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Abstract

Modular deep learning is the state-of-the-art
solution for lifting the curse of multilinguality,
preventing the impact of negative interference
and enabling cross-lingual performance in Mul-
tilingual Pre-trained Language Models. How-
ever, a trade-off of this approach is the reduc-
tion in positive transfer learning from closely
related languages. In response, we introduce
a novel method called language arithmetic,
which enables training-free post-processing to
address this limitation. Extending the task arith-
metic framework, we apply learning via ad-
dition to the language adapters, transitioning
the framework from a multi-task to a multi-
lingual setup. The effectiveness of the pro-
posed solution is demonstrated on three down-
stream tasks in a MAD-X-based set of cross-
lingual schemes, acting as a post-processing
procedure. Language arithmetic consistently
improves the baselines with significant gains,
especially in the most challenging case of zero-
shot application. Our code and models are
available at https://github.com/mklimasz/
language-arithmetic.

1 Introduction

The recent progress of large language models has
raised the question of how well they perform not
just in English but across multiple languages which
has spurred interest in Multilingual Pre-trained Lan-
guage Models (MLLMs) (Conneau et al., 2020;
Workshop, 2023; Alves et al., 2024). These mod-
els serve as general-purpose solutions that can be
adapted and applied to various Natural Language
Processing tasks. Notably, MLLMs demonstrate
zero-shot cross-lingual capabilities, allowing them
to generalise effectively to downstream tasks even
when pre-trained in a language different from the
target language.

The positive transfer of abilities from both re-
lated languages and high-quality training data
from unrelated languages has meant that MLLMs

have reported state-of-the-art performance in low-
resourced languages (Muennighoff et al., 2023).
However, this benefit does not always extend to
high-resourced languages (Kocmi et al., 2021). In
such cases, the quality of MLLMs tends to decrease
compared to their monolingual counterparts (Nozza
et al., 2020; Martin et al., 2020, among others) due
to negative interference phenomena (Wang et al.,
2020). Additionally, the curse of multilinguality
(Conneau et al., 2020) reveals the existence of a
trade-off between language coverage and model
capacity. Consequently, MLLMs must carefully
limit the number of languages included during the
pre-training phase.

Modular deep learning (MDL) (Pfeiffer et al.,
2023) methods help to avoid negative interference
and limited model capacity , enabling the extension
of MLLMs to support any number of languages
(Bapna and Firat, 2019; Ustiin et al., 2020; Philip
et al., 2020; Pfeiffer et al., 2020b, 2022). MDL
methods adapt the model to arbitrary tasks and lan-
guages by isolating components from each other
(and the backbone MLLM) via parameter-efficient
extensions. Examples of parameter-efficient mod-
ules are adapters (Rebuffi et al., 2017; Houlsby
et al., 2019), which are low-budget (in terms of pa-
rameters) bottleneck layers that increase an MLLM
size by just a fraction. Language adapters (Pfeiffer
et al., 2020b) allow the modularisation of language-
specific knowledge by training on a raw, unlabelled
corpus for specific languages.

The limitation of the MDL and language
adapters is their isolation. While they lift the curse
of multinguality and prevent negative interference,
at the same time, language adapters limit the possi-
ble impact of positive transfer. Previous attempts
to address these challenges — such as training
bilingual (Parovi¢ et al., 2022) or language-family
(Chronopoulou et al., 2023b) adapters — do not
scale effectively. In our work, we tackle this limita-
tion as a post-processing step. Leveraging recent
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insights from task arithmetic (Ilharco et al., 2023),
specifically learning via addition, we augment
language adapters with missing related language
knowledge — a concept we term language arith-
metic. Remarkably, this training-free approach can
enhance not only existing language adapters but
also offer zero-shot performance.

To summarise, our contributions are as follows:

* A novel training-free post-processing method
named language arithmetic that enhances lan-
guage adapters.

* We conduct a cross-lingual evaluation on three
downstream tasks (NER, NLI and QA) and
two Multilingual Pre-trained Language Mod-
els (XLM-R, mBERT) with test cases that in-
clude zero-shot and low-resource setups in a
diverse group of 13 languages.

* We provide an analysis of language arithmetic
internal components (including a comparison
with task arithmetic) and show improvement
up to 3 F1 points without any additional train-
ing involved.

2 Background

Our research builds upon the task arithmetic con-
tributions of Ilharco et al. (2023) and Zhang et al.
(2023). The following Section provides the back-
ground and serves as a gentle introduction to the
concept of task vectors and task arithmetic.

2.1 Task vectors & Task arithmetic

Let us assume that we have access to a pre-trained
model with its weights denoted 0, € R? and a
fine-tuned version of the same model on a task ¢
represented by Q}t € R?. The task vector 7; €
R%is an element-wise difference between models’
weights.

Tt — 05‘75 - epre (D

The task vectors can be part of multiple arithmetic
operations, e.g. learning via addition. This op-
eration is an addition operation between two task
vectors and the base model, i.e. we add two dif-
ferences between the fine-tuned models and the
pre-trained version with weights controlling the
impact.

Omuiti—task = epre + )\17_151 + )\27—152 ()

The lambdas can be further normalised to sum to
one, i.e. Ao = 1— Ay and simplifying notation with

just A.
Omuiti—task = Hpre + )\Tt1 + (1 - )\)Ttg 3)

While we define learning via addition for two tasks,
the same procedure can be applied to multiple
tasks.

Task arithmetic allows us to forge a multi-task
model from a separate, task-specific set of fine-
tuned models, preserving high accuracy (although
a shared pre-trained starting point is required, e.g.
the same Language Model). Moreover, vectors
from different tasks are typically close to orthog-
onal, and Ilharco et al. (2023) speculate that this
enables the combination of task vectors via addi-
tion with minimal interference.

In our work, we focus on parameter-efficient fine-
tuning (PEFT) and use language adapters. There-
fore, we reduce the task vector and underlying
model weights represented by 6 to newly intro-
duced parameters (i.e. we exclude the backbone
MLLM, which is frozen across all the models, fol-
lowing the work of Zhang et al. (2023))

3 Method

We propose language arithmetic that transitions
the task arithmetic concept from a multi-task to
a multilingual setup. In this Section, we describe
the language arithmetic alongside its application as
a training-free, post-processing step to a MAD-X
cross-lingual framework (Pfeiffer et al., 2020b).

3.1 Language arithmetic

We formulate a language arithmetic (LA) concept
by substituting the task in task vectors and arith-
metic with a language. This approach means that
instead of merging downstream tasks, we target a
problem of cross-lingual performance. We propose
to apply learning via addition to languages, and
in Appendix E, we demonstrate the discrepancies
when comparing language and task vectors. Our
study focuses specifically on the language adapters
(Philip et al., 2020; Pfeiffer et al., 2020b). Due to
overlapping abbreviations, we use the LA exclu-
sively as the former, i.e. language arithmetic. In
the learning via addition, we limit the parameters
to language adapters and simplify the notation that
0 represents the adapters’ weights and 7 is referred
to as a language vector. As we operate in a lan-
guage space instead of a task, the ¢ is replaced with
a language, i.e. its language code in the notation.
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The example equation describes a language arith-
metic operation between an English and a Spanish
adapter.

HLA = Hpre + )\Ten + (1 - )\)Tes “4)

Throughout the paper, the equation above is ab-
breviated as a function: LA(en,es) with lambda
as a default parameter. Additionally, for clarity
reasons, we denote target language in a subscript
to distinguish different use-cases. For example,
LAy, (en, es) means that language arithmetic be-
tween English and Spanish is applied to a different
language - in this case French (zero-shot applica-
tion), or LA.s(en, es) meaning that the target is
Spanish (non-zero-shot use-case, due to Spanish
being a part of the LA equation).

Language arithmetic is a training-free method,
taking advantage of already pre-trained modules.
The sole requirement is a validation dataset on
which the A\ parameter can be established. While in
our work, we use a pretty fine-grained step (0.05)
to determine the A value (i.e. we run evaluations for
A € [0, 1] with a provided step), our analysis show-
cased that it is possible to increase the value and
limit the computation burden even more (details in
Section 5.1).

3.2 Application

We evaluate our post-processing method as an ex-
tension of the MAD-X framework (Pfeiffer et al.,
2020b) to challenge our solution in a cross-lingual
manner. The overview of the schema is presented
in Figure 1.

The MAD-X consists of the following steps:

1. Training language adapter(s)
2. Training task adapter
3. Cross-lingual inference
In our work, we introduce an additional step:
4. Post-processing via language arithmetic

In the following Sections 3.2.1-3.2.4, we present
the framework and our proposed post-processing
via language arithmetic extension, exploring two
use cases: (i) a zero-shot case, where a target
language adapter does not exist and (ii) an en-
hancement case, where we prove existing language
adapters (in high- and low-resourced languages).

3.2.1 Training language adapter(s)

In the first step, the MAD-X framework trains lan-
guage adapters. These adapters are trained on raw
corpora using masked language modelling loss in
a self-supervised manner. The MLLM is frozen
during this step, and we only optimise the newly
introduced adapter. The training must be done for
languages corresponding to the downstream tasks
(e.g. if we have an English NER dataset, we need
an English language adapter, apart from other de-
sired target languages). Additionally, the adapters
form a pool that is leveraged during cross-lingual
inference.

3.2.2 Training task adapters

The following step freezes a backbone MLLM and
a language adapter and trains a task adapter on a
downstream task dataset. Given a set of tasks or
if a new task appears, we can repeat this step as
long as the required language adapter exists in the
available pool, i.e. a language adapter that matches
the task’s language.

3.2.3 Cross-lingual inference

Having trained a task adapter, we can leverage a
pool of pre-trained language adapters and obtain
a cross-lingual performance by connecting any ex-
isting language adapter with a newly trained task
adapter (i.e. routing first via language adapter and
then task adapter). The growing pool of pre-trained
adapters can be accessed at public repositories like
AdapterHub (Pfeiffer et al., 2020a) and reused for
further use cases.

3.2.4 Post-processing via language arithmetic

Our method builds upon the MAD-X framework in
two enhancement scenarios.

First, we assume a situation where the pool of
language adapters does not contain a desired tar-
get language, i.e. a zero-shot scenario. In contrast
to the previous works that try to improve existing
adapters, this use-case is an alternative to routing
via either a related language or a task language
(here, by task language, we understand the lan-
guage on which the task adapter was trained, in con-
trast to a target language - on which we want to eval-
uate). Instead of choosing the better-performing
proxy, language arithmetic proposes to combine
these two (with better results, as shown in Section
4.2).

In the second language adapter enhancement
scenario, we apply language arithmetic as a more

11123



MLLM

FFN

Self Attention

EN w NER
J

LAgg(en, fr)

f

[ Self Attention ]

[ Self Attention ]

( FFN
LAg(en, fr)
o Self Attention

Task adapters training

Self Attention

& S
e} o] o]
Z 21 - =

Language adapters training
MAD-X Framework

Inference using pre-trained
language adapters pool

Zero-shot inference

Language arithmetic

Figure 1: Language arithmetic as an extension of the MAD-X framework. Given language and task adapters (left),
language arithmetic (right) enables post-processing, training-free improvement in two use-cases: (i) zero-shot where
a language adapter for a target language was not trained (presented in the figure as Spanish, which was not part of
existing language adapters pool, LA.;(en, fr)) or (ii) to improve existing language adapters via arithmetic with
either related language or a language on which task adapter was trained (e.g. LAy, (en, f7)).

common goal, trying to improve existing language
adapters; however, our method does that without
any training. Here, we combine the existing target
language adapter with either a related language (we
define related languages in Section 4.1.1) or, once
again, a task language.

4 Experiments

4.1 Experimental setup
4.1.1 Datasets

Downstream evaluation is performed on three tasks:
Named Entity Recognition (NER), Natural Lan-
guage Inference (NLI) and Question Answering
(QA), covering jointly 13 languages', while the
training - to perform cross-lingual evaluation - is
performed on the English data. For the NER task,
we use the WikiANN (Rahimi et al., 2019) dataset
and for NLI - XNLI (Conneau et al., 2018). The
QA evaluation is done on XQuAD (Artetxe et al.,
2020) (we split data 50/50 into valid/test datasets),
and the training uses SQuUAD 1.1 (Rajpurkar et al.,
2016). Additionally, to evaluate a low-resource
scenario for a language not covered during MLLM
pre-training, we leverage the Assamese subset from
IndicXNLI (Aggarwal et al., 2022).

Related languages To automatically establish a
related language needed for language arithmetic,
we query URIEL and lang2vec library (Littell et al.,

lar, bg, de, el, es, fr, hi, ru, sw, tr, ur, vi, zh; XQuAD does
not cover 4 languages (bg, fr, sw, ur)

2017; Malaviya et al., 2017). During the related
language query, we limited the options to 13 down-
stream task languages for which we had already
pre-computed language adapters. This limitation
means that for some languages, we would be able to
find a stronger performing pairing and that the ceil-
ing for our method is higher than the presented (we
denote that the performance of hypothetical paring
would also depend on data availability, i.e. a paired
language must be not only related but also have rep-
resentative corpora; based on this we show analysis
and improved performance in Section 5.2). How-
ever, considering the limitations of the lang2vec,
we decided to keep this simplification. At last, a
language can have a set of equally good related
languages. Therefore, in practical terms, it is not
feasible for our study to train all possible options
for each language - our simplification stands as a
reasonable, real-world proxy. We provide the list
of related languages in the Appendix A.

4.1.2 Implementation & training

In our work, we focus on two of the most popu-
lar multilingual PLMs?: mBERT? (Devlin et al.,
2019) and XLM-R* (Conneau et al., 2020). We
implement our method using the AdapterHub li-
brary (Pfeiffer et al., 2020a). For language adapters,

2According to downloads from Huggingface hf.co/

models?language=multilingual&sort=downloads
3bert—base—multi1ingua1—cased
4x1m-roberta-base
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we train on the Wikipedia corpora’ for 250k steps
with a learning rate of 1e-4, an effective batch size
of 64 using a single GPUand the same initialisa-
tion. For task-specific training, we train for 100
epochs with the same learning rate and a batch
size set to 16. We choose the final checkpoint
based on validation dataset performance (for lan-
guage adapters, we evaluate on a held-out subset
of Wikipedia). In our main experiments, we report
the scores as an average over three independent
runs with different seeds (for both language and
task adapters). Additionally, to improve efficiency
and reduce GPU memory utilisation, we adopt a
half-precision (FP16) setting.

4.2 Zero-shot evaluation

The zero-shot evaluation assumes a scenario where
the language adapter pool does not contain a de-
sired target language (e.g. lack of Spanish in Fig-
ure 1). The baselines are based on routing, i.e. we
proxy either by an English adapter (proxy via a
task language, as the task adapter was trained using
English data) or a related language (e.g. French for
Spanish). Language arithmetic serves a solution
that, instead of choosing a better proxy, combines
the adapter’s tuple: LA;(en,rel), where rel sym-
bolises a related language and ¢ stands for a target
language (e.g. LAcs(en, fr)).

Figures 2 and 6 present the results of the zero-
shot experiment. Language arithmetic consistently
outperforms the proxy baselines for all the setups,
reaching over 3.1 F1 points improvement in the
NER task and 1.1 F1 for QA (XLM-R). These re-
sults indicate that language arithmetic is a feasible,
low-cost method that one can apply in the lack of
an existing target language adapter.

Additionally, we investigate how the A parame-
ter impacts the downstream evaluation. The goal
was to understand how much weight is given to
English vs related language. We looked at the val-
idation performance over different A\ thresholds.
While most cases set the value to over 0.5 (i.e. pre-
ferring the English side, given LA;(en, rel)), the
preferred values did not showcase any consistency
and pattern. We analyse this further in Section 5.1.

4.3 Improving existing language adapters

This evaluation assumes that a target language
adapter exists in the adapter pool. We test two
cases, i.e. LA;(en,t) and LA (rel,t), where rel

320331101.xx checkpoint hf . co/datasets/wikimedia/
wikipedia
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Figure 2: Zero-shot XLM-R language arithmetic eval-
uation, where one side of the arithmetic is an English
adapter, and the other is related to the target language
adapter (e.g. French for Spanish - LA.,(en, fr)). The
values above bars present a relative difference to a better
proxy. See Figure 6 for the mBERT model.

is once again a related language and ¢ is the tar-
get language. Additionally, we provide a com-
bination of these two approaches (referred to as
LA(en/rel,t)), where for each language, we
choose a better pairing (so either en or rel). This
solution resembles a practical compromise between
cost and performance and serves as a proxy for the
ceiling of our method (discussed in Section 4.1.1).

The results are presented in Figures 3 and 7.
Compared to the baseline direct application of a
target language adapter (i.e., the MAD-X method),
the gains are not as significant as in the case of the
zero-shot scenario. Moreover, in contrast to the
previous Section’s study, MLLMs showcase a dif-
ferent behaviour, as language arithmetic provides
less benefit for XLM-R than for the mBERT model
(e.g. +0.38 XLM-R vs +2.41 mBERT in F1, QA).

The drop in performance of language arithmetic
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Figure 3: Variants of language arithmetic compared
to the MAD-X method in the use-case to improve an
existing target language adapter. The values above bars
present a difference between a better LA setup and the
MAD-X framework for the XLM-R model (see Figure
7 for mBERT).

compared to the zero-shot use case is not surpris-
ing. Given that a target language adapter is trained
on a significant corpus, it gives less room for im-
provement (this is not the case in the low-resource
regimes, as shown in the following Section). This
is also a potential explanation of a different be-
haviour between the evaluated MLLMs, consider-
ing the overall more robust performance of XLM-R
over mBERT. However, considering the cost-to-
performance ratio and the minimal fatigue that our
post-processing method enforces on existing MAD-
X pipelines, we can see a constant gain on average
across all the experiments and training runs.

4.4 Low resource evaluation

Training a language adapter might be trouble-
some for high-resourced languages due to mas-
sive corpora requiring significant computational

resources.’ On the other hand, in most languages,
we lack data to train a strong language adapter, i.e.
language-specific corpora might be either too small
or unavailable (Haddow et al., 2022). We investi-
gate whether LA can help in such cases. We test
our solution in three cases and define three (actual
and simulated) evaluation scenarios:

* Assamese (as) - low resource language, addi-
tionally not used in the pre-training of a base
MLLM,

* Swahili (sw) - low resource language, used in
the pre-training,

* French (fr) - high resource, used in the pre-
training. We simulate cases from low to high
resources.

We train a series of language adapters with different
token budgets for each language, from 10k to 10M
(or 1B for French; we limit this particular study to
the XLM-R model). Afterwards, we compare the
usage of such adapters directly against language
arithmetic with three adapters (we use LAy (t, en),
where t € {as, sw, fr}).

Figure 4 presents the results of the evaluation
performed on the downstream tasks. The most gain
is visible in the most challenging scenario, during
the evaluation on the Assamese dataset. In this case,
the backbone MLLMs did not encounter the lan-
guage during the pre-training phase. Although the
difference becomes less pronounced in the NER
task as we approach the limits of available data,
there remains a significant margin for NLI - the
difference can be explained by the overlap in the
corpora (Wikipedia) between NER and language
adapter training tasks, following the findings of
Gururangan et al. (2020). For Swahili, where the
language is part of the pre-training, the flattening
effect begins earlier and affects both tasks. Never-
theless, leveraging language arithmetic still yields
improvements.

The simulated case of French showcases that
even with a relatively weak language adapter
(trained on 10k tokens), the language arithmetic
can restore existing knowledge and results in high
performance for the language. Moreover, compar-
ing the adapters trained with a different token bud-
get, the results remain similar, without significant

® Although in our experimental setup, we train each adapter
for the same number of steps and choose the best checkpoint
based on the validation performance, for low-resourced lan-

guages, one could apply an early stopping mechanism in a
production-level pipeline.

11126



Assamese Swahili

-

10* 10°

10 10° 10 10°
Language Adapter training tokens Language Adapter training tokens

French

10 10° 10° 10 0" 10"
Language Adapter training tokens

(a) NER

Assamese Swabhili

10° 10" 10 10°

10 10
Language Adapter training tokens

10 10°
Language Adapter training tokens

French

Accuracy

10* 10° 10" 10
Language Adapter training tokens

(b) NLI

Figure 4: NER and NLI evaluation of a set of adapters trained on a Wikipedia subset showcases that language
arithmetic LA, (t,en) (green, dotted line) provides significant gains when compared against direct usage of the
adapter (violet, solid line), especially in a very low-resource regime. The x-axis represents the token budget of each

trained language adapter.

fluctuations. We believe that this phenomenon hap-
pens because the MLLM has seen a much higher
amount of French in the pre-training procedure
than Swabhili (over 35 times more tokens in XLM-
R pre-training; moreover, French is in the top 15
represented languages). Therefore, even under-
trained French adapters have a relatively easy task
once they are merged with a robust English adapter.
In practical terms, this finding allows us to pro-
totype new languages quicker by estimating the
possible end product quality or might serve as an
intermediate solution (until the full-corpora adapter
is trained).

5 Analysis
5.1 Lambda impact

Our study estimates the A parameter with a small
step (0.05). This analysis investigates how sen-
sitive this parameter is in the language arithmetic.
Depending on multiple variables that include model
and evaluation dataset sizes or a number of lan-
guages, running 20 evaluations might be costly
(especially when using neural-based metrics, e.g.
COMET (Rei et al., 2020)). Therefore, we anal-
ysed the potential impact of choosing a suboptimal
lambda with a decrease in evaluation count. The
breakdown includes a subset of languages on both
tasks (using the XLLM-R as a base model). We
chose the zero-shot scenario where we performed
LA between English and related language adapters.

In Figures 5 and 8, we plot the validation scores
with the corresponding baselines, that is, the scores
of using directly the adapters. The dotted lines
are based on A = 0 or A = 1 for clarity, meaning

Bulgarian (English-Russian) Spanish (English-French)

Lambda Lambda

Figure 5: Interpolation of A values for the zero-shot
XLM-R scenario (NER, for NLI and QA see Appendix
D) on the validation dataset. The horizontal dashed lines
represent the baseline scores for both languages used in
language arithmetic.

we exclusively use the arithmetic equation’s left or
right side (i.e., a specific language). In most cases,
a subset of valid A values would improve over the
baselines. Moreover, the analysis reveals that a
coarser evaluation (e.g., with a step of 0.1 or 0.2)
would be sufficient, reducing the required number
of performed tests up to four times while maintain-
ing most of the improvement. At last, setting the
default A = 0.5 would be near optimum for the
analysed subset.

5.2 Language relatedness

Relatedness of languages is a difficult-to-define
concept. At times, in our proposed framework, we
might face a choice of multiple, seemingly equally
related languages to use for the arithmetic opera-
tion. In this analysis, we decided to look at this
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LA, (L 4,1la —) ca es fr it pt 1o
NER
gﬁ es 73.82 - 75.06 74.61 7490 73.68
Dot 7574 7576 - 7582 7559 7579
= NLI
L%s es 78.23 - 78.04 7796 77.94 78,02
fr 7795 77,65 - 7770 77,47 77,60

Table 1: Impact of language relatedness on the language arithmetic. We compare different Romance languages as a
right side of LA equation, i.e. [2 (both tasks use XLM-R model). We report an average over three runs.

aspect via a glance at Romance languages. We
trained an additional subset of language adapters
and formed a pool of 6 languages: Catalan, French,
Italian, Portuguese, Romanian and Spanish. After-
wards, we evaluated languages shared in our NER
and NLI tasks (Spanish and French) by arithmetic
with the entire Romance languages pool.

The results are presented in Table 1 and show
that given a different related language (in this case,
defined as coming from the same language family),
there are minor scores fluctuation. The relative dif-
ference between the best and the worst language
reaches around 1 F1 score in the NER task and
around 0.3 in terms of accuracy points for the NLI
task. This experiment indicates that a more sophis-
ticated or hand-crafted language choice would im-
prove the downstream results presented in Figure 5.
Howeyver, it also shows that there is no free lunch,
and results depend on a downstream task. For ex-
ample, for Spanish evaluation, a French adapter is
trained on the largest out of the listed languages raw
corpora; therefore, for the NER task, it can lever-
age a bigger pool of seen during training Named
Entities (at times language-independent or similar
across languages) and perform the best given more
data, even when there are closer related languages
(according to methodology from Section 4.1.1 and
Indo-European languages family tree).

6 Related Work

Knowledge composition from multiple, indepen-
dently trained adapters has been widely discussed
in the literature. However, unlike our work, the
solutions require substantial changes to the vanilla
adapter setup. The previous work either requires
additional parameters to learn a parameterised com-
position function/a gating module to combine/steer
the flow through the suitable adapter(s), or needs a
specific training procedure that increases the com-

plexity of the overall solution or, in most cases,
both (Pham et al., 2020; Pfeiffer et al., 2021; Lee
et al., 2022; Parovi¢ et al., 2022; Chronopoulou
et al., 2023b; Klimaszewski et al., 2023; Wang
et al., 2023). Moreover, to prevent specifically neg-
ative interference, hyper-adapters (Baziotis et al.,
2022) were proposed using hyper-networks (Ha
etal., 2017), and Ansell et al. (2022) applied sparse
fine-tuning to compose task and language masks.
Unlike the prior studies mentioned earlier, our at-
tempt is training-free and does not modify the base
architecture. The most conceptually similar work
are proposed by Chronopoulou et al. (2023a, 2024);
however, they operate on the notion of sample simi-
larity to a subset of domains in a domain adaptation
regime or on a joint language and task arithmetic
for cross-lingual summarization task. Additionally,
concurrent to our work, Parovi¢ et al. (2024) show
intial potential of task arithemtic in cross-lingual
transfer based on a full fine-tuning setup. However,
in our work we focus on PEFT methods with ad-
ditional, in-depth analysis. At last, we denote the
rise of task arithmetic use cases, e.g. vision tasks
or cross-task generalisation (Stoica et al., 2023;
Huang et al., 2024).

7 Conclusion

We have proposed language arithmetic, which en-
hances language adapters based on task arithmetic
learning via addition. It is a training-free method
and functions as a post-processing technique for
MAD-X. Our experiments have shown that LA
is particularly beneficial in a zero-shot scenario,
where we do not have access to a target language
adapter. At last, we highlight the differences be-
tween language and task arithmetic.

In our future work, we plan to extend language
arithmetic by incorporating more components into
the sum. Additionally, we aim to adapt other ele-
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ments of the task arithmetic framework, i.e. task
analogies and forgetting via negation, to a mul-
tilingual setup with an analysis of the differences
between multi-task and multilingual arithmetic con-
text. Furthermore, we will evaluate LA’s perfor-
mance on various non-classification tasks.

8 Limitations

Our work was tested on English-centric task train-
ing and could be extended to different languages
with more PEFT methods. Moreover, applying
multi-source training based on the work of Ansell
et al. (2023) could provide better robustness of the
task adapters and a more thorough analysis.
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A Related languages

We present the list of related languages used in our
experiments in Table 2 (details in Section 4.1.1).

B Zero-shot evaluation

Figure 6 presents the results of the experiments
described in Section 4.2 for the mBERT model.

C Improving existing language adapters

Figure 7 presents the results of the experiments
described in Section 4.3 for the mBERT model.

D Lambda impact - NLI and QA

Figure 8 presents the analysis of lambda impact for
NLI and QA tasks. For details, refer to Section 5.1.

E Language vs task vectors

Task vectors exhibit high sparsity and orthogonality,
as Ilharco et al. (2023) observed. While the former
characteristic can be denoted in language vectors
(Figure 9), the latter displays different properties, in
contrast to task vectors. In Figure 10, we visualise
the cosine similarity between evaluated language
vectors of language adapters. Notably, the minimal
cosine similarity (0.19) surpasses the maximum
(0.18) reported by previous research in the task
space (Ilharco et al., 2023). Interestingly, most
pairs in the task space oscillate within the range of
0.01 to 0.03. At the same time, language vectors
surpass 0.2 in almost each case, indicating that the
orthogonality aspect is an inherent property of task
adapters.

Lang. ar bg de el es fr hi
Related sw ru fr es fr es ur

Related bg ar bg hi ru ar

Table 2: Languages used in the experiments with cor-
responding related languages. Details are provided in
Section 4.1.1.

NER
M English proxy M Related lan gp Xy Language arithmetic

80,00

+0,68
+0,67
167
60,00
z
40,00 194
ar o sw vi

20,00
zh  AVG

M English proxy M Related lang proxy Language arithmetic

ur  vi

zh  AVG

80,00

70,00

+0,31
60,00 21
50,00 | o
ruosw

40,00
ar by de el sfhi

Accuracy

W English proxy W Related lang proxy Language arithmetic
80,00

+0,03
-0,74
70,00

37
60,00 45 06

50,00 |

40,00
ar de c] h. ru vi zh AVG

Figure 6: Zero-shot mBERT language arithmetic eval-
uation, where one side of the arithmetic is an English
adapter, and the other is related to the target language
adapter (e.g. French for Spanish - LA.,(en, fr)). The
values above bars present a relative difference to a better

proxy.

Based on the cosine similarity observation, we
investigated one of the recent task arithmetic ex-
tensions, Ties-Merging (Yadav et al., 2023). This
work introduces a three-step algorithm that pre-
vents different parameter interferences, improving
upon task arithmetic. The algorithm decreases the
cosine similarity via a pruning step and alignment
of parameter signs to perform arithmetic only on
relevant parameters to the merged tasks. On the ex-
perimental details note, as Ties-Merging operates
on averaging, not addition, we utilise a different
lambda range during validation (as suggested by
Yadav et al. (2023), A € [0.8,1.8]), and we set
Top-K% to the default value of 20 and additionally
to 80.

We report the comparison in the zero-shot set-
ting on the NER task (XLM-R version) in Table
3. The Ties-Merging decreases the results signifi-
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Figure 7: Variants of language arithmetic compared
to the MAD-X method in the use-case to improve an
existing target language adapter. The values above bars
present a difference between a better LA setup and the
MAD-X framework for the mBERT model.

cantly compared to the default language arithmetic.
Moreover, we note that the pruning operation has
the reverse effect; higher pruning (i.e. keeping Top-
K% lower) decreases the performance (in contrast
to task vectors) by making language vectors more
sparse and, hence, closer to orthogonal.

One interpretation of the phenomena can be the
different goals of the arithmetic: in the multi-task
setup, we try to include multiple, often discon-
nected, tasks into a single task vector. In contrast,
the language vectors’ goal is to include the knowl-
edge of the closely related language rather than
remove the harmful artefacts. Our findings indicate
that language arithmetic has different characteris-
tics than task arithmetic, and the follow-up works
that improve upon task arithmetic might not be
suited for the multilingual context.
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Figure 8: Interpolation of A values for the zero-shot NLI
and QA XLM-R scenario on the validation dataset. The
horizontal dashed lines represent the baseline scores for
both languages used in language arithmetic.

Method AVG F1 score
LA 60.54
Ties-Merging (Top-K% 20) 52.94
Ties-Merging (Top-K% 80) 57.57

Table 3: Ties-Merging evaluation in the zero-shot setup
on the NER task (XLM-R version, averaged over three
runs and all evaluated languages). In the case of lan-
guage arithmetic, where the language vectors have a
higher overlap (i.e. higher cosine similarity), remov-
ing parameter interference decreases the overall perfor-
mance.
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Figure 9: Language vectors, similar to task vectors,
are extremely sparse. The kernel density estimate plot
presents the weights of a Spanish mBERT adapter. The
behaviour is consistent across sampled layers and lan-
guages.
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Figure 10: Cosine similarity between language vectors
of language adapters.
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