Case2Code: Scalable Synthetic Data for Code Generation

Yunfan Shao'?, Linyang Li?!, Yichuan Ma'2, Peiji Li''?, Demin Song?,
Qinyuan Cheng'2, Shimin Li', Xiaonan Li', Pengyu Wang', Qipeng Guo?,
Hang Yan??, Xipeng Qiu', Xuanjing Huang', Dahua Lin?3
1School of Computer Science, Fudan University
2Shanghai Al Laboratory
3The Chinese University of Hong Kong
{yfshao19, xpqgiu}@fudan.edu.cn
{lilinyang, yanhang}@pjlab.org.cn

Abstract

Large Language Models (LLMs) have shown
outstanding breakthroughs in code generation.
Recent work improves code LLMs by training
on synthetic data generated by some powerful
LLMs, which can be challenging to scale due
to the dependence on a teacher model and high
generation costs. In this paper, we focus on
synthesizing code data at scale and propose a
Case2Code task by exploiting the expressive-
ness and correctness of programs. Case2Code
is an inductive inference task that aims to infer
underlying code implementations by observing
input-output examples or program behaviors,
By incorporating LLMs to generate program
inputs, and executing the program with these in-
puts to obtain the program outputs, we can syn-
thesize diverse and high-quality Case2Code
data at scale for training and evaluating code
LLMs. Experimental results show that case-to-
code induction is challenging for current repre-
sentative LLMs if they are untrained. Models
trained with Case2Code improve performance
not only on distribution case-to-code induc-
tion but also various coding-generation tasks,
demonstrating the great potential of large-scale
synthetic data and inductive learning.'

1 Introduction

The success of large language models (LLMs), ex-
emplified by GPT-4 (OpenAl, 2023) has revolution-
ized the Al community. One of the most impressive
abilities of LLMs is the code generation ability, ex-
emplified by writing code blocks or programs to
accomplish complex instructions and satisfy user
specifications (Hong et al., 2024; Zhuo et al., 2024;
Sun et al., 2024).

To further improve the performance of code
generation with open-source LL.Ms, recent work
adopts synthetic data via self-instruct (Wang et al.,

fCorresponding Authors.
!Code and datasets will be available at https: //github.
com/choosewhatulike/case2code.

Countin

Task Dataset

Example

Explain this function for me:
def func(a):
return a + 5

Existing Common

Code

Write a program that find the
largest and the smallest number
in the list.

Generation Common

Suppose we have:
func(l) ==
func(2) ==
func(3) ==
func(y) ==

Explain this function for me.

Rare

O 00 3O

Case2Code |urite a program to convert texts
like this:

“john Smith” — “Smith,
John”

“frank lee” — “Lee, Frank”

“Laura Jane Jones” —
“Jones, Laura”

Rare

Figure 1: Examples of existing code generation and
case2code tasks. Compared with existing code genera-
tion instructions, inductive learning tasks like case2code
are rare in the training data, which makes it challenging
for LLMs to perform.

2023b; Taori et al., 2023) to distill the strong ca-
pability of code generation from teacher models.
Specifically, practitioners often collect and devise
code instructions and then generate high-quality
responses using a powerful teacher LLM to syn-
thesize the training data. Then, the data can be
used to fine-tune a weak LLM to bootstrap their
code generation ability. For example, Code Al-
paca (Chaudhary, 2023) incorporates ChatGPT to
generate 20K code instructions under 21 seed tasks
for fine-tuning. WizardCoder (Luo et al., 2023)
adopts Evol-Instruct to the realm of code, using
powerful closed-source LLMs to synthetic high-
quality code instruction-following samples to en-
hance open-sourced LLMs code generation perfor-
mance.

Despite the success of these code synthetic data,
they rely on a powerful teacher for data genera-
tion (Yu et al., 2023b), which can be challenging
to scale up as they are bound by the capability of

11056

Proceedings of the 31st International Conference on Computational Linguistics, pages 11056—-11069
January 19-24, 2025. ©2025 Association for Computational Linguistics

https://github.com/choosewhatulike/case2code
https://github.com/choosewhatulike/case2code

the teacher and suffer from high costs. Moreover,
models can perform poorly on tasks like inductive
learning as these instructions are rare in the train-
ing corpus (Figure 1). Therefore, in this paper, to
synthesize high-quality code data at scale and com-
plement existing code training data, we introduce
Case2Code, a diverse and challenging synthetic
task for LLMs.

Inspired by inductive inference tasks (Balog
et al., 2016; Devlin et al., 2017; Ellis et al., 2021),
we focus on large-scale data synthesis with pro-
grams in the real world. In Case2Code, samples
are synthesized from real-world productive func-
tions, which are closer to the actual distribution of
general LLLM applications and production. Specifi-
cally, the Case2Code challenge requires the LLM
to infer the underlying program based on several
input-to-output cases generated by the real-world
program. In Case2Code learning, LLMs are sup-
posed to write solutions formulated by codes based
on the example outputs, which is one common
scenario in the real-world working process, using
examples to convey knowledge.

To obtain large-scale and diverse Case2Code
data, we first gather a diverse collection of ex-
ecutable code texts that cover a wide range of
real-world applications. Then, we generate the
input-output transformation cases with the assis-
tance of LLMs and code interpreters. By incor-
porating LLMs to write input examples for each
program and execute the program with these in-
puts to gather the corresponding outputs, we can
synthesize large-scale Case2Code samples with di-
verse data transformations and complicated control
logic. The data synthetic framework does not re-
quire powerful LLLMs with advanced code gener-
ation capabilities, resulting in the possibility of a
weak-to-strong learning paradigm.

Based on the synthetic data, we can form a
unique and challenging task to evaluate and further
train the LL.Ms and study the case-to-code induc-
tion ability of LLMs. In the Case2Code challenge,
we first test how current LLMs perform in making
the code induction task. We then train LLMs with
Case2Code data to further study whether such data
can improve the in-distribution code induction abil-
ity and generalize to other commonly used code
generation tasks. Experimental results show that
Case2Code is a challenging task for LLMs, even
for powerful LLMs like LLaMA3-70B, GPT-3.5,
and GPT-4. With constructed Case2Code data, we
can boost LLM:s to learn to make such inductive in-

ference tasks, while such ability can be transferred
to help improve general code generation tasks such
as HumanEval and MBPP.

To summarize, in this paper, we:

(1) We introduce a scalable data synthetic frame-
work that aims to generate high-quality and diverse
inductive code generation samples for evaluating
and training LL.Ms, Case2Code.

(2) We evaluate the inductive learning ability
of current representative LLMs, demonstrating
the necessity of synthesizing inductive data like
Case2Code for LLMs.

(3) We explore methods of training LLMs on
large-scale Case2Code data, showing not only
great improvements on the Case2Code challenge
but also a consistent generalization of the trained
models in general code generation tasks.

2 Related Work

Our work discusses the reasoning ability of LLMs,
touching on the following grounds:

2.1 Inductive Inference

Inductive inference is rarely discussed in LLM rea-
soning, most research focuses on specific scenarios
with limited inductive reasoning. One pioneer work
is prerequisite toy tasks (Weston et al., 2015) where
the task goal is to solve simple induction. Later,
Yang et al. (2022) introduces various world-wide
knowledge such as botany, history, and geography
into the facts given and asks neural models to pre-
dict whether a given rule is correct. In the realm of
code, several works focus on Programming by Ex-
ample (PBE), which aims to induce a valid program
given the expected inputs and the corresponding
outputs. These works train and evaluate inductive
program synthesis models for constrained scenar-
ios with limited search spaces, such as operations
on list, string, and manually-defined objects (Ba-
log et al., 2016; Devlin et al., 2017; Ellis et al.,
2021; Shi et al., 2023; Wu et al., 2024; L1 and Ellis,
2024). Different from previous studies, our pro-
posed Case2Code task leverages diverse code in
the real world as a powerful platform for LLMs to
learn inductive inference under various challenging
scenarios.

2.2 Synthetic Data

Recent works focus on building high-quality
instruction-following or question-answering train-
ing data through strong LLMs such as GPT-4 to

11057

Function Collection

(Function Inputs)

examples = [
dict(no=2),
dict(no=3),
dict(no=4),
dict(no=5),
dict(no=6),
dict(no=7),
dict(no=8),
dict(no=9),
dict(no=10),
dict(no=11),

J

/ Raw Function
d

ef division(no): 4‘\\\\

This function takes an integer
as an input and returns a list of .
prime factors of the number. Write Inputs

wnn w/LLM

result = []

for i in range(2, int(no ** 0.5
& N3

while no % i == 0:
no =no // i

result.append(i)

1/0 Generation

Code [2,21,
Interpreter [51, &

N [71,
_' [2,2,21,

Data Synthesis
(Function Outputs) Training Sample
outputs = [Can you develop a function

[21, that produces this output
[31, value from the given input
values?

Filtering

[2,31, : division(no=5) == [5]
Prompting| ;\iciontno=s) == [2,3]

division(no=8) == [2,2,2]

[3,3],
[2,5],
[11],

2

The function is:

** “python
def division(no):

if no > i:
result.append(no)
return result

result = []

Figure 2: Our synthetic framework incorporates an LLM and a code interpreter to construct Case2Code training

samples at scale automatically.

enhance smaller LLMs (Yu et al., 2023a; Mitra
et al., 2024; Luo et al., 2023). While a particular
line of work focuses on studying different strategies
to diverse the instructions and control the quality of
LLM generation, including self-consistency (Wang
etal., 2022), rejection sampling (Huang et al., 2023;
Yuan et al., 2023; Wang et al., 2023a), program-of-
thought (PoT) (Sun et al., 2024), tree-structure CoT
(ToT) searching (Yao et al., 2023), Monte Carlo
Tree Searching (Silver et al., 2016; Chen et al.,
2024), etc. These methods still require a strong
LLM as the teacher with high costs of model infer-
ence, limiting the scalability.

3 Method

In this section, we illustrate the framework for syn-
thesizing Case2Code data in detail, which focuses
on producing large-scale and high-quality inductive
reasoning data in the code domain. Unlike other
synthetic data frameworks that distill high-quality
training data from a strong teacher LLM to pro-
vide supervision signals to improve student LL.Ms,
our Case2Code synthetic framework introduces a
writer LLM to assist the synthesis of data samples.
Thus the overall data quality does not directly rely
on the performance of the LLM generator. And we
can efficiently obtain reliable Case2Code training
data at scale.

3.1 Problem Formulation

The inductive reasoning task aims to find a general
hypothesis based on a small set of observations
to explain a phenomenon. In this paper, we de-
fine Case2Code, an inductive reasoning task in the
code domain. Case2Code is a program synthe-
sis task that targets the reconstruction of unknown
programs based on observations of the program
behaviors.

Formally, for a functional program P, we
have a set of n input-output examples Sp =
{(1‘1,y1),(x2,y2),---,(flﬁ‘n,yn)}, where Yyi =
P(x;),i = 1,2,...,n. The goal of Case2Code is to
implement a program P’ that captures the function-
ality of the program P based on the observed set of
input-output example cases Sp. And for any new
input case Zyew ¢ Sp, the implemented program
P’ should satisfy that P(znew) = P’ (Znew)-

3.2 Framework Overview

In our synthetic data generation framework,
we focus on generating large-scale and diverse
Case2Code data automatically. As shown in Fig-
ure 2, we first collect diverse programs from large-
scale datasets with rule-based filters. Then we in-
corporate LLMs to write diverse example inputs
and utilize the code interpreter to calculate their
corresponding outputs for each program. Finally,
we filter out low-quality programs based on their
outputs and convert the obtained triple (program,
inputs, outputs) into Case2Code data for inductive
reasoning in the code domain.

Note that the correctness of our synthetic data
does not depend on the capabilities of the used
LLMs. Therefore, we can synthetic high-quality
Case2Code data at scale using small LL.Ms with
low costs.

3.3 Collecting Programs

To obtain massive data samples for inductive rea-
soning learning, we first need to acquire massive
and diverse programs that take input arguments,
do some complicated processes, and return output
values. Instead of prompting LLMs to generate
functions that meet these requirements, we collect
human-written high-quality programs in the wild
to enhance diversity.

11058

Specifically, we sample valid Python functions
from The Stack (Kocetkov et al., 2022) to construct
our reasoning dataset. We incorporate the out-of-
box Abstract Syntax Tree (AST) parsing tool % to
parse each file in The Stack to obtain Python func-
tions. We only keep self-contained high-quality
functions that satisfy all of these filtering rules: (1)
pass the syntax check; (2) have one or more input
arguments and return values; and (3) do not rely
on third-party packages or external I/O operations.
After collecting these functions, we can easily ex-
ecute and verify these functions to obtain diverse
Case2Code data with a simple and fast code inter-
preter at scale, which avoids extra file or network
operations that require a sophisticated sandbox.

3.4 Generating Inputs

Once we collect large-scale functions, the next step
is to obtain the corresponding input-output pairs
for each function to construct the Case2Code data.
It is infeasible to write test cases for each function
manually. So, we utilize LLMs to generate suitable
input examples for these functions. We prompt
LLMs to write some example input arguments for
each function based on the corresponding function
implementation. Detailed prompt is listed in Ta-
ble 7 in the appendix.

To generate suitable input arguments, the LLM
needs first to analyze the implementation of the
functions, then infer the possible types and value
ranges of the input arguments, and finally come
up with correct input arguments. However, we
argue that a powerful LLM is not the key factor for
our synthetic data. As we find that while strong
LLMs can write high-quality inputs to generate
Case2Code training data that boosts the reasoning
performance of weak LLMs, the weak LLM can
also write inputs for creating Case2Code data to
self-improve their reasoning ability (see Sec 4.4).
Therefore, the generation process can be scaled
efficiently at a low cost by using small LLMs.

3.5 Obtain Outputs

After collecting self-contained functions and the
corresponding inputs, it is intuitive to incorporate
a code interpreter to run these functions on their in-
puts for output curation. Since the LLM-generated
input examples can contain errors, we introduced a
filtering procedure to reject invalid inputs or func-
tions based on their returned outputs. Specifically,

Zhttps://docs.python.org/3/library/ast.html

if the outputs of a function do not change as the
inputs change (e.g. always return the same output
or exceptions), the function is considered invalid
and will be filtered out.

Moreover, we also filter out functions that gener-
ate very long output values to ensure the length of
the generated Case2Code data is within the context
window size of current LL.Ms. Note that we do
not filter out inputs that lead to exceptions or run-
time errors, as we believe that failure call attempts
can also provide valuable information for inductive
reasoning to reconstruct the function.

3.6 Post-processing

The final step is to convert the obtained
functions and their corresponding input-output
pairs into Case2Code style data. Formally,
for a given function P and its n test cases
Sp = {(z1,11), (x2,¥2), ..o, (Tn,yn)}, We ran-
domly sample m examples (m <= n) as the ob-
served set Sj,. We generate the prompted data that
facilitate the LLM to conduct inductive reasoning
on the observed examples S;D to reconstruct the
given function P. Converted training examples are
shown in Table 8 in the appendix.

We find that the diversity of the prompts can sub-
stantially affect the generalization of the model rea-
soning performance (as shown in Sec 4.4). There-
fore, we manually construct about 10 prompts with
different styles to enhance the data diversity.

4 Experiment

In this section, we illustrate the experimental se-
tups and discuss the experimental results to demon-
strate the challenge of solving Case2Code prob-
lems and show the effectiveness of large-scale
Case2Code synthetic data.

4.1 Experimental Setup

Data Construction We randomly sampled about
2.3 million functions from The Stack pre-training
dataset, in which we already performed data dedu-
plication with the evaluation benchmarks (e.g. Hu-
manEval, MBPP, etc). We conduct the data syn-
thetic pipeline incorporating InternLM2-7b (Cai
et al., 2024) to generate input examples for each
function. The temperature is set to 0.2 and the
top_p is set to 0.95. The generation takes about
500 GPU hours using A800 GPUs. Then we use
64 CPUs to execute and filter functions, which
takes about 1 hour. The execution is under a

11059

Size | HumanEval HumanEval+ MBPP MBPP+ | Case2Code

GPT-4] 90.2 86.6 857 733 436
GPT-3.5) 76.8 70.7 825 697 342
7B 14.0 11.6 268 203 0.2
138 231 19.5 370 276 8.2
LLaMA2-Chat 34B 226 i 33.0 i]
70B 36.6 28.7 463 35.1 78
7B 37.8 35.4 505 468 142
CodeLLaMA-Instruct 13B 427 38.4 635 526 19.0
34B 51.8 43.9 693 563 226
3B 61.6 56.7 701 593 232
LLaMA3-Instruct 70B 774 72.0 82.3 69 34.0

Table 1: Accuracy of various representative LLMs on the code generation datasets and the Case2Code test set.

constrained Python environment to ensure safety.
We eventually obtained 1.3M high-quality func-
tions with input-output pairs for Case2Code rea-
soning. We hold out 500 samples for evalua-
tion and the rest for training. For the hold-out
evaluation samples, we further prompted GPT-
4 (gpt-4-turbo-2024-04-09) to generate addi-
tional input examples and collect the corresponding
outputs for a more strict inductive reasoning evalu-
ation.

Training Setup To demonstrate the generaliza-
tion and effectiveness of our synthetic training data,
we conduct three variants of Case2Code training:
direct fine-tuning, mixed pre-training, and mixed
fine-tuning. All Case2Code variants are trained for
Sk steps with a batch size of 64, a maximum con-
text window size of 4096, and apply linear warmup
and cosine decay of the learning rate from the
peak value of 2e-5 to 5e-6. All model training
is completed on two servers of eight AS00 GPUs.
We conduct training on open-sourced models, i.e.
InternL.M2-7B (Cai et al., 2024) and LLaMA3-
8B (Al@Meta, 2024) to verify the effectiveness of
synthetic training data on different model series.

Evaluation Setup We evaluate the coding abil-
ity of trained LLMs with HumanEval, MBPP. To
conduct strict evaluation, we use EvalPlus, an ex-
tension to the original HumanEval and MBPP with
massive additional test cases. For models that are
not instructed tuned, we apply zero-shot prompt-
ing and four-shot prompting for HumanEval and
MBPP evaluation, respectively. And for instructed-
aligned LL.Ms, we use zero-shot prompting on all

these benchmarks. To evaluate inductive reason-
ing on code, we test various LLMs on solving
Case2Code tasks, with zero-shot prompting. When
evaluating the instructed models that are not tuned
on Case2Code task, we find the performance is un-
stable and sensitive to the prompts. We manually
optimized the prompts for Case2Code evaluation
to elicit the actual inductive reasoning ability of
these models. We use greedy decoding during the
inference for all experiments.

Models We compare the trained models with
several families of representative LLMs: GPT se-
ries(OpenAl, 2023), CodeLLaMA (Roziere et al.,
2023), LLaMA2 (Touvron et al., 2023) and
LLaMA3 (Al@Meta, 2024). For GPT series,
we evaluate GPT-3.5 (gpt-3.5-turbo-0125) and
GPT-4 (gpt-4-turbo-2024-04-09). For other
model series, we evaluate their available open-
sourced versions.

4.2 Zero-shot Case2Code is Challenging for
Current LLMs

As shown in Table 1, we report the zero-shot
Case2Code performance of different representa-
tive LLMs and their programming performance.
We can find that the zero-shot Case2Code perfor-
mance of representative models is strongly related
to their corresponding program synthesis perfor-
mance. Models with higher program synthesis
scores tend to achieve higher Case2Code perfor-
mance. And larger models often outperform small
models. This indicates that Case2Code can be-
come a good benchmark to reflect the code reason-
ing performance of different LLMs. However, the

11060

gf;;‘ "' | HumanEval HumanEvalt MBPP MBPP+ | Case2Code
InternLM?2-7B-Base X 31.1 21.3 51.4 40.3 27.2f
w/ Direct Fine-tuning v 44.5 34.8 56.0 40.4 44.4
w/ Mixed Pre-training v 439 40.9 58.4 42.6 41.4
InternLM2-7B X 39.0 334 56.8 54.1 25.61
w/ Direct Fine-tuning v 43.3 40.9 54.5 40.6 44.5
w/ Mixed Pre-training v 47.6 37.2 58.4 45.6 42.4
w/ Insturction-tuning X 49.4 43.9 58.0 50.4 6.2
w/ Mixed Instruction-tuning v 64.6 56.7 63.4 524 44.0
LLaMA3-8B X 354 20.1 59.1 45.1 29.2f
w/ Direct Fine-tuning v 43.2 39.0 50.6 35.1 44.8
w/ Mixed Pre-training v 47.6 40.9 55.6 41.1 42.6
w/ Insturction-tuning X 49.8 45.7 57.6 47.9 8.6
w/ Mixed Instruction-tuning v 64.8 57.9 71.2 53.1 45.0

Table 2: Results of models trained with our synthetic dataset and the corresponding generalization performance.
Case2Code performance are evaluated with zero-shot prompting, except results with T, which are evaluated with

four-shot prompting.

zero-shot Case2Code scores of LLMs have a large
gap compared with their coding accuracy, which
demonstrates that existing LLLMs are better at some
types of reasoning (e.g. writing programs based on
instructions) than others (e.g. inductive programs
by their behaviors). This can be explained as the
LLM:s are trained with massive program generation
data but fewer samples similar to Case2Code that
need inductive reasoning. Similar to the Reverse
Curse (Berglund et al., 2023), models trained with
deductive reasoning data struggle to transfer to in-
ductive reasoning tasks.

4.3 Generalization of Training on Case2Code

One essential issue of synthetic data is its general-
ization ability. Therefore, we train different LLMs
with our synthetic Case2Code dataset under vari-
ous settings to explore how it affects the learning
of code reasoning of LLMs.

4.3.1 Direct Fine-tuning

First, we find that LLMs that are directly trained
on the Case2Code reasoning samples can effec-
tively learn coding based on cases. As shown
in Table 2, by direct fine-tuning, Internlm2-7B
and LLaMA3-8B can significantly outperform the
few-shot prompting baselines by up to 18.9%,
achieve up to 44.5% and 42.0% accuracy on
Case2Code evaluation set, respectively, which
even outperforms the more powerful LLMs like
LLaMA3-70B, GPT-3.5, and comparable with
GPT-4 (results in Table 1). Moreover, models

trained with Case2Code reasoning also improve
their program synthesis performance on bench-
marks like HumanEval and MBPP. This indicates
that the Case2Code reasoning is general and chal-
lenging. Training on Case2Code samples not
only boosts the inductive reasoning performance
in distribution but enhances the code understand-
ing and code generation abilities of LLMs. As
the Case2Code samples can be synthetic at scale,
we believe that synthesizing large-scale and high-
quality inductive reasoning data is a promising path
to consistently improve LLMs without exhausting
data.

4.3.2 Mixed Training

Then, we explore how to better incorporate our
synthetic Case2Code data into different stages of
LLM training to enhance the reasoning ability of
LLMs in general. Specifically, we train LLMs
with two variants of data mixing, either during
pre-training or in the supervised fine-tuning (SFT)
stage. The first mixing strategy introduces natu-
ral language pre-training texts from the Pile (Gao
et al.,, 2021) and the code pre-training samples
from The Stack (Kocetkov et al., 2022). The mix-
ing ratio is 1:1:2 for samples from the Pile, The
Stack, and the Case2Code dataset, respectively. On
the other hand, we incorporate a supervised fine-
tuning (SFT) dataset from WizardCoder (Luo et al.,
2023) to demonstrate that the performance gain
of Case2Code training does not come from the
understanding of instructions but the learning of in-

11061

ductive reasoning of code execution. We combine
the SFT dataset with Case2Code samples in a 1:3
ratio, as the size of our synthetic dataset is much
larger.

Mixed Pre-training As shown in Table 2,
when incorporated into the pre-training stage, the
Case2Code training data helps the model to connect
the execution states with the function implementa-
tion, which further facilitates the program synthesis
performance of these LLMs. Compared with di-
rectly fine-tuned on Case2Code dataset, training
these samples with pre-training texts enables the
generalization of inductive reasoning of code states
learned by the Case2Code task.

Mixed Instruction-tuning When trained with
instruction-following datasets, the Case2Code data
also improves the performance of the programming
with instruction tasks, as reported in Table 2. We
evaluate the SFT models with the zero-shot in-
structed version of programming synthesis tasks,
HumanEval, and MBPP. We find that incorporating
Case2Code data boosts the performance of vari-
ous LLMs on code generation tasks. Compared to
the corresponding SFT baselines, InternLM2-7B
improves on HumanEval from 49.4% to 64.6%,
with more than 10% improvements. LLaMA3-8B
achieves 64.6%, 57.9%, and 71.2% on HumanEval,
HumanEval+, and MBPP, respectively, with signif-
icant improvements compared to the SFT version.
These results demonstrate the effectiveness of learn-
ing on Case2Code and the necessity of incorporat-
ing inductive reasoning data into LLM training.

4.4 Ablation Study

In this section, we conduct ablation stud-
ies to demonstrate the effectiveness of the
Case2Code synthetic pipeline across different fam-
ilies and scales of LLMs.

Prompt Diversity of Training Data Since the
synthetic Case2Code training data is converted by
triples of (programs, inputs, outputs), during the
construction, the prompt templates are utilized to
embed the input-output pairs to form natural lan-
guage texts for LLM to learn. As the LLM can
only rely on these converted prompts to learn the
Case2Code, it is important to understand the ef-
fectiveness of how different prompt templates af-
fect the training of LLMs. Intuitively, the diver-
sity of prompt templates plays an important role
in the learning of LLMs. Therefore, we compare

B Single Prompt

60
545 EEE Diverse Prompt
50
\? 427 433
=
= 40.1 40.6
240
s
=
Q
é‘é 30

(=}

10

Figure 3: Downstream results when directly fine-tuning
InternL.M2-7B with different Case2Code prompt tem-
plates. Diverse prompts not only help the model to learn
Case2Code reasoning but also significantly advance the
generalization of the code inductive reasoning.

synthetic data prompted using a single template
style with data utilizing diverse styles of templates.
The result is reported in Figure 3, in which diverse
prompts may have little effect on the in-domain
Case2Code performance, however, the diversity
significantly affects the accuracy of LLMs on out-
of-domain program synthesis tasks. It is indicated
that diversity can be critical during LLM learning,
which also has been discussed in other domains like
in general natural language processing tasks (Wei
et al., 2022) and alignment (Ouyang et al., 2022;
Wang et al., 2023b).

‘HumanEval HumanEval+ Case2Code
LLaMA3-8B ‘ 354 20.1 29.2

w/ Case2Code (full) 47.6 40.9 42.6
w/ Case2Code (code only) 38.41 28.66 28.2

Table 3: Models trained with Case2Code (Full) achieve
higher accuracy on multiple datasets than models trained
on Case2Code (Code only), indicating the effectiveness
of combining the I/O messages for Case2Code learning.

Importance of I/O pairs We extract code
data from the case2code training data and re-
move other parts like prompts form the train-
ing set, Case2Code (code only). Then, we
train Llama3-8B under the same setups of
the mixed pre-training in Section 4.3.2, replac-
ing the Case2Code (full) training set with the
Case2Code (code only) set. Compared with
mixed pre-trained models with Case2Code (code
only) dataset, the Case2Code (full) trained mod-
els achieve much higher accuracy both on in-

11062

56.156.7

Accuracy (%)

HumanEval

HumanEval+

67.7
I634

MBPP

Generator
s None
I LLaMA3-70B
54.157352.4 mmm InternLM2-7B

44.244.0
256II

MBPP+ Trace2Code

Figure 4: Downstream results when fine-tuning InternLM2-7B with synthetic data using different input example
generators. Generator “None” refers to the baseline InternLM2-7B not trained on any Case2Code data. The
computational overhead of using LLaMA3-70B is 4.5x that of InternLM2-7B.

‘ TP TGS Costs # Samples
InternLM2-7B | 1 1600 tokens/s 1x 1.3M
LLaMA3-70B | 4 720 tokens/s 4.5x 700K

Table 4: Efficiency of using different LLM Writers for
Input Generation. “TP” refers to the size of the tensor
parallel for inference. “TGS” refers to the inference
throughput (tokens/s) of each LLM instance. “Costs”
refers to the relative compute costs of different LLM
generators. Due to the large TP and low throughput,
the large LMs can be more costly than the small LMs
when inferencing on the same number of GPUs. In
our data synthetic process, using LLaMA3-70B costs
about 9x compute resources compared to small models
like InternLM2-7B. Due to the high costs of LLaMA3-
70B, we only sub-sample the raw data to run the data
synthesis. The total costs are still 4.5x compared to
InternLM2-7B.

distribution Case2Code task and out-of-distribution
tasks like HumanEval and HumanEval+, demon-
strating the effectiveness of combining the I/O mes-
sages with the corresponding code and the incorpo-
ration of synthetic case2code samples.

Choice of Input Generator During the synthesis
of Case2Code data, a critical step is prompting the
LLM to write several input examples for each pro-
gram. These inputs are then executed with the cor-
responding programs one by one to obtain the pro-
gram outputs, thus we can utilize these important
contexts to construct Case2Code training data. To
explore whether the reasoning ability of the LLM
writer affects the synthetic data quality, we replace
the LLM generator from Interlm2-7B to LLaMA3-
70B, and rerun the data synthesis pipeline to ob-
tain a new version of Case2Code training data.

Due to the high costs of LLaMA3-70B, we only
generate half the size of our original synthetic
data. Detailed generation costs are reported in
Table 4. We train Interlm2-7B with this version
of Case2Code dataset under the instruction-tuning
setup to evaluate the data quality. As shown in
Figure 4, compared with the InternLM?2-7B gener-
ator, large LMs like LLaMA3-70B can write high-
quality input samples that help trained LLMs to
achieve comparable code reasoning capability with
fewer training data. It indicates that the input gen-
eration step can affect the overall synthetic data
quality, suggesting data collectors choose a strong
LLM to be the input writer if compute resources are
sufficient. However, we note that LLaMA3-70B
contains too many parameters that are 4.5 x more
costly than InternL.M2-7B. By generating inputs
with InternLLM2-7B, our Case2Code data synthe-
sis framework maintains generation efficiency and
data quality. It also demonstrates the possibility of
self-improving for LLMs on their code reasoning
capabilities.

Improvements on Different Model Scale We
want to explore whether the Case2Code data
synthesized using a small model can still im-
prove a large model, and how the model scale
affects the learning process. Therefore, we use
Case2Code data generated with InternLLM2-7B to
train models in the InternLM2 series to investigate
these questions. The training is taken under the
setting of data mixing with SFT dataset (Luo et al.,
2023) and the results are shown in Table 5. Our
synthetic data consistently enhances the code rea-
soning performance of various sizes of LLMs, even
though one of the student models is almost three

11063

HumanEval+ MBPP MBPP+

Case2Code

HumanEval
InternL.M2-1.8B 32.3
InternLM2-7B 64.6
InternL.M2-20B 73.1

29.9
56.7
65.2

43.6 24.3 27.8
63.4 52.4 42.2
77.4 55.4 46.0

Table 5: Code results with different scales of models, after supervised fine-tuning on the instruction-following

dataset mixed with Case2Code synthetic data.

times larger than the model used for data synthe-
sis. These results demonstrate the possibilities of
weak-to-strong supervision in code-related tasks at
scale.

5 Conclusion

We first construct a new benchmark Case2Code to
evaluate the inductive reasoning capability of
LLMs in the code domain. Then, we propose a data
synthetic framework to construct Case2Code train-
ing samples at scale. By just using small LLMs
and a code interpreter, we can collect high-quality
Case2Code data from pre-training code texts au-
tomatically and efficiently. By training on vari-
ous LLMs in multiple settings, we demonstrate the
Case2Code can improve not only the inductive rea-
soning ability of LLM but also the general coding
capabilities. We believe synthetic Case2Code is a
promising way to continue improving the LLMs
when human-generated data is exhausted.

Limitations

In this work, we study Case2Code, a synthetic task
for learning inductive reasoning capabilities. Our
work is still limited in several aspects:

 Potential harmful programs: we gather and
filter programs from the pre-training code cor-
pus, which excludes code that may contain
dangerous operations like system calls, file
manipulation, and network traffic that require
careful safety checks and vulnerability miti-
gation. In the future one can incorporate a
safe and reliable execution environment that
supports these operations for Case2Code syn-
thesis.

* Programming languages: we focus on syn-
thesizing Case2Code data using Python pro-
grams, as it is a commonly used programming
language and can be easily and reliably ma-
nipulated and executed. Future work can ex-
tend the data synthesis framework to more

programming languages and applications.

* Long context: some inputs or outputs of the
given programs can be extremely long, which
can be challenging to fit into the context win-
dow of current LLMs. Future work can ex-
plore efficient methods of representing and
learning long-context case-to-code induction.

* Data modality: we represent cases in our
Case2Code data as texts for LLM training,
however, real-world programs often interact
with multi-modal inputs and outputs like au-
dio, image, and video. How to effectively
collect and learn multi-modal inductive rea-
soning remains a big challenge.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (No. 62236004).

References
Al@Meta. 2024. Llama 3 model card.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt,
Sebastian Nowozin, and Daniel Tarlow. 2016. Deep-
coder: Learning to write programs. arXiv preprint
arXiv:1611.01989.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita
Balesni, Asa Cooper Stickland, Tomasz Korbak, and
Owain Evans. 2023. The reversal curse: Llms
trained on "a is b" fail to learn "b is a". CoRR,
abs/2309.12288.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi
Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan,
Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya Gu, Yuzhe
Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He,
Yingfan Hu, Ting Huang, Tao Jiang, Penglong Jiao,
Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li,
Linyang Li, Shuaibin Li, Wei Li, Yining Li, Hong-
wei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu,
Kuikun Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv,
Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai

11064

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.48550/ARXIV.2309.12288
https://doi.org/10.48550/ARXIV.2309.12288

Shang, Yunfan Shao, Demin Song, Zifan Song, Zhi-
hao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang,
Guoteng Wang, Jiaqi Wang, Jiayu Wang, Rui Wang,
Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen
Weng, Fan Wu, Yingtong Xiong, and et al. 2024.
Internlm2 technical report. CoRR, abs/2403.17297.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024. Alphamath almost zero: process supervision
without process. ArXiv, abs/2405.03553.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju,
Rishabh Singh, Abdel-rahman Mohamed, and Push-
meet Kohli. 2017. Robustfill: Neural program learn-
ing under noisy I/O. In Proceedings of the 34th In-
ternational Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Re-
search, pages 990-998. PMLR.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias
Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc Cary,
Armando Solar-Lezama, and Joshua B Tenenbaum.
2021. Dreamcoder: Bootstrapping inductive pro-
gram synthesis with wake-sleep library learning. In
Proceedings of the 42nd acm sigplan international
conference on programming language design and
implementation, pages 835-850.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2021. The pile: An
800gb dataset of diverse text for language modeling.
CoRR, abs/2101.00027.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jiirgen Schmidhuber. 2024. Metagpt: Meta pro-
gramming for A multi-agent collaborative framework.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi
Wang, Hongkun Yu, and Jiawei Han. 2023. Large
language models can self-improve. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 1051-1068. Association
for Computational Linguistics.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,
Chenghao Mou, Carlos Muiioz Ferrandis, Yacine Jer-
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro von Werra, and Harm
de Vries. 2022. The stack: 3 TB of permissively
licensed source code. CoRR, abs/2211.15533.

Wen-Ding Li and Kevin Ellis. 2024. Is programming
by example solved by llms? CoRR, abs/2406.08316.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. CoRR, abs/2306.08568.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. 2024. Orca-math: Unlocking
the potential of slms in grade school math. CoRR,
abs/2402.14830.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurlIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Kensen Shi, Joey Hong, Manzil Zaheer, Pengcheng
Yin, and Charles Sutton. 2023. Exedec: Execution
decomposition for compositional generalization in
neural program synthesis. CoRR, abs/2307.13883.

David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Vedavyas
Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Has-
sabis. 2016. Mastering the game of go with deep neu-
ral networks and tree search. Nat., 529(7587):484—
489.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi
Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, Qipeng
Guo, Xipeng Qiu, Pengcheng Yin, Xiaoli Li,
Fei Yuan, Lingpeng Kong, Xiang Li, and Zhiy-
ong Wu. 2024. A survey of neural code intelli-
gence: Paradigms, advances and beyond. CoRR,
abs/2403.14734.

11065

https://doi.org/10.48550/ARXIV.2403.17297
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://api.semanticscholar.org/CorpusID:269605484
https://api.semanticscholar.org/CorpusID:269605484
http://proceedings.mlr.press/v70/devlin17a.html
http://proceedings.mlr.press/v70/devlin17a.html
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.67
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.67
https://doi.org/10.48550/ARXIV.2211.15533
https://doi.org/10.48550/ARXIV.2211.15533
https://doi.org/10.48550/ARXIV.2406.08316
https://doi.org/10.48550/ARXIV.2406.08316
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2402.14830
https://doi.org/10.48550/ARXIV.2402.14830
https://doi.org/10.48550/ARXIV.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2307.13883
https://doi.org/10.48550/ARXIV.2307.13883
https://doi.org/10.48550/ARXIV.2307.13883
https://doi.org/10.1038/NATURE16961
https://doi.org/10.1038/NATURE16961
https://doi.org/10.48550/ARXIV.2403.14734
https://doi.org/10.48550/ARXIV.2403.14734

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai
Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang Sui.
2023a. Math-shepherd: Verify and reinforce 1lms
step-by-step without human annotations. CoRR,
abs/2312.08935.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 13484—13508. Association for Computational
Linguistics.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart Van Merriénboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Jiarong Wu, Lili Wei, Yanyan Jiang, Shing-Chi Cheung,
Luyao Ren, and Chang Xu. 2024. Programming
by example made easy. ACM Trans. Softw. Eng.
Methodol., 33(1):4:1-4:36.

Zonglin Yang, Li Dong, Xinya Du, Hao Cheng, Erik
Cambria, Xiaodong Liu, Jianfeng Gao, and Furu
Wei. 2022. Language models as inductive reason-
ers. arXiv preprint arXiv:2212.10923.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. ArXiv,
abs/2305.10601.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023a.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng,
Alexander J. Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. 2023b. Large language model as
attributed training data generator: A tale of diversity
and bias. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurlPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuangi Tan, and Chang Zhou. 2023. Scaling
relationship on learning mathematical reasoning with
large language models. CoRR, abs/2308.01825.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon
Brunner, Chen Gong, Thong Hoang, Armel Randy
Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kad-
dour, Ming Xu, Zhihan Zhang, Prateek Yadav, Na-
man Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu,
Qian Liu, Zijian Wang, David Lo, Binyuan Hui,
Niklas Muennighoff, Daniel Fried, Xiaoning Du,
Harm de Vries, and Leandro von Werra. 2024. Big-
codebench: Benchmarking code generation with di-
verse function calls and complex instructions. CoRR,
abs/2406.15877.

A Prompts Used in Case2Code

We demonstrate the prompts used during the
Case2Code synthesis, training, and evaluation as
follows:

* The prompt template for evaluating zero-shot
Case2Code performance of various LLMs is
listed in Table 6.

* We show the prompt for using LLMs as input
generators for synthesizing Case2Code data
in Table 7.

11066

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2312.08935
https://doi.org/10.48550/ARXIV.2312.08935
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.1145/3607185
https://doi.org/10.1145/3607185
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:258762525
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/ae9500c4f5607caf2eff033c67daa9d7-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877

* We randomly sample some Case2Code data
to demonstrate in Table 8.

11067

Prompt Template for Zero-shot Case2Code Evaluation.

{prompt}

Please write the correct names of arguments. As the function you implement will be
called by: {func_name}(**input_dict). Keep the original type. No need to convert
the output to string.

Table 6: Prompt template for zero-shot Case2Code evaluation. We inject {prompt} and {func_name} for each test
sample for evaluation.

Prompt for LLM Input Generator

Given the function, first analyze the types of the function arguments, then write
10 different example inputs for the function, each example should be a dict with
function arguments' names and their values.
Output format:
* Tpython
examples = [

dict(argname=argvalue),

Function:
* Tpython
def test_func(a: int, b: str) -> str:
return str(a) + b
Examples:
“ T python
examples = [
dict(a=1, b='a")
dict(a=2, b='b")
dict(a=3, b='c")
dict(a=4, b='d')
dict(a=5, b='e'),
b="'f")
b="g")
b='h')
b="1i")

dict(a=6,
dict(a=7,
dict(a=8,
dict(a=9, b= s
dict(a=10, b='j"),

Function:
** “python
{code}

Examples:

Table 7: Prompt for LLM input generator, we replace {code} with programs collected in for Case2Code.

11068

Case2Code Examples

Input: dict(s="abcba"”, center=2), Output: "(5, @, 4)"
Input: dict(s="abcdefg", center=3), Output: "(1, 3, 3)"
Input: dict(s="aba", center=1), Output: "(3, 0, 2)"
Input: dict(s="racecar"”, center=3), Output: "(7, 0, 6)"
Input: dict(s="madam”, center=2), Output: "(5, @, 4)"
Input: dict(s="abcabcabc”, center=4), Output: "(1, 4, 4)"
Input: dict(s="xyzyx", center=2), Output: "(5, @, 4)"
Input: dict(s="hello"”, center=2), Output: "(1, 2, 2)"
Input: dict(s="ab", center=0), Output: "(1, 0, 0)"

Input: dict(s="a", center=0), Output: "(1, @, @)"

Write a function that generates the output from the input.
Function: greatest_palindrome_size_odd

The function is:
* T python
def greatest_palindrome_size_odd(s, center):
right = center + 1
left = center - 1
size = 1
optimum_right = optimum_left = center
while left >= 0 and right < len(s):
if s[left] == s[right]:
size += 2
optimum_left = left
optimum_right = right
right += 1
left -=1
else:
break
return size, optimum_left, optimum_right

Arguments and results:

Input: dict(seq="ATCG", complementarity={'A': 'U', 'T': 'A', 'C': 'G', 'G': 'C'}),
Output: "'CGAU'"

Input: "ATCG", {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'}, Output: "'CGAT'"

Input: seq:"ACGT", complementarity:{'A': 'U', 'T': '"A', 'C': 'G', 'G': 'C'}, Output:
"'ACGU""

Input: "ACGT", {'A': 'T', 'T': 'A', 'C': 'G', 'G': 'C'}, Output: "'ACGT""

Please write a function to process the input arguments and produce the specified
outputs.

Start with the function:
reverse_complement

The function is:

* T python
def reverse_complement(seq, complementarity):
bases = list(seq)
bases = [complementarity[base] for base in bases]
reversed_complement = ''.join(bases)
return reversed_complement[::-1]

Table 8: Case2Code data examples.

11069

	Introduction
	Related Work
	Inductive Inference
	Synthetic Data

	Method
	Problem Formulation
	Framework Overview
	Collecting Programs
	Generating Inputs
	Obtain Outputs
	Post-processing

	Experiment
	Experimental Setup
	Zero-shot Case2Code is Challenging for Current LLMs
	Generalization of Training on Case2Code
	Direct Fine-tuning
	Mixed Training

	Ablation Study

	Conclusion
	Prompts Used in Case2Code

