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Figure 1: Given a single “source” image and a “single” driving image and the corresponding text descriptions, ImPoster
generates an image of the source subject performing driving action. We show how ImPoster is able to make a monkey and an
alien meditate and play violin.

Abstract
We present ImPoster, a novel algorithm for
generating a target image of a ‘source’ sub-
ject performing a ‘driving’ action. The inputs
to our algorithm are a single pair of a source
image with the subject that we wish to edit
and a driving image with a subject of an arbi-
trary class performing the driving action, along
with the text descriptions of the two images.
Our approach is completely unsupervised and
does not require any access to additional anno-
tations like keypoints or pose. Our approach
builds on a pretrained text-to-image latent dif-
fusion model and learns the characteristics of
the source and the driving image by finetun-
ing the diffusion model for a small number
of iterations. At inference time, ImPoster per-
forms step-wise text prompting i.e. it denoises
by first moving in the direction of the image
manifold corresponding to the driving image

followed by the direction of the image mani-
fold corresponding to the text description of the
desired target image. We propose a novel dif-
fusion guidance formulation, image frequency
guidance, to steer the generation towards the
manifold of the source subject and the driving
action at every step of the inference denois-
ing. Our frequency guidance formulations are
derived from the frequency domain properties
of images. We extensively evaluate ImPoster
on a diverse set of source-driving image pairs
to demonstrate improvements over baselines.
To the best of our knowledge, ImPoster is the
first approach towards achieving both subject-
driven as well as action-driven image person-
alization. The code and data are available at
https://github.com/divyakraman/ ImPosterDif-
fusion2024.
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1 Introduction

Monkeys seldom meditate! Neither do they play
the violin! Generative AI has enabled the creation
of images that cannot be easily enacted or pho-
tographed in real life. More often than not, ap-
plications such as animation, movie creation, etc,
require a particular subject performing a specific
action. For example, given a ‘source image’ of a
dog and a ‘driving image’ of a cat drinking water
from a mug, we might want to generate an image
of the dog drinking water from a mug in exactly
the same manner as the cat. Thus, the generated
dog needs to have the same identity as the ‘source
subject’. Its pose or the style with which it drinks
water from the mug needs to resemble the ‘driving
pose’, i.e. the pose of the cat in the driving image.
Consequently, the specific action depicted in the
generated image and the identity of the subject per-
forming the action are not arbitrary - rather, they
are dictated by the source and the driving images.

Prior work on the closely related problem of mo-
tion transfer (Zhao and Zhang, 2022; Tao et al.,
2022; Siarohin et al., 2021, 2019b; Shalev and
Wolf, 2022) condition on SMPL pose informa-
tion (Yoon et al., 2021), keypoints, etc in a su-
pervised/ unsupervised manner and train on large
datasets to transfer the action depicted by a subject
in a driving image or video to the subject in the
source image. Such methods however do not gen-
eralize well to arbitrary pairs of source and driving
images and often require a lot of data for training.
Thus, it is useful to develop an approach that can
directly work on a single pair of source-driving
images in a completely unsupervised manner.

Text is an excellent auxiliary modality to guide
the generation process, and the recent progress in
text-to-image diffusion models (Rombach et al.,
2022; Saharia et al., 2022a; Ho et al., 2022) mo-
tivates their usage for conreolled image gener-
ation. Prior work on personalized text-guided
image editing such as DreamBooth (Ruiz et al.,
2022), IMAGIC (Kawar et al., 2022b), custom dif-
fusion (Kumari et al., 2022), InstantBooth (Shi
et al., 2023), (Gal et al., 2023), ELITE (Wei et al.,
2023) and SUTI (Chen et al., 2023b) are able to
add a specific subject to the model while finetuning
the diffusion model to generate various actions dic-
tated by the text input. However, the user does not
have any control over the exact manner in which
they might like the subject to perform the action
in the generated image. For instance, a dog can

drink water from a mug in various ways - we want
the model to be able to generate a specific pose
corresponding to the action, as defined by the driv-
ing image. On the other hand, prior work such as
blended diffusion (Avrahami et al., 2022) and Dif-
fusionCLIP (Kim et al., 2022) are able to generate
a specific action and change the style of the image.
However, they are unable to make a source subject
perform a specific driving action.

Main contributions. We propose an algorithm,
ImPoster, for generating an image of a specific sub-
ject from a source image performing a specific ac-
tion described in the driving image. Given a single
source-driving image pair and the corresponding
text descriptions, our method can perform ‘body’
transformations to the source subject, as dictated
by the action depicted in the driving image. Our
method builds on a pre-trained text-to-image dif-
fusion model to perform test-time optimization/
inference and does not require any additional infor-
mation such as pose or keypoints. Our method, Im-
Poster , first learns the characteristics of the source
and the driving image by finetuning the pretrained
diffusion model on the source and driving corre-
sponding text-image pair. Our inference guidance
methods, which form the novel contributions of this
paper, enable the generation of the desired target
image:

1. Stepwise text prompting. ImPoster gener-
ates the desired target image of the source
subject performing the specific driving action
using a stepwise text prompting strategy. Since
geometric or structural information is much
harder to generate, ImPoster lays the founda-
tion for generating the driving action by first
moving towards the direction of the manifold
of the driving image. This step is followed by
switching directions and denoising by moving
in the direction of the text description corre-
sponding to the desired target image.

2. Image frequency guidance. While the step-
wise text prompting method provides a strong
prior for the driving action, it is insufficient
to generate an accurate image of the source
subject. To alleviate this issue, we delve into
the frequency domain representation of an im-
age, a powerful space for understanding how
the human brain interprets natural images (Op-
penheim and Lim, 1981; Xu et al., 2021; Yang
and Soatto, 2020; Yang et al., 2020). Moti-
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vated by guidance techniques (Ho and Sal-
imans, 2022; Bansal et al., 2023) in diffu-
sion models, we harness the amplitude map
of the Fourier transform of image features
and present frequency amplitude guidance to
preserve the characteristics of the source sub-
ject. In order to prevent the loss of the spe-
cific driving action (or structure) while extract-
ing source subject characteristics, frequency
amplitude guidance is complemented by fre-
quency phase guidance. This is inspired by
the fact that the phase of the Fourier transform
of an image is representative of its geome-
try and structure. Frequency amplitude guid-
ance and frequency phase guidance, termed
as frequency guidance, guide the diffusion de-
noising towards generating the source subject
performing the specific driving action.

We apply ImPoster on a wide variety of source-
driving image pairs on a curated dataset with 120
source-driving image pairs. ImPoster can make
an elephant read a book (described by a human
reading a book), a monkey meditate and perform
push-ups (described by a human performing medi-
tating and doing pushups), a teddy bear play guitar
(described by a human playing guitar), etc. We also
show the effectiveness of stepwise inference and
our frequency guidance method, along with qual-
itative and quantitative comparisons against prior
work metris such as CLIP Score, SSCD, DINO and
a new metric to quantify the alignment with driving
action, phase score, defined using the phase of the
Fourier transform.

In summary, the contributions of this paper are
as follows: (i) We formalize a novel task of gener-
ating images consistent with a source subject and
driving action; (ii) We propose ImPoster, a novel
diffusion models based method that can address
this pragmatic task; (iii) We curate a dataset of 120
source-driving image pairs; (iv) In order to quanti-
tatively establish the correspondence between the
generated image and driving action, we propose a
new metric ‘Phase score’ based on the phase of the
Fourier transform; (v) Finally, our exhaustive ex-
perimental results reveal large gains over baselines;
thereby setting a new benchmark for the task.

2 Related work

Exemplar image animation. A great amount of
literature has been dedicated to exemplar image
animation (Shalev and Wolf, 2022; Siarohin et al.,

2021, 2019b; Tao et al., 2022; Zhao and Zhang,
2022; Siarohin et al., 2019a, 2018; Tao et al., 2022)
transfer motion characteristics from a driving video
to a source image. These methods at the core of
them transfer motion at frame level from a driv-
ing frame onto the source image, similar to our
method. However, these models are restricted in
their domain to only human and almost always
require additional annotations like keypoints, 2D
poses, 3D poses or require computation of optical
flow.

Diffusion models for Text-based image editing/
personalization. Recent progress in generative
AI has shown promising results using diffusion
models (Nichol et al., 2021; Wang et al., 2022a;
Su et al., 2022; Sasaki et al., 2021; Saharia et al.,
2022a,b; Yang et al., 2022; Preechakul et al., 2022;
Zhang et al., 2023) for performing non-trivial op-
erations, such as posture changes and multiple ob-
jects editing. Text-based image editing and person-
alization approaches (Ruiz et al., 2022; Kawar et al.,
2022b; Kumari et al., 2022; Balaji et al., 2022; Gal
et al., 2023; Kothandaraman et al., 2023a; Huang
et al., 2023; Brooks et al., 2022; Kothandaraman
et al., 2024a; Zheng et al., 2022; Shi et al., 2023;
Zhang et al., 2022; Ma et al., 2023b; Gal et al.,
2022; Shi et al., 2023; Wei et al., 2023; Chen et al.,
2023b; Kumari et al., 2022; Han et al., 2023; Qiu
et al., 2023; Ma et al., 2023a; Xiao et al., 2023) add
a subject to the diffusion using a few images of the
subject followed by using text to manipulate the im-
age to obtain the desired output. The methods for
personalized or subject-driven based image editing
can be categorized into two broad categories. First
category of works (Ruiz et al., 2022; Kawar et al.,
2022b; Wei et al., 2023; Kumari et al., 2022; Gal
et al., 2023; Yang et al., 2022) perform fine-tune a
pre-trained model on a small number of images that
involve the subject and then perform inference op-
timization with the text depicting the action as the
input. While these methods are successful in gener-
ating images with the subject performing an action
depicted by the text, the user does not have con-
trol over the specific pose or imitable characteristic.
The second category of works (Shi et al., 2023;
Chen et al., 2023b) address the shortcomings of
fine-tuning the model and propose methods that are
purely based on inference-time optimization and
hence much faster. However, even they suffer from
the same drawbacks in not being able to give users
the control of the action depicted. Multi-concept
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Figure 2: Given a single source-driving image pair, ImPoster generates an image of the source subject performing the action
depicted in the driving image. ImPoster first finetunes the text-to-image diffusion model on the source-driving image pair. At
inference, ImPoster begins by first denoising in the direction of the driving image manifold followed by moving towards the
manifold corresponding to the desired target image. At every step of the inference, frequency guidance steers the generation of
an image with source subject characteristics and driving action.

customization methods (Kumari et al., 2022; Ma
et al., 2023a; Xiao et al., 2023; Han et al., 2023)
are not very effective either. For instance, one of
the closest works to ours is Custom Diffusion (Ku-
mari et al., 2022) that enable generating images
by fusing multiple concepts from multiple images.
However, this method is not well suited to generate
images involving concepts of actions.

Recent methods on motion customization (Wu
et al., 2023; Kothandaraman et al., 2024b; Chen
et al., 2023a) of diffusion models are able to trans-
fer the motion from a video to subjects. However,
these methods rely on temporal properties of videos
to tranfer the motion. Our problem statement is tan-
gential to video motion customization, wherein the
goal is to customize the action from an image.

Guidance methods for diffusion. Guidance
methods (Dhariwal and Nichol, 2021; Ho and Sal-
imans, 2022; Kawar et al., 2022a; Wang et al.,
2022b; Chung et al., 2022a; Lugmayr et al.,
2022; Chung et al., 2022b; Graikos et al., 2022;
Kothandaraman et al., 2023b) have been used to
control and guide diffusion denoising. One of the
first guidance methods is classifier and classifier-
free guidance (Dhariwal and Nichol, 2021; Ho and
Salimans, 2022) that reinforce the class of the ob-
ject in the generated image. Bansal et. al. (Bansal
et al., 2023) proposed universal guidance to guide
the generation using segmentation maps, sketches,
etc. Kothandaraman et. al. (Kothandaraman et al.,
2023b) proposed a mutual information based guid-
ance method to generate high fidelity images from
various viewpoint.

3 Method

Given a source image IS and a driving image ID,
ImPoster generates an image of the source subject

performing the driving action. We assume access to
the text descriptions txS and txD for the source and
driving images respectively. The text description,
txT , corresponding to the desired target image IT
is a modified combination of txS and txD. For ex-
ample, if txS is “A dog” and txD is “A cat drinking
water from a mug”, txT would be “A dog drinking
water from a mug”. We assume no access to any
training dataset, pose information (such as SMPL),
keypoints, etc. Our method is completely unsuper-
vised and works on a single source-driving image
pair.

An overview of ImPoster is as follows. To add
knowledge pertaining to the source and the driving
image, we finetune the diffusion model on IS and
ID using txS and txD, respectively. During infer-
encing, we begin by denoising by first moving in
the direction of the manifold corresponding to ID
followed by moving in the direction of the man-
ifold corresponding to txT . Such a mechanism,
which we term stepwise text prompting creates
a prior for pose information followed by denois-
ing to generate the desired subject performing the
action. Further, to reinforce the generation of an
image of the source subject performing the driving
action, at every inference step, we apply a novel
image frequency guidance strategy to explicitly
steer the denoising towards the desired driving ac-
tion and source subject characteristics. We now
turn to describe our method in detail.

3.1 Training
A pretrained text-to-image diffusion model such as
stable diffusion is trained on massive text-image
data. However, it does not contain information spe-
cific to the source and driving image. In order to
enable the diffusion model reconstruct IS and ID
from txS and txD, respectively, we finetune the
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diffusion model for ntr iterations on the source and
driving text-image pairs using the denoising diffu-
sion objective function (Ho et al., 2020). Specif-
ically, let θ denote the U-net parameters, L de-
note the denoising diffusion objective, and eS , eD
denote the text embeddings corresponding to the
source and driving texts. At each iteration i < ntr

of finetuning, we perform the following optimiza-
tions:

min
θ

0∑
t=T

L(f(xt, t, eS ; θ), IS),

min
θ

0∑
t=T

L(f(xt, t, eD; θ), ID).

(1)

3.2 Inference
3.2.1 Stepwise text prompting
A key question that we need to keep in mind while
developing an effective inference strategy is: How
should the noisy image be perturbed so that it better
corresponds with the driving action and the source
subject ? Moving in the direction of the driving
image manifold will ensure the reconstruction of
the driving action accurately, however, biased to-
wards the driving subject. Similarly, moving in the
direction of the source image manifold will ensure
the reconstruction of the source subject accurately,
however, biased towards the source action. The im-
age manifold corresponding to txT generally does
not contain the desired target image – i.e. given
txT , it is unable to generate the desired target im-
age by naive diffusion denoising. On one hand, a
pretrained diffusion model conditioned on txT is
inclined to generate a wide variety of images, most
not fully conformant with the specific character-
istics of the source subject as well as the specific
pose delineated by the driving action. On the other
hand, there could be a bias towards reconstructing
the source or driving image as well.

To solve the aforementioned issues, we propose
a stepwise inference strategy. Let the number of
inference steps be denoted by Ti. Starting from
random noise, we denoise using txD for the first K
iterations following by denoising using txT for the
next T −K iterations. This implies that the gen-
eration process begins by first moving towards the
driving image manifold followed by the manifold
corresponding to the target text. In the first few
iterations, the sampler denoises to reconstruct the
driving image, creating a strong prior for the driv-
ing action. In the subsequent iterations, denosing to

move towards the target text manifold ensures that
the generated image contains the source subject, as
dictated by the target text.

On one hand, the target text points towards the
driving action. On the other, denoising using txD
in the first few iterations creates a strong prior for
the structure of the generated image. This ensures
that the generated image has the driving action.
Note that we denoise with txD first followed by
txT and vice versa. Diffusion works by sequen-
tially denoising from random noise and is a slow
process i.e. the updates in each step are small.
Therefore, it is easier for the model to first gen-
erate the pose and then denoise to obtain subject
characteristics. It is much more difficult to modify
the pose than it is to modify the characteristics or
identity of the subject in the image.

Despite the stepwise inference strategy, the gen-
erated image might still contain certain character-
istics of the driving subject or source action. To
alleviate this issue, we propose a novel frequency
guidance method, which reinforces the model to
stick to the driving action and source subject at
every step of the generation process.

3.2.2 Frequency guidance
The frequency domain representation of an image
provides rich information (Oppenheim and Lim,
1981) about the image. The amplitude of the 2D
spatial Fourier transform of an image is represen-
tative of the intensities of different frequencies in
the image, and represents changes in the spatial
domain. It contains information about the geomet-
rical structure of features in the image. The phase
of the 2D spatial Fourier transform of an image
represents the location of these features which help
the human eye understand the image; it contains
information regarding the edges, contours, etc. It is
possible to reconstruct the grayscale counterpart of
an image with just its phase representation. The am-
plitude information, along with the phase, helps in
reconstructing the characteristics (colors, attributes,
texture, identity) of the scene entities. However,
the amplitude alone cannot generate a meaningful
image; phase information is very important.

In light of this, it can be inferred that the phase
of the Fourier transform of the driving image is
indicative of the driving action. Similarly, the am-
plitude of the Fourier transform of the source image
is indicative of the knowledge required to recon-
struct the source image. We use the Fourier domain
representation to guide the generation process. Fre-
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quency domain properties of an image propagate to
its feature space (computed by a neural network).
Hence, we can apply frequency guidance on the
latent feature representation space of stable diffu-
sion (Rombach et al., 2022). Classifier-free guid-
ance (Ho and Salimans, 2022) and universal guid-
ance (Bansal et al., 2023) mathematically derive
guidance as,

ϵ̃θ(zt, t) = ϵθ(zt, t) + s(t)×∇ztG. (2)

where zt is the denoised latents at timestep t, ∇ztG
is the gradient of the guidance function and s(t)
controls the strength of the guidance for each sam-
pling step. An appropriately weighted version of
this noise is subtracted from the latents computed
in the previous timestep to obtained updated la-
tents. Consequentially, rather than adjusting the
noise predicted by the diffusion model using the
gradients of the guidance function, we can directly
modify the computed latents using a suitable guid-
ance function using the gradient of the computed
amplitude and phase functions w.r.t. the latents. At
every step of the inference sampling process, we
modify the computed latents zt as,

z̃t = zt − sa ×∇ztGa − sp ∗ ×∇ztGp, (3)

where sa and sp are the scaling factors for the fre-
quency amplitude guidance and frequency phase
guidance functions, Ga and Gp, respectively. Note
that zt is computed using the noise predicted by
the diffusion model at each timestep. Ga is the
L2 distance between the amplitude of the gener-
ated latents and the amplitude of the latents of the
source image. Gp is the L2 distance between the
phase of the generated latents and the phase of the
latents of the driving image. Ga drives the genera-
tion towards the source subject at every step of the
sampling. Gp reinforces the driving pose at every
step of the sampling and prevents any distortion in
pose that may be caused by Ga.

4 Experiments and Results
Dataset and implementation details. Since
there is no dataset for this task, we collect a dataset
with 15 driving actions and 8 source subject, re-
sulting in a total of 120 source-driving image pairs.
The source subjects and driving actions are gen-
erated using Adobe Firefly. This dataset cura-
tion is inspired by prior papers that defined new
tasks in diffusion personalization such as Dream-
Booth (Ruiz et al., 2022)(30 subjects), Custom Dif-
fusion (Kumari et al., 2022)(5 concepts, 8 prompts

for the multi-concept setting), and Concept Decom-
position (Vinker et al., 2023)(15 pairs for applica-
tion 1, 13 concepts for application 2) and is also
comparable in size to these prior datasets. Con-
sistent with prior work, we generate results cor-
responding to 5 different random seeds for each
source-driving pair, resulting in a total of 600 im-
ages being used for all quantitative analysis.

We finetune the diffusion model for ntr = 500
iterations. We set sa to 1e− 6, sp = 1e− 3, k = 5
and T = 50. We use an image size of 512 × 512.
Our model takes about 51/2 minutes per image
pair on one NVIDIA RTX A5000 GPU. We use the
Stable Diffusion 2.1 model as the backbone. We
add LoRA (Hu et al., 2021) layers to the backbone
model for the finetuning step, the rest of the model
is frozen.

Qualitative results.

State-of-the-art comparisons. Closest related
to our work are image editing or personalization
approaches. The most recent and effective meth-
ods in this domain are DreamBooth (Ruiz et al.,
2022)(CVPR 2023) and Custom Diffusion (Kumari
et al., 2022)(CVPR 2023), inspired by which, we
compare with an enhanced baseline, Baseline++.
Baseline++ takes in a single source image and
driving image along with their corresponding text
prompts and finetunes the diffusion model (similar
to DreamBooth (Ruiz et al., 2022) + LoRA (Hu
et al., 2021)). Next, it uses a pragmatic combina-
tion of the text prompts corresponding to the source
and the driving image (txT ) to generate the target
image (similar to Custom Diffusion (Kumari et al.,
2022)).

We show comparisons with Baseline++ in Fig-
ure 3. Baseline++, due to bias issues with respect
to the pose in the source image, and inability to
effectively generate the driving action, is unable
to generate the source subject performing driving
action. In contrast, ImPoster holistically distils the
driving action and the characteristics of the source
subject through its stepwise text prompting and im-
age frequency guidance strategies to achieve a good
bias-variance trade-off and generate the source sub-
ject performing driving action.

Quantitative Results: Comparisons with Base-
line++ and Ablations In concordance with prior
work (Ruiz et al., 2022; Kawar et al., 2022b; Ku-
mari et al., 2022) on diffusion models for text-based
image editing/ personalization, we evaluate our
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Figure 3: ImPoster is able to successfully transfer the driving action to a source subject, while maintaining its characteristics.
In contrast, Baseline++ is unable to generate the driving action for the given source subject due to bias issues. Please see the
appendix for more results generated using ImPoster and comparisons with Baseline++.

Figure 4: ImPoster is able to successfully transfer the driving motion while retaining the characteristics of the source subject, and
achieves a better trade-off between driving action (CLIP/Phase score) and source subject (SSCD/DINO) than prior work, as also
evidenced by our qualitative results. Stepwise text prompting creates a prior for the driving action to enable the model generate
the driving action. The image frequency guidance formulations help the model in preserving the characteristics of the source
subject, while reinforcing the driving action.
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Figure 5: Ablations. Without stepwise text prompting, there is no prior for the driving action, which inhibits the model
from generating the driving action accurately. The frequency (amplitude and phase) guidance methods help in generating the
characteristics of the source subject (here, monkey) accurately - notice that there are changes to the color of the monkey (column
6), missing details in the fingers (column 4), changes in the size of the monkey (column 5).

method using the following quantitative metrics.
We compute the averages using all 600 generated
images. The results are in Figure 4.

1. Text alignment: We evaluate the alignment
of the generated target image with the tar-
get text using the CLIP score (Ruiz et al.,
2022). Higher CLIP scores indicate higher
alignment with text. Here, CLIP Score gives
us a broad overview of the alignment of the
generated image with the subject and action.
ImPoster achieves a far higher CLIP score
than Baseline++, indicating its ability to effec-
tively transfer the driving action to the source
subject.

2. Fidelity: We evaluate the fidelity of the sub-
ject in the generated target image the source
subject using self-supervised similarity met-
rics - SSCD (Pizzi et al., 2022) and DINO
scores (Caron et al., 2021). Baseline++ is un-
able to generate the driving action, and simply
replicates the source image. This results in
it having a higher value of SSCD and DINO
score than ImPoster, which is able to trans-
fer the driving action, as well as preserve the
characteristics of the source image.

3. Phase score: To evaluate the correctness of
the action or pose generated in the target im-
age (as dictated by the driving image), we
define a new metric called the phase score. As
per classical computer vision literature (Op-
penheim and Lim, 1981), the phase of the
Fourier transform of the image is indicative
of the action depicted in the image. We com-
pute phase score as the cosine similarity be-
tween the phase of the Fourier transform of
the driving image and the generated target
image. Higher cosine score indicates higher
similarity. ImPoster achieves a higher phase

score of 0.7529 as compared to Baseline++’s
phase score of 0.7515, indicating its ability to
transfer the driving action effectively.

Ablation analysis. a. Overall alignment with
driving action and source subject: ImPoster
achieves a higher CLIP score than all ablations,
indicating the usefulness of each component of our
model towards transferring the driving action to
the source subject, while preserving its character-
istics. The stepwise text prompting and frequency
guidance methods (including phase frequency guid-
ance and amplitude frequency guidance) are com-
plementary to each other and work in a holistic
manner to achieve the desired goal. b. Effective-
ness of stepwise text prompting: The stepwise
text prompting strategy provides a crucial signal for
generating the driving image, without which, the
model achieves an overall low CLIP score as well
as Phase score. Similar to Baseline++, the model
without the stepwise text prompting strategy has
a tendency to replicate the source image without
the driving action, resulting in a higher SSCD or
DINO score. c. Effectiveness of image frequency
guidance: Without the frequency guidance func-
tions, the SSCD and DINO scores drop, indicating
its effectiveness in preserving fidelity w.r.t. source
subject while transferring the driving action.

Please refer to the appendix for (i) more qualita-
tive results, (ii) failure cases.

5 Conclusions

We propose the usage of infusing text and image
frequency for the task of method for the image
generation task of subject-driven action personal-
ization. To the best of our knowledge, ours is the
first approach towards this task. Our method is
successful in achieving a wide range of image an-
imations such as making a monkey meditate and
play the violin, as also validated by our quantitative
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Figure 6: Failure cases. Our method is ineffective in a few cases - it is unable to make a rabbit perform yoga or dance, and a cat
perform yoga or meditate. We believe that this is due to bias-variance trade-off issues, that remain unresolved even after the
application of our stepwise text prompting and image frequency guidance strategies. Usage of stronger vision and language
backbones in the text to image generation pipeline, as they are made open-source to the community, can help the model disentagle
features of the image better to alleviate these bias-variance trade-off issues. Besides, further research on this problem can lead to
the development of newer methods that can help improve these results.

results on our curated dataset using various metrics,
including the newly proposed ‘phase score’. We
hope our paper inspires further research in the area.

6 Limitations and Future Work

While our method is able to execute large non-
trivial non-rigid pose transfers to specific subjects,
as defined by a driving image, it is still limited in
the ability of change that it can bring forth. For
instance, it is unable to make a rabbit or a cat do
yoga, indicating that there is scope for further re-
search. Another direction for future research, also
a widespread issue in the text-based image person-
alization literature, is the development of better
quantitative metrics for comprehensively measur-
ing subject fidelity and the desired edit. Since self-
supervised methods such as SSCD and DINO mea-
sure image-level similarity, they result in a high
value even if there is absolutely no action trans-
fer – this leads to inappropriate evaluation of the
models’ capability in performing the desired edit
(driving action transfer in our case), while main-
taining source subject fidelity. More directions for
future work including investigating our frequency
guidance strategy for other image editing and per-
sonalization applications, extension to video appli-
cations and scenarios that involve more than one
source subject or driving action in the scene.

Societal impact. Research on identification of

fake imagery is essential to prevent the malicious
use of our method.
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Figure 7: ImPoster is able to successfully transfer the driving action to a source subject, while maintaining its characteristics. In
contrast, Baseline++ is unable to generate the driving action for the given source subject due to bias issues.

Method CLIP Phase Score DINO SSCD

Baseline++ 0.2897 0.7515 0.5538 0.4517
ImPoster 0.3055 0.7529 0.3665 0.2903

Effectiveness of Stepwise text prompting: set k=0 0.2908 0.7516 0.5568 0.454
Effectiveness of image frequency guidance: set sa = 0, sp = 0 0.3046 0.7529 0.3633 0.2890

Effectiveness of image frequency (amp) guid. : set sp = 0 0.3052 0.7528 0.3632 2884
Effectiveness of image frequency (phase) guid. : set sa = 0 0.3062 0.7529 0.3629 2877

Table 1: ImPoster is able to successfully transfer the driving motion while retaining the characteristics of the source subject, and
achieves a better trade-off between driving action (CLIP/Phase score) and source subject (SSCD/DINO) than prior work, as also
evidenced by our qualitative results. Stepwise text prompting creates a prior for the driving action to enable the model generate
the driving action. The image frequency guidance formulations help the model in preserving the characteristics of the source
subject, while reinforcing the driving action.
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Figure 8: ImPoster is able to successfully transfer the driving action to a source subject, while maintaining its characteristics. In
contrast, Baseline++ is unable to generate the driving action for the given source subject due to bias issues.
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Figure 9: ImPoster is able to successfully transfer the driving action to a source subject, while maintaining its characteristics. In
contrast, Baseline++ is unable to generate the driving action for the given source subject due to bias issues.
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Figure 10: ImPoster is able to successfully transfer the driving action to a source subject, while maintaining its characteristics. In
contrast, Baseline++ is unable to generate the driving action for the given source subject due to bias issues.
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