we compare against the
standard benchmark NIPS dataset (Mimno and
McCallum, 2007), with paper/reviewer pairs la-
beled using binary relevance labels; and Stelmakh
et al. (2023)’s dataset with expertise labels for pa-
per/reviewer pairs on a 1-5 scale. A third pub-
licly available dataset (Karimzadehgan et al., 2008),
is not directly usable: it provides manually la-
beled topic vectors for each paper/reviewer, but no
gold-standard relevance or expertise labels. Other
datasets exist (e.g. Rodriguez and Bollen, 2008;
Anjum et al., 2019), but not publicly available.

3 Dataset construction

To develop a large-scale dataset that can be pub-
licly available we use data provided by the Internet
Engineering Task Force (IETF).

Overview of IETF The IETF is a decentralized
organization that develops the technical standards,
known as RFCs (Request for Comments), that un-
derpin the Internet. These standards are developed
by IETF working groups (WGs) in the form of

documents called Internet-drafts.2 These are for-
mally reviewed several times prior to publication
as an RFC, and subject to extensive informal re-
view discussion on mailing lists. This process is
open and well documented (Bradner, 1996), and
the documents, mailing list archives, and metadata
about the participants is publicly available3 and ac-
cessible via a REST API.4 The dataset we develop
contains Internet-drafts, candidate reviewers, and
corresponding silver relevance labels, along with
corresponding email discussion text and participant
metadata. It is intended to complement the other
two datasets by providing a larger freely available
dataset from a different domain, including both
abstracts and full documents.

We consider 3,075 Internet-drafts, comprising
the final pre-publication drafts for RFCs published
by the IETF between January 2010 and April 2022
inclusive. To avoid manually labeling all reviewers
for relevance, we use heuristics based on the avail-
able metadata to generate three tiers of reviewer
candidates, T1, T2, T3, for each draft, D, in which
all candidates in TN should have higher expertise
relating to D than all candidates in TN+1:

• T1 candidates are the authors of draft D and
the chairs of the WG developing D. The au-
thors are guaranteed to have very high exper-
tise in D’s area; they would obviously not be
potential reviewers in practice, but are use-
ful as training/evaluation examples of high-
expertise candidates. WG chairs are selected
based on a combination of technical exper-
tise and management skills, so they can be
expected to be familiar with the technical con-
tent of drafts from their WG.

• T2 candidates are participants in the WG de-
veloping D who, during D’s discussion pe-
riod: (1) sent no messages in mailing list
threads about D; (2) were active in at least
one thread not about D; and (3) were not IETF
Area Directors5. We define the discussion pe-
riod as the period from D’s first submission
time S1 to final submission S2; active partici-

2An RFCis a term for the final state of an Internet draft
once it is accepted and published.

3
https://www.ietf.org/about/open-records/

4
https://datatracker.ietf.org/

5WGs are organized into areas based on topic. Area Direc-
tors manage WG chairs and are selected for their management
skills and technical breadth but are not necessarily subject
matter experts in each WG they oversee; we therefore do not
consider them for T1 but also prefer to exclude them from T2

https://www.ietf.org/about/open-records/
https://datatracker.ietf.org/
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Dataset #papers #reviewers #paper-reviewer pairs

NIPS 148 364 650
Stelmakh 463 58 477
IETF 3075 1846 17562

Table 1: Dataset statistics

Dataset abstracts full-text emails participant metadata

NIPS ✓ - - -
Stelmakh ✓ ✓ - -
IETF ✓ ✓ ✓ ✓

Table 2: Data availability

pants in a discussion thread as the top 20% by
message-count; and that a thread is about D
if it has the title of D in its subject.

• T3 candidates are selected from a randomly
chosen WG that is in the same area, but is not
the WG that worked on D. Other conditions
are identical to T2.

The goal is that the three tiers have decreasing
expertise when it comes to reviewing draft D. The
expertise of T3 is the least, as participants only in
a WG that was not engaged with D; T2 were not
engaged with D but are from its WG (thus more
topically related to D); and T1, as authors and WG
chairs, are experts in D’s area.

Heuristics details If a participant qualifies for
both tier N and N + 1 they are assigned to tier N .
T2 and T3 are sometimes much bigger than T1; if
so, we subsample them to be the same size in T1.
The heuristics say nothing about the relationship
of candidates within the same tier; their purpose
is to provide between-tier pairs of candidates for
training and evaluating models.

Validation We validated these heuristics against
expert judgements from two IETF participants fa-
miliar with the draft areas. We asked them to rate
a randomly sampled subset of between-tier pairs
as correct or not. This included 19 drafts and pro-
vided ratings for 191 pairs of candidates; the ex-
perts agreed on 183; in total only 7 were rated as
wrong by at least one expert (i.e. 96% agreement).

IETF Dataset Summary. A comparison with
other datasets is given in Table 1 and available data
in Table 2. The IETF dataset is now the largest
dataset for this task by an order of magnitude.

4 Experiments

4.1 Experimental setup

We frame the task as a retrieval problem where the
set of queries Q = {q1, ..., qn} are representations
of documents to be reviewed, and the set of targets
T = {t1, ..., tm} are representations of reviewer
candidates.6 The task of the model is, given an
element of Q, to order elements of T appropriately.
As the paper representation qi we use the string
concatenation of its title and abstract; a reviewer
representation is the string concatenation of all the
paper representations authored by that reviewer.

In addition to Q and T we also have a set of
annotated pairwise relevance judgements P =
{p(qk, ti, tj)}. Where p represents an indicator
function that has the value 1 if ti is more relevant
w.r.t. qk than tj , and 0 otherwise. There are two
ways to obtain p. First, it can be labelled directly
by assigning a value to each triple depending on the
correct ordering of ti and tj . Second, if numerical
relevance scores r(qk, ti) and r(qk, tj) are avail-
able the value can be inferred by comparing them.
We also define error weights w(qk, ti, tj) which de-
scribe the severity of ordering ti and tj incorrectly.
If numerical relevance scores are available we set
w(qk, ti, tj) = |r(qk, ti)− r(qk, tj)|; otherwise if
p was labelled directly we set w to 1 for all triples.
Furthermore, the labels for information retrieval
datasets are almost always incomplete, as only a
fraction of all possible documents is annotated for
each query. To account for this case, it is also al-
lowed for the value of r and the corresponding w
to be unknown for some triples.

To evaluate all models we use the metric from
(Stelmakh et al., 2023) which considers all triples
(qk, ti, tj) for which the corresponding p and w are
known. If the model put ti and tj in the wrong or-
der this incurs a penalty of w(qk, ti, tj); a tie incurs
half that penalty. The error is summed and normal-
ized by the error of the worst possible model (i.e.
ordering all pairs incorrectly gives an error score of
1). Intuitively this gives the percentage of annotated
pairs that a model orders incorrectly, but weighted
such that mistakes on target pairs with high differ-
ence in gold scores have more influence on the final
score. For significance testing we use bootstrap re-
sampling (Efron and Tibshirani, 1994) on the set
of test queries. As baseline comparisons we follow

6The Stelmakh dataset frames Q as the reviewers and T as
the documents, but our methodology is easily adapted to this.
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Stelmakh et al. (2023) and use our own implemen-
tation of TPMS. We report the SPECTER+MFR
results from (Stelmakh et al., 2023).

The IETF dataset has a prohibitively large num-
ber of candidate pairs. We experiment on a sample
of 4,000 triplets (similar size as the other datasets).

4.2 LLM methodology

To test the potential advantage of LLMs over previ-
ous methods, we choose a single representative last-
generation LLM, rather than exhaustively testing
options. We selected LLaMA (Touvron et al., 2023)
due to its open-source nature, relatively low re-
source requirements, and competitive performance
compared to larger commercial alternatives.

There are three main approaches to ranking -
pointwise, pairwise, and listwise (Xia et al., 2008).
Both pointwise and listwise approaches have been
shown to be challenging for LLMs (Qin et al.,
2023). Therefore we adopt the pairwise approach.7

Retrieval augmented generation (RAG) Most
query/target representations are too large to fit into
a single prompt; however, much of the text is ir-
relevant for rating expertise. We therefore take the
RAG approach (Lewis et al., 2020) to retrieve the
most relevant parts of the text. We split qk and
ti into sentences and compare them using embed-
dings derived by SentenceTransformers (Reimers
and Gurevych, 2019). Each sentence in ti/j is
scored by its average similarity to all sentences in
qk, and we take the top N (here, N=10) sentences
to form the prompt t′i/j ; qk is included as is.

Prompting Here we aim to convert a triple
qk, ti, tj into a preference for ti or tj . We there-
fore prompt LLaMA-2 to solicit this information.
The prompt is “[INST] Description of the paper to
review is [qk]. Description of candidate A is [ti].
Description of candidate B is [tj]. Which candi-
date is more relevant to review this paper (your
answer must be "Candidate A" or "Candidate B")?
[/INST] My answer is: ”8 The model also receives
an additional system prompt: “You are an expert
pairing reviewers with suitable papers to review.”
If "Candidate A" or "Candidate B" appears in the
model response we consider that was the better
candidate, in very rare cases where this fails we

7Our dataset could, in principle, be used for either of the
three approaches (e.g., by assigning relevance scores of 3,2,
and 1 to reviewers from T1,T2, and T3, respectively).

8[INST] tags separate user and model utterances.

Stelmakh NIPS IETF

TPMS .27 .29 .23
TPMS (prompt) .29 .26 .25
Specter+MFR .24 - -

LLaMA2-7b .39* .41* .47*
LLaMA2-70b .21* .34* .31*
LLaMA3-8b .34* .35* .30*
LLaMA3-70b .23* .28 .24

Table 3: Model performance (see 4.1, lower is better).
* marks statistically significant difference wrt. TPMS.

consider the model decision was a tie. In this way
an overall ordering between targets is established.

4.3 Results

Results are given in Table 3. Performance on the
IETF dataset are comparable to the other datasets:
despite its labels being generated heuristically, it
is still adequately challenging for ranking mod-
els. Expectedly, across all datasets, the larger
LLaMA variants outperform the smaller ones; and
LLaMA3 variants show considerable improvement
over LLaMA2.

LLaMA2-70b achieves a new state of the art re-
sult (0.21) on the Stelmakh dataset, outperforming
the Specter+MFR (Cohan et al., 2020) result (0.24)
obtained by Stelmakh et al. (2023). However, all
our LLMs fail to beat the TPMS baseline on the
other two. Interestingly, LLM performance is bet-
ter when the task is choosing between two papers
given a reviewer (Stelmakh), than when choosing
between two reviewers given a paper (NIPS, IETF).
This result is consistent across LLMs and indicates
the latter setting is more challenging.

We further investigate whether this issue is
caused by prompts having inadequate informa-
tion or by the LLM underperforming. Denoted
as ‘TPMS (prompt)’ in Table 3, we apply the
TPMS approach but with the same text represen-
tations t′i/j ; qk as used in the LLM prompts. This
gives TPMS less text information, and thus had a
small detrimental effect for the Stelmakh and IETF
datasets; but improved scores for NIPS, and outper-
forms LLMs in all settings but one, indicating that
the set of prompts includes the relevant information
but the LLMs are unable to fully exploit it in our
completely zero-shot setting.

5 Conclusion

We introduced a new large-scale dataset with high
quality silver labels for reviewer recommendation,
and explored ways to apply large language models
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(LLMs) in a zero-shot setting. While LLMs beat
the state of the art on one dataset, the others remain
a challenge; we hope this will encourage further
research into applying LLMs to this task.

Future work could look into approaches that
would utilize the available full document texts and
other available data, especially long-context LLMs.
Another avenue for improvement, which is enabled
by the size of the dataset, would be to apply LLMs
to this task in a few-shot or fully supervised set-
ting. An interesting development in this vein would
be investigating domain transfer between the IETF
data and the standard paper peer-review domain.

6 Limitations

One limitation of the work is that we used only one
family of language models. This seems sufficient
for our purpose of demonstrating the challenge as-
sociated with the task and our new dataset; we have
no doubt that further performance improvements
could be gained by investigating other models and
ways of applying them, and we hope that this will
follow in future work, by ourselves or others. An-
other limitation is that the subset of drafts that we
test the heuristic on may be biased towards the ex-
pertise of the annotators, even though we tried to
include drafts from various IETF areas. Finally, our
results are heavily dependent on the prompt used.
While we did not have the computational resources
to experiment with a wide range of prompts, we
did try out several (3) variants in preliminary ex-
periments, and selected the best one to use in all
subsequent model runs.

7 Ethical Considerations

The IETF is an open standards body. Participation
is dependent on accepting policies9 that explicitly
state that data about the standards process will be
made public. Our analysis uses only this publicly
available data. We discussed our work with IETF
leadership to confirm it ensure with their policies.
Our work is reproducible and we will release the
code and data publicly upon acceptance.

8 Model training budget

For all experiments we used a pair of Quadro RTX
6000 GPUs with 24GB of video RAM each. A run
over around 4000 candidate pairs with the largest
(70b) models requires around 23 hours to complete.

9https://www.ietf.org/about/note-well/

We used oLLaMA (https://oLLaMA.com/) to run
the LLMs.
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