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Abstract

Physics problems constitute a significant as-
pect of reasoning, necessitating complicated
reasoning ability and abundant physics knowl-
edge. However, existing large language models
(LLMs) frequently fail due to a lack of knowl-
edge or incorrect knowledge application. To
mitigate these issues, we propose Physics Rea-
soner, a knowledge-augmented framework to
solve physics problems with LLMs. Specif-
ically, the proposed framework constructs a
comprehensive formula set to provide explicit
physics knowledge and utilizes checklists con-
taining detailed instructions to guide effec-
tive knowledge application. Namely, given a
physics problem, Physics Reasoner solves it
through three stages: problem analysis, for-
mula retrieval, and guided reasoning. During
the process, checklists are employed to enhance
LLMs’ self-improvement in the analysis and
reasoning stages. Empirically, Physics Rea-
soner mitigates the issues of insufficient knowl-
edge and incorrect application, achieving state-
of-the-art performance on SciBench with an
average accuracy improvement of 5.8%.1

1 Introduction

Physics problems are essential for evaluating the
capabilities of large language models (LLMs), as-
sessing the models’ comprehension of the natural
world, and their ability to navigate complex scenar-
ios. Inadequate performance on physics problems
by LLMs could imply a potential deficiency in their
understanding of fundamental real-world concepts
such as spatial relationships (Yang et al., 2023) and
molecular structures (Flam-Shepherd et al., 2021),

1The code is publicly available at https://github.com/
Xinyu-Pang/Physics_Reasoner

In the radioactive decay, an 238U
transforms to 234Th and 4He. 
When the separation between Th 

and He is 9∗10−15m, what are the 
magnitudes of the electrostatic 
force between them?

Sorry, I do not have the nuclear 
knowledge.

(a) Lack of knowledge

(b) Wrong application of knowledge

qTh=…, qHe=…, r = …

F =
qTh ∗ qHe

k ∗ r2

(c) Ground truth

qTh=…, qHe= …, r = …

F =
k ∗ qTh ∗ qHe

r2

Figure 1: Exemplar error cases. Given a complex
physics problem, LLMs may make mistakes due to a
lack of physics knowledge, as illustrated in (a), or in-
correct application of knowledge, as shown in (b). The
ground truth answer to this question is shown in (c).

significantly hindering their effectiveness in real-
world applications and scientific discoveries.

However, solving physics problems is highly
challenging, demanding a high level of abstraction
to translate given information into solvable expres-
sions. This process necessitates the acquisition
and application of physics knowledge to find an
accurate solution w.r.t. a given question.

Several methods are proposed to enhance LLMs’
reasoning on physics tasks (Li et al., 2024; Chen
et al., 2023c). For instance, Chain-of-Thought

https://github.com/Xinyu-Pang/Physics_Reasoner
https://github.com/Xinyu-Pang/Physics_Reasoner
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(CoT) (Wei et al., 2022) asks models to solve step
by step, while Chameleon (Lu et al., 2023b) in-
tegrates various external tools. However, even
equipped with advanced methods, LLMs still strug-
gle to solve physics problems. Using the CoT strat-
egy, GPT-3.5-turbo achieves only 6.8% accuracy
on the physics section of SciBench (Wang et al.,
2023a) benchmark. Considering the knowledge-
intensive nature of these physics problems, we raise
the research question: Can LLMs master physics
knowledge and solve physics problems?

To answer this question, this work starts by an-
alyzing the common errors, which reveal two pri-
mary factors behind the frequent failures. Namely,
(1) LLMs lack the necessary physics knowledge,
including key concepts and formulae, as illustrated
in Fig. 1(a); and (2) even when provided with rele-
vant knowledge, LLMs still struggle to apply it to
solve problems correctly, as shown in Fig. 1(b).

To mitigate these problems, we propose Physics
Reasoner, a novel framework for physics problem
reasoning. Conceptually, this framework aims to
make up for the knowledge deficiency of LLMs by
incorporating (i) a comprehensive formula set for
knowledge acquisition, which encompasses 122
formulae, each accompanied by detailed annota-
tions; (ii) detailed checklists for evaluating the cor-
rectness of knowledge application, which contain
detailed instructions for identifying and correct-
ing errors, thereby assisting LLMs in effectively
applying the acquired knowledge. Furthermore,
Python code is integrated into the solving process
to guarantee precise and reliable calculations.

Technically, Physics Reasoner consists of three
stages: problem analysis, formula retrieval, and
guided reasoning. Given a physics problem, it first
comprehends the problem and extracts known vari-
ables. After the initial extraction, a checklist is
used to review the correctness and completeness of
the extraction. Next, it retrieves relevant formulae
from a pre-constructed formula set and performs
reasoning. Finally, it reviews and refines the rea-
soning process with another checklist to aid LLMs
in applying the retrieved knowledge effectively.

To verify the effectiveness of the proposed frame-
work, we conduct extensive experiments on the
SciBench benchmark. Notably, Physics Reasoner
outperforms existing methods by an average of
5.8% in accuracy, reduces reasoning errors, and
further boosts LLMs’ physical reasoning abilities.

Our contributions are summarized as follows:
• We identify the two major limitations of solving

physics problems, i.e., (i) lack of knowledge and
(ii) incorrect application of knowledge (Sec. 3).

• We propose a novel reasoning framework that in-
tegrates knowledge acquisition with the formula
set and application with checklists (Sec. 4).

• We conduct extensive experiments on four
datasets. The Physics Reasoner achieves an aver-
age improvement of 5.8% in accuracy (Sec. 5).

2 Related work

2.1 LLMs for Scientific Reasoning
The rapid progress of LLMs has significantly
advanced the field of scientific reasoning. Nu-
merous representative benchmarks have emerged
to evaluate scientific reasoning abilities across
a wide array of subjects, including math (Zhou
et al., 2024; Cobbe et al., 2021; Lu et al., 2023a),
physics (Bakhtin et al., 2019; Wang et al., 2023c),
and chemistry (Guo et al., 2023; Lu et al., 2022).

LLMs have demonstrated strong abilities in
solving scientific problems. Recent approaches
that gather annotation data and fine-tune LLMs
have yielded remarkable results (Lu et al., 2023c;
Lewkowycz et al., 2022; Zhang et al., 2024). Also,
strategies utilizing prompts with frozen LLMs have
proven effective, significantly reducing training
overhead while maintaining or even enhancing per-
formance. For instance, Wang et al. (2023b) pro-
poses self-consistency, which combines different
CoT reasoning paths for more probable answers.

However, despite these advancements, few meth-
ods are specifically designed to address LLMs’
knowledge deficiency and their inability to effec-
tively apply the knowledge. This gap underscores
the need for dedicated approaches to enhance the
effectiveness of solving physics-related challenges.

2.2 Physics Problem Reasoning
To evaluate LLMs’ physical reasoning abilities,
several benchmarks have been proposed (Bakhtin
et al., 2019; Bisk et al., 2020). For instance, NEW-
TON (Wang et al., 2023c) consists of labeled object-
centric data encompassing 8 physical attributes.

However, these works primarily focus on simple
physical attributes of everyday objects, neglecting
complex physics problem reasoning. Solving com-
plicated physics problems requires sophisticated
reasoning skills with the acquisition and applica-
tion of extensive physics knowledge.
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Figure 2: Distribution of the proposed three error types
across Sys, CoT, and PoT baselines.

2.3 Self-improvement

A widely accepted way to enhance LLMs’ abilities
is self-improvement through verification feedback,
which enhances their capabilities in multiple as-
pects, including security (Cao et al., 2024; Li et al.,
2023), reasoning (Hong et al., 2023), and other
critical areas. For example, high-quality feedback
can be used for model fine-tuning (Ouyang et al.,
2022; Chen et al., 2023a; Zelikman et al., 2022).
Besides, Feedback can be used to re-rank model
outputs (Lightman et al., 2023; He et al., 2023;
Ni et al., 2023), to modify current reasoning pro-
cess (Shinn et al., 2023; Chen et al., 2023b), and
to guide generation (Yao et al., 2023; Xie et al.,
2023). Furthermore, Ribeiro et al. (2021) proposes
to examine the capacity of LLMs using a checklist,
including general capabilities and test types.

However, for complex problems like physics
problems, general self-improvement methods often
perform poorly and may even have adverse effects,
leading LLMs to incorrect reasoning processes.

3 Limitations of Physics Reasoning

LLMs often encounter difficulties and make errors
when tackling complex physics problems. To in-
vestigate the primary factors behind these errors,
we manually analyze numerous error cases in the
fund dataset from the SciBench benchmark using
three representative baselines, i.e. System (Sys),
Chain of Thought (CoT), and Program of Thought
(PoT) (Chen et al., 2022). The detailed introduc-
tion of these baselines can be found in Sec. 5.3.
Following the paradigm in SciBench, experiments
are conducted using GPT-3.5-turbo (Peng et al.,
2023). Two undergraduate students with strong
backgrounds in physics are enlisted to categorize
these errors into three types as follows:

Q: You can use the following displacements in 
any order: 1) a: 2.0 km due east; 2)b: 2.0 km 
at 30° north of east; 3)c: 1.0 km due west. 
You can replace b with −b or c with −c. What 
is the greatest distance you can be after the 
third move?

A: a=[2.0,0], b=[2.0∗cos(30), 2.0∗sin(30)], 

c=[-1.0,0], max distance = a + b + c

(a) Comprehension Error

Q: A cylindrical surface has a length of 42cm 
and a diameter of 12cm. The electric field 
just above the surface is 2.3 N/C. What is 
the total charge?
A: E=2.3, ϵ0=8.85e-12, Q=E*ϵ0, …

(b) Knowledge Deficiency

Q: Two concentric spherical shells have radii 
of 10.0 cm and 15.0 cm, with charges of 4.0 C 
and 2.0 C. Find the electric field at r=12.0 cm.

A: k=9e9, Qouter=2, r=0.12, 

Eouter=k*Qouter/r2, …

(c) Knowledge Misapplication

Figure 3: Example for each error type, where the red
highlighted parts indicate errors.

• Comprehension Error refers to misunderstand-
ing of the problem, including misinterpreting the
context and identifying incorrect assumptions.

• Knowledge Deficiency indicates a lack of the
necessary knowledge required to solve the prob-
lems effectively and accurately.

• Knowledge Misapplication involves the incor-
rect use of relevant knowledge, such as misin-
terpretation of key concepts, incorrect formula
translation, and other related errors.

Each error type is illustrated with an example in
Fig. 3. To further explore the frequency of these er-
ror types, we compile statistics on error cases on the
fund dataset across three baselines. The error dis-
tribution for each error type is shown in Fig. 2, sug-
gesting the two main reasons for LLMs’ recurring
shortcomings: (i) insufficient physics knowledge
in LLMs; (ii) challenges in correctly applying the
knowledge to solve physics problems. Motivated
by the observation, we propose Physics Reasoner
to mitigate these issues, detailed in Sec. 4.

4 Physics Reasoner

Physics problem reasoning involves solving prob-
lems with domain knowledge and necessary steps.
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answer

Eouter = kqouter / r2

Einner = kqinner / r2

E = Einner + Eouter

Eouter = 0
qinner = 4.00∗10−8 # charge of inner shell, unit is C

qouter = 2.00∗10−8 # charge of outer shell, unit is C

Rinner = 0.10 # radius of inner shell, unit is m

Router = 0.15 # radius of outer shell, unit is m

Add: r = 0.12 # unit is m

Physics Problem

Two concentric spherical shells 

with radius 10.0 cm and 15.0 cm 

have charges of 4.00 × 10⁻⁸ C 

and 2.00 × 10⁻⁸ C, respectively. 

Find the electric field at 12.0 

cm from the center.

1. Problem Analysis 2. Knowledge Retrieval

• Electric field outside a spherical 
shell of charge:

E = kq / r2 (for r ≥ R)
• Electric field inside a uniform 

spherical shell of charge:  
E = 0 (for r < R)

• ……

3. Guided Reasoning

Formula Set

• E = kq / r2 (for r ≥ R)

• E = 0 (for r < R)

 Whether the calculation 
corresponds with 
appropriate formulas
 …

Checklist

✓

✓

 Whether all known 
variables are extracted
 …

Checklist

Python

Figure 4: Illustration of Physics Reasoner, solving a physics problem using LLMs with the help of the formula set
and checklists. The approach contains three stages: problem analysis, knowledge retrieval, and guided reasoning.

The inputs include a problem P and a constructed
formula set F . The desired output is the calculated
result R in the form of the target unit.

We introduce details of the workflow of our ap-
proach, construction of the formula set, and design
of checklists in Sec. 4.1, 4.2 and 4.3 respectively.

4.1 Workflow
Physics Reasoner is divided into 3 stages: problem
analysis, formula retrieval, and guided reasoning.

As shown in Fig. 4, given a physics problem P ,
along with our formula set F , Physics Reasoner
first comprehends P and then extracts known vari-
ables V = {v0, v1, ..., vn} from it as incomplete
Python code. Here, each variable vi is roughly
defined in a single line of code, followed by com-
ments explaining the specific meaning of the vari-
able and its corresponding unit. After this initial
extraction, a checklist CLPA is used to review
and refine the analysis process. The details of this
checklist are introduced in Sec. 4.3.

The next step is formula retrieval, which is con-
ducted hierarchically. Formulae are categorized
into various fields of physics. Each formula is ac-
companied by a brief description, formula content,
and definitions of involved variables. Based on
problem text P , the LLM first determines relevant
fields and retrieves formulae from them. It then
selects formulae F = {f0, f1, ..., fm} related to P
and writes them as Python code comments, supple-
menting the extracted variables V .

Subsequently, Physics Reasoner completes the
Python code C with precise reasoning using ex-
tracted variables V and formulae F , printing the
target variable in the required unit at the end. Fol-
lowing this, another checklist CLGR is utilized for

guiding and refining the reasoning process. The
refined code C ′ is then executed, and the output
variable is taken as the predicted answer.

4.2 Formula Set Construction

This section outlines the principles and process of
constructing our formula set, aiming to provide
explicit knowledge of physics formulae to enhance
knowledge acquisition in LLMs.

4.2.1 Collection Principles
Covering common physics problems. We ex-
pect the formula set to cover common college-level
physics problems. To achieve this, we select three
prevalent college physics textbooks as collection
sources and identify four representative fields.
Clarifying detailed introduction and variable
definition. Another principle is to explicitly
explain the correct conditions for formula appli-
cations and provide clear definitions of involved
variables. Even with the formula known, correct
reasoning is impossible without applying it in an
appropriate context or accurately substituting the
variables. To enhance knowledge acquisition, each
formula in our set is accompanied by a detailed
introduction and precise variable definitions.

4.2.2 Formula Collection
We choose three physics textbooks to collect
formulae following SciBench: Fundamentals of
Physics (Halliday et al., 2013), Statistical Thermo-
dynamics (Engel and Reid, 2019), and Classical
Dynamics of Particles and Systems (Greiner and
Bromley, 2003). These textbooks are representa-
tive of the field of physics, containing abundant
knowledge of formulae.



11278

Formula Example

name: "Kepler’s Third Law"
content: "T ** 2 = (4 * pi ** 2 / G * M) * a ** 3",
variables:
"T": "Period of the orbit",
"G": "Gravitational constant",
"M": "Mass of the central body",
"a": "Semi-major axis of the orbit"

Figure 5: An example of our formula annotation.

Fundamental
Physics

(47)

Celestial 
Mechanics

(11)

Electricity
(22)

Thermo
(42)
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Gibbs Free Energy Fluid and Pressure

Figure 6: Subfields in our formula set.

Initially, we collect 1124 formulae from these
textbooks and refine the collection by removing: (i)
repetitive formulae, such as those differing only in
the order of multiplication and division; (ii) inter-
mediate calculation processes that do not constitute
scientific formulae; and (iii) conclusions from in-
dividual example problems that are not universal.
After the refinement, we identify 122 representative
formulae. As shown in Fig. 6, we categorize these
formulae into 36 subfields, which are further clas-
sified into four major fields: Fundamental Physics,
Celestial Mechanics, Electricity, and Thermody-
namics. For each formula, we include a detailed
introduction and definitions of the involved vari-
ables to enhance knowledge application. Fig. 5
provides an example of a formula annotation.

4.2.3 Comparison with Existing Dataset
To the best of our knowledge, there are few
datasets of physics formulae designed for com-
plex physics problem reasoning. Previous formula-
based datasets mainly consist of commonsense for-
mulae. For instance, in the MAWPS-F (Liu et al.,
2023) dataset, the most frequently used formula
is total amount = unit amount ∗ total number,
which is basic commonsense knowledge.

Formula Set Physics English Theorem

Math23K-F (Liu et al., 2023) ✗ ✓ ✗
MAWPS-F (Liu et al., 2023) ✗ ✓ ✗
FormulaQA (Li et al., 2024) ✓ ✗ ✗
Ours ✓ ✓ ✓

Table 1: Comparison with other formula sets.

The most relevant work to ours is Formu-
laQA (Li et al., 2024), a question-answering
numerical reasoning dataset. It contains annotated
problems selected from Chinese junior high
school physics examinations. However, the
formulae in it are primarily abstract expressions
derived from individual example problems
rather than scientific theorems in physics,
such as Degree of temperature increase =
Final temperature − Initial temperature.
This makes them heavily dependent on the
problem and limits their potential for extensibility.

A detailed comparison between our formula set
and other existing datasets is presented in Table 1.

4.3 Checklist

This section outlines the principles and procedures
for designing effective checklists, which include
detailed instructions for identifying and correct-
ing prone errors. These checklists are utilized to
help LLMs self-improve by enabling them to apply
physics knowledge more accurately.

4.3.1 Design Principles

Focusing on common mistakes of physics prob-
lems. We propose checklists to help avoid com-
mon mistakes LLMs often make. By thoroughly
analyzing numerous incorrect processes in physics
problems, we identify and summarize representa-
tive errors to include in the checklists. For example,
LLMs often confuse vectors with scalars, leading to
incorrect reasoning. The checklist includes steps to
verify the text and distinguish vectors from scalars.
Enhancing LLMs’ application concisely. Our
goal is using checklists to enhance LLMs’ accurate
application of domain knowledge. Merely acquir-
ing the necessary physics knowledge is not enough
to successfully solve a complex problem. Addition-
ally, we found that providing too many instructions
can distract LLMs and hinder their ability to apply
knowledge effectively. Therefore, our checklists
are designed to be both instructive and concise, of-
fering clear guidance without leading to distraction.
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Checklist for Problem Analysis

You are an excellent physics teacher. Given a physics
problem and its extracted known variables, please
examine the variables using the following checklist and
revise it:

**Checklist**:
- Understand the problem, whether all known variables
are extracted.
- Whether the variable names are clear and can
distinguish the different objects to which they may
belong.
- Whether the variables have been converted to SI units.
- Check if the variables have confused vectors with
scalars.

Return the correct known variables in the format
of Python code, encasing it within triple back-ticks for
clarity.

{Problem text}
{Initial extracted variables}

Figure 7: Checklist for problem comprehension, verify-
ing extracted variables and units

4.3.2 Design Procedure
Since the process of solving physics problems is
sequential, an error in an earlier step may lead to
mistakes in subsequent reasoning. We observe that
errors primarily occur during problem comprehen-
sion and knowledge application. Motivated by this,
we propose separate checklists for both problem
comprehension and calculation stages, trying to
ensure the accuracy of each step.

We design checklists based on the errors ob-
served. By testing several LLM-based reasoning
methods on abundant physics problems, we iden-
tify key points that need to be carefully checked
and include them in the checklists. Additionally,
common errors vary across different fields. For
instance, in electronics problems, LLMs often con-
fuse Coulomb’s constant k with permittivity of free
space ϵ0 when calculating electronic fields. To ad-
dress such issues, we design specialized checklists
for various fields. Namely, our checklist examples
are shown in Fig. 7 and Fig. 8.

5 Experiments

5.1 Dateset

We conduct experiments on three physics datasets
from the SciBench benchmark, systematically ex-
amining the reasoning capabilities required to solve
complex problems. These datasets cover a wide
range of fields in physics, including motion, kinetic

Checklist for Guided Reasoning

You are an excellent physics teacher. Given a physics
problem and its Python code, please review the code
using the following checklist and improve it:

**Checklist**:
- If the problem text is correctly understood and solved.
- Whether the calculation corresponds with correct,
appropriate formulas.
- Whether the variables and constants are correctly
defined before use, ensuring that constants are not
confused.
- If the problem is solved, whether the code prints the
first target variable at the end.
- Check the unit, whether the target variable is printed
in the required unit.

Please reiterate your code and return the improved code.
Encasing the code within triple back-ticks for clarity.

{Problem text}
{Initial solving process}

Figure 8: Checklist for calculation process, verifying
physics knowledge application.

energy, electronics, and so on. The diversity en-
hances the comprehensiveness of evaluating LLMs’
abilities in physics problem reasoning.

The datasets are manually collected from various
college-level physics textbooks and are selected for
challenging, free-response answers. Each dataset
is divided into two parts, Ps and Pw. Pw contains
most of the problems without solutions, while Ps

comprises several problems with detailed solutions,
which can be used as examples in a few-shot setting.
Detailed statistics are presented in Table 3.

5.2 Implementation Details

We test on both open-source and close-source
LLMs, including GPT-4 (OpenAI, 2023), GPT-
3.5 (Peng et al., 2023), and Llama 3 (Meta, 2024).
For evaluation metrics, we follow Wang et al.
(2023a) to compare the predicted answers with the
correct answers, allowing a relative tolerance of
5%. Few-shot examples are randomly selected
within each textbook, ensuring consistency with
SciBench. The temperature is set to zero to reduce
randomness. Llama3 is executed on an NVIDIA
A800-SXM4-80GB GPU, with a time cost of ap-
proximately two hours for these datasets. The other
two models are accessed through OpenAI API.

5.3 Baselines

We evaluate multiple baselines under the few-
shot setting, following the SciBench evaluation
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Method GPT-3.5-turbo Llama3-70B GPT-4-turbo
fund thermo class Avg. fund thermo class Avg. fund thermo class Avg.

System 13.7 11.9 2.1 9.3 5.5 14.9 14.9 11.8 42.5 41.8 25.5 36.6
CoT 17.8 9.0 4.3 10.3 27.4 16.4 19.2 21.0 50.7 26.9 25.5 34.4
PoT 28.8 13.4 12.8 18.3 45.2 34.3 14.9 31.5 63.0 46.3 31.9 47.1
PoT + Self-Correction 30.1 11.9 10.6 17.6 34.3 20.9 14.9 23.4 24.7 25.4 19.2 23.1
PoT + Self-Refine 30.1 19.4 14.9 21.5 30.1 26.9 17.0 24.7 53.4 23.9 31.9 36.4

Physics Reasoner (Ours) 38.4 25.4 23.4 29.1 50.7 29.9 25.5 35.4 70.0 50.8 38.3 53.0

Table 2: Accuracy results (%) on three SciBench physics datasets: fund, thermo, and class under few-shot setting.
Boldface numbers highlight the best results; underlined numbers represent the second-best.

Dataset Field # P # S

fund electronics 83 10
thermo thermodynamics 84 17
class classical dynamics 54 7

Table 3: Dataset Statistics. #P and #S represent the
number of total problems and problems with detailed
solutions, respectively.

paradigm to ensure a rigorous evaluation process:
• System refers to directly feeding the problem

with instructions describing question types.
• CoT points to the Chain of Thought strategy,

where the model outputs the reasoning process
step by step before providing a predicted answer.

• PoT guides LLMs to write and then execute a
Python program to determine the final answer.

• PoT + Self-Correction Huang et al. (2023) asks
LLMs to rectify initial PoT responses.

• PoT + Self-Refine requests the model to provide
feedback on its initial output by PoT and uses the
feedback to refine itself (Madaan et al., 2023).
The iteration number is set to 1 in this case.

6 Result Analysis
6.1 Reasoning Quality
Table 2 presents the accuracy of different models
on the test set of the three datasets. Based on the
results, we have the following observations:

Physics Reasoner achieves superior accuracy.
As shown in the table, Physics Reasoner outper-
forms all baselines, improving average accuracy
from 21.5% to 29.1% on GPT-3.5-turbo, from
31.5% to 35.4% on Llama3:70b, and from 47.1%
to 53.0% on GPT-4-turbo. It is worth noting
that Physics Reasoner can be regarded as an en-
hanced form of PoT. The improvements indicate
that Physics Reasoner benefits from the formula set
to provide physics knowledge and from the check-
lists, which enhance knowledge application.

Physics Reasoner gains considerable advance-
ment in complex problems. We observe that
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Figure 9: Proportion of each error type for Physics
Reasoner and other three baselines.

Physics Reasoner performs better on fund dataset
compared to the other datasets. One possible expla-
nation is that fund contains problems in more fun-
damental fields, such as gravitation, which is more
frequently encountered in LLMs’ training data,
leading to potentially better performance. Also, as
shown in Table 7, a larger proportion of problems in
fund requires formulae usage and the average num-
ber of formulae per problem is also higher. These
differences highlight Physics Reasoner’s capability
in complex physics problem reasoning.

We further conduct manual analysis of error
cases for Physics Reasoner on the fund dataset with
the GPT-3.5-turbo model following the error types
defined in Sec. 3. The results are shown in Fig-
ure 9, revealing that Physics Reasoner significantly
reduces all three types of errors.

6.2 Tool-Argumented Baselines
For a more thorough comparative analysis, we also
conducted supplementary experiments with two
representative tool-argumented baselines, i.e. CRE-
ATOR (Qian et al., 2023) and Chameleon (Lu et al.,
2023b), utilizing GPT-3.5-turbo. The parameters
are aligned with the source code separately, and
both the few-shot examples and metrics are con-
sistent with our main experiments. The accuracy
results (%) are represented in Table 4.
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Method fund thermo class Avg.

CREATOR 21.9 17.9 8.5 16.1
Chameleon 32.9 14.9 19.2 22.3

Physics Reasoner (Ours) 38.4 25.4 23.4 29.1

Table 4: Results (%) of tool-argumented baselines.
Method fund thermo class Avg.

CREATOR 571 533 400 502
Chameleon 538 520 289 449

Physics Reasoner (Ours) 470 435 253 386

Table 5: Token cost of tool-argumented baselines (in
thousands of tokens, k tokens).

Physics Reasoner outperforms other baselines
across all datasets, achieving an average improve-
ment of 6.73%. The consistent advantage under-
scores the significant efficacy of our approach.

6.3 Token Cost Comparison
We count the token cost of different methods with
GPT-3.5-turbo in Table 5. The total tokens of
Physics Reasoner are fewer than the previous tool-
argument methods. It is worth noting that our ap-
proach is not iterative and requires a fixed 4-step
process per problem. In contrast, Chameleon re-
quires 5-6 steps and CREATOR demands 4-5 steps,
leading to a higher overall token expenditure.

6.4 Ablation Study

We further investigate the effectiveness of each
component in Physics Reasoner, focusing on three
key components: the formula set, the checklist
for problem comprehension, and the checklist for
calculation, which are sequentially removed.

Table 6 presents the results of the ablation study
conducted with GPT-3.5-turbo on the fund dataset,
offering the greatest diversity of questions. We ob-
serve that the inclusion of each component leads to
a consistent improvement, underscoring the neces-
sity of each component in our method.

6.5 Necessity of Formulae in Problem Solving
From the analysis of incorrect examples in Sec. 3,
we observe that LLMs often make mistakes due to a
lack of relevant knowledge. After the construction
of our formula set, we are interested in whether
the formulae are utilized in the reasoning process.
Formula usage is summarized in Table 7, from
which we observe the following key points:

Most problems necessitate formulae. The
vast majority of problems in the fund and class

Formula Set CL_VE CL_SP Accuracy

✓ ✓ ✓ 38.4

✓ ✓ ✗ 35.2
✓ ✗ ✗ 30.1
✗ ✗ ✗ 28.8

Table 6: Ablation study results (%) of Physics Reasoner
on fund dataset with GPT-3.5-turbo, in which CL_VE
represents checklist for variable extraction, CL_SP rep-
resents checklist for solving process.

Dataest Num. Form. % Form. Avg. Num.

fund 58 79.45 1.58
thermo 33 49.25 0.63
class 35 74.47 0.89

Table 7: Formula usage across datasets: "Num. Form."
for the number of problems with formulae, "% Form."
for the percentage of problems with formulae, and "Avg.
Num." for the average number of formulae per problem.

datasets rely on formulae from our formula set,
as do approximately half of the problems in the
thermo dataset. Overall, most problems across the
three datasets require the use of physics formulae
from our formula set for solutions.

The number of formulae required for each
problem varies. While some simple problems
can be solved with a single formula, others may
require up to four. Generally, problems with fewer
formulae are easier to solve. Complex problems
require a thorough application of multiple formulae
and detailed analysis, increasing their difficulty.

6.6 Checklists Enhance Effective Knowledge
Application

To assess the efficacy of checklists in knowledge
application, we carefully examine the results of
Physics Reasoner and two self-improvement meth-
ods, i.e. self-correction and self-refine on the fund
dataset using the GPT-4-turbo model. The propor-
tion of initial errors that are corrected and misled
problems are shown in Table 8.

Our method corrects 16.67% of incorrect rea-
soning processes, whereas the other two baselines
correct only 8.7% and 0.0%. Additionally, the num-
ber of misled problems notably decreases with our
method, indicating that Physics Reasoner signifi-
cantly enhances knowledge application.

7 Conclusion

In this paper, we propose Physics Reasoner, a novel
framework for physics problem reasoning that inte-
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Method Wrong2Correct↑ Correct2Wrong↓

PoT+Self-Correction 0.0 6.3
PoT+Self-Refine 8.7 26.0

Physics Reasoner (Ours) 16.7 3.9

Table 8: Ratio (%) to correct incorrect problems
(Wrong2Correct) and mislead answers (Correct2Wrong)
of different methods on fund dataset with GPT-4-turbo.

grates knowledge acquisition through a formula set
and knowledge application with meticulously de-
signed checklists. We compile a representative for-
mula set and design detailed checklists to address
issues related to the lack of knowledge or incorrect
knowledge application. This approach significantly
improves accuracy in solving physics problems and
achieves state-of-the-art performance. Given the
limited research on physics problem reasoning, we
advocate for further studies to explore the potential
of this field, aiming to advance the effectiveness of
LLMs in complex problem-solving scenarios.

Limitations

In this paper, we propose Physics Reasoner, a novel
framework to mitigate knowledge gaps and knowl-
edge misapplication in physics problem reason-
ing. Despite the promising performance of our
approach, we acknowledge that there are areas for
improvement and opportunities for future research.

Firstly, we conduct experiments on a limited
number of datasets from SciBench using three mod-
els. Our results may not fully reflect the reason-
ing abilities of LLMs under different conditions.
Future research should examine a broad range of
physics problem datasets and model types to pro-
vide a more comprehensive analysis.

Secondly, our formula set covers a limited range
of physics fields due to the manual effort required
for its construction. Expanding our formula set to
include more physics fields would be beneficial and
could provide deeper insights to further study.
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A Details for Formula Set Construction

A.1 Collection Details

Classification: We chose three textbooks as the
sources for our formula collection to guarantee cor-
rectness and comprehensiveness. Two undergrad-
uate students with strong backgrounds in physics
summarize these textbooks and re-categorize them
into four representative fields, i.e. fundamental
physics, celestial mechanics, electricity, and ther-
modynamics (thermo). Furthermore, each field is
classified into several subfields, which are more
refined and specific topics.
Selection: We focus on scientific theorems, re-
moving problem-specific formulae and formulae in
different formats with the same meanings.
Annotations: Each formula is annotated in three
parts: a brief description of the formula, formula
content, and clear definitions of involved variables.

A.2 Detailed Statistics

The detailed statistics of our formula set, includ-
ing the distribution and categorization of formu-
lae across various physics fields and subfields, are
shown in Table 9.

B Details for Experiment

B.1 Experimental Setups

Few-shot Examples: we conduct all experiments
under few-shot settings to better enable LLMs to
solve physics problems. The examples are cho-
sen from problems with detailed solutions in each
dataset. Following SciBench, we use 3 examples
for the thermo dataset and 4 examples for the other
two datasets.
Evaluation Criteria: the prediction is consid-
ered correct if it deviates from the correct answer
by no more than 5%. For system and CoT, we
prompt the LLMs to output the predicted answer in
"\\boxed{}". For other methods, the output Python
code is executed which prints the predicted answer.
If the output cannot be directly converted to a float,
we capture the first number as the result.

B.2 Prompt Templates for Physics Reasoner

The prompt templates for three stages in Physics
Reasoner are shown in Table 10. In the formula
retrieval stage, our approach first decides relevant
subfields and then retrieves formulae from them.

Field Subfield Number

Fundamental
Physics

Simple Motion 3
Oscillations 4
Basic Force 4

Newton’s Law 2
Work Energy 7
Momentum 2

Rotation of Mass 3
Rotation of Body 3
Fluid and Pressure 6

Collision 6
Rocket Motion 1

System of Particles 2
Noninertial Frame 4

Celestial
Mechanics

Kepler’s Law 3
Celestial Trajectory 5
Celestial Mechanics 3

Electricity

Electrical Circuit 5
Coulomb’s Law 3
Electric Field 4

Electric Force, Energy 3
Gauss’ Law 7

Thermo

Gas Laws 5
Macro Heat, Work 5
Gibbs Free Energy 4

Kinetic Theory of Gases 2
Mixture 2

Equilibrium 3
Translational Partition 3

FRET Efficiency 1
Rate of Reaction 2

Transport Phenomena 2
Boltzman Distribution 2

Enthalpy 2
Entropy 4

Electrolyte Solutions 2
Thermodynamics 3

All 122

Table 9: Detailed distribution of our formula set.

B.3 Prompt Templates for Baselines
The prompt templates for the five baselines are
shown in Table 11. For system, CoT, and PoT,
we follow the settings in SciBench to ensure the
effectiveness of comparisons. For the other two
baselines, i.e. self-correction and self-refine, we
adapt their original prompts to fit the physics prob-
lem reasoning task.

B.4 Case Study
We show a representative example by Physics Rea-
soner method in Fig. 10. In this problem, it success-
fully comprehends the problem, retrieves proper
formulae, and effectively corrects mistakes with
checklists.

C Further Experiments
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C.1 Inclusion of Additional Datasets

To confirm Physics Reasoner’s generalization abil-
ity, we also conduct experiments on a more chal-
lenging dataset, i.e., TheoremQA. The accuracy
results (%) with gpt-3.5-turbo are represented in
Table 12. Following the TheoremQA approach,
we compare the predicted answers with the correct
answers, allowing a relative tolerance of 4%. The
temperature is set to zero to eliminate randomness.

Methods Accuracy

CoT 7.6
PoT 14.5
PoT+Self-Refine 21.4
PoT+Self-Correction 22.1
CREATOR 16.8
Chameleon 22.9

Physics Reasoner 26.7

Table 12: Additional results on TheoremQA.

Compared to other baselines, Physics Reasoner
enhances accuracy from 22.9% to 26.7%, result-
ing in an average improvement of 3.8%. The
gains observed on both Scibench and TheoremQA
demonstrate that Physics Reasoner outperforms
other methods across various physics datasets. Ad-
ditionally, Physics Reasoner exhibits strong gener-
alization, boosting reasoning ability for challenging
and infrequent physics problems.

C.2 Direct Comparison with Other
Self-Revision Techniques

We have also conducted experiments comparing
our approach with other self-revision techniques,
namely self-correction and self-refine, using the
fund dataset. The accuracy results (%) are shown
in Table 13.

Methods Accuracy

PoT + Self-Correction 30.1
PoT + Self-Correction + Formula Set 31.5
PoT + Self-Refine 30.1
PoT + Self-Correction + Formula Set 32.9

Physics Reasoner 38.4

Table 13: Comparison with other self-revision baselines
with our Formula Set on the fund dataset.

The results indicate that Checklists are more ef-
fective than other self-revision techniques. Check-
lists are carefully designed to assist LLMs in self-

improvement by enabling more accurate applica-
tion of physics knowledge. In contrast, other self-
revision techniques may overlook common mis-
takes in physics problems, resulting in inaccurate
correction.
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Prompt Templates for Physics Reasoner

Problem Analysis

You are an excellent student majoring in physics. Given a physics problem, please
extract known variables from it in the format of Python code. The problem is
intended to cover general topics within [FIELDS], sourced from a college-level
textbook, and it requires analytical reasoning in physics.
The extracted variables should be well-named to represent the objects to which they belong and should
be well-annotated with comments that provide sufficient explanations of the variables defined,
including their units. Encase the Python code within triple backticks for clarity.

{ Example Problem}
{ Example Analysis}

{ Problem}

Subfield determina-
tion

You are an excellent student majoring in physics, given a physics problem, that
could be related to several subfields of physics, including: [POTENTIAL
SUBFIELDS], please determine and return relevant subject(s) from the provided
list.

{ Example Problem}
{ Example Subfield(s)}

{ Problem}

Formula Retrieval

You are an excellent student majoring in physics, given a physics problem, please
identify and retrieve relevant formulas. Annotate these relevant formulas in
Python comments format and encase the Python code within triple backticks for
clarity.

{ Example Problem}
{ Example Potential Formulas in Chosen Subfiled(s)}
{ Example Retrieved Formulas}

{ Problem}
{ Potential Formulas in Chosen Subfiled(s)}

Guided Reasoning

You are an excellent student majoring in physics, given a physics problem and its
incomplete Python code, please think and complete the code. Print the target
variable at the end if the problem has been solved. If there exists more than 1
target variable, print the first one. Remember to check whether the formulas are
correctly used. And check whether the variable is printed with the required unit.
Return the complete Python code and ensure it within triple backticks for clarity.

{ Example Problem}
{ Example Incomplete Code}
{ Example Code}

{ Problem}
{ Incomplete Code}

Table 10: Prompt templates for Physics Reasoner.
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Prompt Templates for Baselines

Sys

Please provide a clear and step-by-step solution for a scientific problem in the
categories of Chemistry, Physics, or Mathematics. The problem will specify the
unit of measurement, which should not be included in the answer. Express the
final answer as a decimal number with three digits after the decimal point.
Conclude the answer by stating "The answer is therefore \\boxed{[ANSWER]}.

{ Example Problem}
{ Example Answer}

{ Problem}

CoT

Please provide a clear and step-by-step solution for a scientific problem in the
categories of Chemistry, Physics, or Mathematics. The problem will specify the
unit of measurement, which should not be included in the answer. Express the
final answer as a decimal number with three digits after the decimal point.
Conclude the answer by stating "The answer is therefore \\boxed{[ANSWER]}.

{ Example Problem}
{ Example Solution}

{ Problem}

PoT

# Please provide a clear and step-by-step solution for a scientific problem in
the categories of Chemistry, Physics, or Mathematics. The problem will specify
the unit of measurement. And potential related formulas are given. Please
translate the solution steps into Python code and encase the Python code within
triple backticks for clarity. #

{ Example Problem}
{ Example Code}

{ Problem}

Self-Correction (i)
Feedback

Review your previous answer and find problems with your answer.

{Problem}
{Code}

Self-Correction (ii)
Correction

Based on the problems you found, improve your code. Please reiterate your code,
with your final answer a single numerical number, in the form \\boxed{answer}.
Encase the Python code within triple backticks for clarity.

{Code}
{Feedback}

Self-Refine

{Example Code}
# There is an error in the code above because of lack of understanding of the
question. What is the error? To find the error, go through semantically complete
blocks of the code, and check if everything looks good.
{Example Error}
# Okay! Here is the rewrite:
{Example Refined code}

{Code}
# There is an error in the code above because of lack of understanding of the
question. What is the error? To find the error, go through semantically complete
blocks of the code, and check if everything looks good.

Table 11: Prompt templates for baselines.
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Guided Reasoning (Previous):

# Calculate velocities after collision
v1_after = ((mass_particle1 - mass_particle2) * velocity_particle1 + 2 * 
mass_particle2 * velocity_particle2) / (mass_particle1 + mass_particle2)
v2_after = (2 * mass_particle1 * velocity_particle1 + (mass_particle2 -
mass_particle1) * velocity_particle2) / (mass_particle1 + mass_particle2)

print(v1_after)

Problem: 
A particle of mass m and velocity 𝒖𝟏 makes a head-on collision with another particle of mass 2m 
at rest. If the coefficient of restitution is such to make the loss of total kinetic energy a 
maximum, what are the velocities 𝒗𝟏 after the collision? The unit of the answer is 𝒖𝟏.

Review: 
The variables are defined using symbolic math (Symbol) from the sympy library, which is not 
necessary for this problem. It is better to define the variables as numerical values. Also, the 
variable names can be more descriptive.

Problem Analysis (Previous):
# Given parameters 
m = Symbol('m') # mass of the first particle 
u1 = Symbol('u1') # velocity of the first particle 
m2 = 2 * m # mass of the second particle 
u2 = 0 # velocity of the second particle at rest

Problem Analysis (Refined):
# Given parameters 
mass_particle1 = 1 # mass of the first particle
velocity_particle1 = 1 # velocity of the first particle 
mass_particle2 = 2 * mass_particle1 # mass of the second particle 
velocity_particle2 = 0 # velocity of the second particle at rest

Review: 
The code has 1 error. The formula used in the code is for an elastic collision, but the problem 
states that the coefficient of restitution is such that the loss of total kinetic energy is a 
maximum, which implies an inelastic collision. The formula for an inelastic collision is different 
from that of an elastic collision.

Guided Reasoning (Refined):

# Calculate velocities after inelastic collision
v1_after = (mass_particle1 * velocity_particle1 + mass_particle2 * 
velocity_particle2) / (mass_particle1 + mass_particle2)
v2_after = v1_after

print(v1_after)

Formula Retrieval:
# Potential formulas
# v1' = (m1 - m2) * v1 / (m1 + m2) + 2 * m2 * v2/ (m1 + m2), calculate velocity of 
m1 in 1d elastic collision of two particles
# v2' = 2 * m1 * v1 / (m1 + m2) + (m2 - m1) * v2 / (m1 + m2), calculate velocity of 
m2 in 1d elastic collision of two particles
# v = (m1 * v1 + m2 * v2) / (m1 + m2), calculate velocity of One-Dimensional 
Completely Inelastic Collision

Figure 10: Case study using Physics Reasoner method.
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