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Abstract

This paper explores the task: Chinese spelling
correction (CSC), from a fine-grained perspec-
tive by recognizing that existing evaluations
lack nuanced typology for the spelling errors.
This deficiency can create a misleading impres-
sion of model performance, incurring an “in-
visible” bottleneck hindering the advancement
of CSC research. In this paper, we first cate-
gorize spelling errors into six types and con-
duct a fine-grained evaluation across a wide
variety of models, including BERT-based mod-
els and LLMs. Thus, we are able to pinpoint
the underlying weaknesses of existing state-of-
the-art models - utilizing contextual clues and
handling co-existence of multiple typos, asso-
ciated to contextual errors and multi-typo er-
rors. However, these errors occur infrequently
in conventional training corpus. Therefore, we
introduce new error generation methods to aug-
ment their occurrence, which can be leveraged
to enhance the training of CSC models. We
hope this work could provide fresh insight for
future CSC research.

1 Introduction

This paper studies the evaluation principle for Chi-
nese spelling correction (CSC), a fundamental task
in natural language processing to rectify all poten-
tial spelling errors in a Chinese sentence. Evalua-
tion plays a critical role in CSC research, where the
researchers are allowed to understand the way mod-
els behave and guide for further solutions. Due to
the profoundness of Chinese language, there are di-
verse misspelling variations in real human corpora.
However, existing benchmarks (Tseng et al., 2015;
Lv et al., 2023; Wu et al., 2023b) are constrained to
producing an overall score for all kinds of spelling
errors, providing a coarse reflection of models’ per-
formances. This deficiency incurs an “invisible”
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Phonological Error:
EC>F) REtydE.
A bite (>> house) of China.

Morphological Error:
ERUAL C> AL, FXAE, A
Full speed after (>> ahead) , twice result with half effort...

Non-similarity Error:
X T#RIE, TIHBEELK > #) 692,
The following statements are sensitive (>> true) about game engines.

Multi-typo Error:
WFREERE, KF > R)ME, LHER, HHEC>) HED.
Please... make (>> eat) regular... something easy to talk (>> digest).

Semantic Error:
SR (>>355) mA, RFAPFHEFEFER, RESEZRS
The multipreview (>> lingual) version offers multilingual services...

J

Figure 1: Samples of different types of spelling errors.

barrier that bottlenecks the progress of CSC re-
search. In this paper, we propose a fine-grained
evaluation principle, named FiBench-CSC, in the
hope of navigating the follow-up research.

We categorize the spelling errors in a Chinese
sentence to six distinct types. Figure 1 offers an
illustration of five of them. We first categorize the
errors by the way they are misspelled. Phonolog-
ical error and morphological error are the two
most common error types, stemming from pinyin
and stroke similarities inherent in Chinese charac-
ters (Liu et al., 2010). The former is caused by
users’ keyboard input or audio speech recognition,
while the latter is caused by handwriting. These
two types of errors are rich in the confusion sets,
which are used to generate synthetic errors on top
of monolingual sentences. We group the remaining
errors not conforming to any of these two types to
non-similarity error.

Second, we categorize the errors by the num-
ber of them within a single sentence, i.e. single
error and multi-typo error. The latter refers to
cases where there is more than one typo in one sen-
tence. Co-existence of multiple typos may largely
distort the context and create intricacy for correc-
tion. For example in Figure 1, there are two typos
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at the same time, where “/X & is misspelled to
“URE” and “JH 1L is misspelled to “JH 1. The
correction of the latter typo necessitates the correct
understanding of the former phrase “/UE #LE>,
which is disturbed by the typo “IXZE".

Third, we introduce contextual error. This
type of errors locally manifests as a correct phrase
within the sentence. However, their correction
strongly relies on utilizing contextual clues. For
example in Figure 1, “i& 5 (lingual) is misspelled
to “Tij&E" (preview), both of which are legitimate
Chinese words. Only if referring to the subsequent
context of “Z1& 5 k%5 (multilingual services),
can one figure out the final answer. The edit pairs of
contextual errors vary case by case and may not be
found in the confusion sets. Given that many CSC
models are constructed based on confusion sets,
correction of contextual errors can be a challenging
task, requiring much more than memorizing edit
pairs from the training corpus.

In FiBench, we reorganize the target dataset into
six subsets, each associated with one specific er-
ror type, thus allowing for an ever fine-grained
insight into models’ strengths and shortcomings.
Our paper unfolds as below. In §2, we conduct
a comprehensive FiBench evaluation choosing a
broad range of CSC models. While state-of-the-art
counterparts show adeptness in using phonological
and morphological clues, we pinpoint contextual
and multi-typo errors that they notably struggle
with. However, the contextual errors are sparse in
conventional confusion sets. In §3, we introduce
new methods for error generation to synthesize the
contextual and multi-typo errors given arbitrary
sentences with the assistance of LLMs. In §4, we
harness the new synthetic sentences to refine the
training of CSC models, and witness a blazer to
state-of-the-art performance by boosting the target
efficacy in specific errors.

2 FiBench

In this section, we scrutinize existing benchmarks
from a fine-grained perspective. The findings in
this section serve as the foundation for the subse-
quent methods and experiments in the paper.

2.1 Categorization Principle

Phonological & Morphological & Non-similarity
We obtain the phonological errors and morpholog-
ical errors by checking if the edit pair in the sen-
tences exists in the associated confusion set, while

LAW MED ODW
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Figure 2: Statistics of error types in six chosen domains.

categorizing the rest into non-similarity errors. The
confusion sets employed in our study are released
by Liu et al. (2022).

Contextual To obtain the contextual errors, we
check if the edit pair in the sentence can form a
legitimate word within the locality by referring a
fixed vocabulary. The logic behind is that if the
error cannot form a correct phrase, it can be easily
detected without referring to the context.

Single & Multi  We obtain the single and multi-
typo errors simply by counting the number of typos
in the sentence.

2.2 Datasets

We conduct experiments on two public datasets,
ECSpell (Lv et al., 2023) and LEMON (Wu et al.,
2023b). ECSpell is a small-scale CSC benchmark
with three specific domains: LAW (law) with 1,960
training and 500 test samples, MED (medical treat-
ment) with 3,000 training and 500 test samples,
and ODW (official document writing) with 1,728
training and 500 test samples. LEMON is an open-
domain CSC benchmark with a diverse set of real-
life spelling errors across multiple domains. In our
experiments, we choose three domains as represen-
tative: NEW (news title) with 5,887 test samples,
CAR (car) with 3,245 test samples, and ENC (en-
cyclopedia) with 3,274 test samples.

Figure 2 eventually demonstrates the statistics
of six error types in ECSpell and LEMON. From
our categorization principle, there will be overlap
of samples among each error subset.

2.3 Models and Methods

We span a broad range of CSC methods including
BERT-based models and LLMs.

BERT The pre-trained BERT (Devlin et al.,
2019) is the fundamental architecture to perform
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the CSC task in the way of sequence tagging.
Soft-Masked BERT  Zhang et al. (2020) apply a
GRU network as the additional detector and mask
the detected errors in the sentence softly to encour-
age the correction.

MDCSpell Zhu et al. (2022) design a paralleled
detector-corrector network to enhance the correc-
tion. The new detector network is initialized by
another BERT encoder.

CRASpell Liuetal. (2022) augment the original
sentence by introducing an additional typo in the
context and optimizing a smoothness loss (Jiang
et al., 2020; Wu et al., 2023a) on it.
Masked-Fine-Tuning Above counterparts
model CSC by sequence tagging. We apply the
masked-fine-tuning technique (MFT) to boost
the tagging process (Wu et al., 2023b), which is
designed to enhance the language modeling aspect
of CSC learning.

ReLM Rephrasing Language Model (ReLM)
(Liu et al., 2024) is a non-autoregressive language
model, which regards CSC as sentence rephrasing
on top of entire semantics.

LLM  Similar to ReLM, CSC is a sentence
rephrasing task for large language models (LLMs),
where they rephrase the sentence in an autore-
gressive manner. However, we find that gener-
ative models suffer from the over-paraphrase is-
sue. To address this, we use the prompt Detect
whether there are any misspelled words in
the sentence. If there are any, please
correct them. The important trick here is that the
model won’t do anything on the input sentence if
there are no errors detected, which we find useful
for reducing the above issue. We adopt Baichuan?2-
7b (Yang et al., 2023) in our experiments. We find
that applying masked-fine-tuning technique can
boost the performance of Baichuan2-7b. We also
instruct GPT4 (OpenAl, 2023) and Qwen2-72b
(Bai et al., 2023; ?) to perform this task through
in-context learning with 5 shots. For each sen-
tence, the in-context samples are uniformly chosen
from sentences into the same error type in the train-
ing set. The prompt we use is Please correct
the spelling errors in the given sentence,
ensuring that the modified sentence is the
same length as the original one. If there
are no errors in the sentence, please copy
it exactly as it is. We post-process the output
of the LLMs to obtain the corrected sentence.
Tagging vs. Rephrasing In the following paper,
we will use the term tagging models and rephrasing

models. It is worth noting that current CSC models
can be categorized into tagging and rephrasing, by
their training objectives. The former corresponds to
BERT, Soft-Masked BERT, MDCSpell, CRASpell,
while the latter corresponds to ReLM and a series
of autoregressive models.

2.4 Training Setup

For all the experiments of BERT-based models, we
adopt the pre-trained models open-sourced by Wu
et al. (2023b). Each model is trained on 34 million
synthetic pair-wise sentences from wiki2@19zh
and news2016zh. On ECSpell, we further fine-
tune each model separately on the three domains
for 5,000 steps with the batch size selected from
{32, 128} and learning rate from {2e-5, 5e-5}. Es-
pecially for fine-tuning Baichuan2, we set the learn-
ing rate to 3e-4 and use LoRA (Hu et al., 2022a)
with 7 = 8 and o = 32 to improve efficiency. On
LEMON, We evaluate each pre-trained model in
zero-shot learning on each LEMON domain.

2.5 Evaluation Result

Table 1 reports the performances of a line of CSC
models on ECSpell and LEMON.

Models show nice adeptness in addressing
phonological and morphological errors. From
results on ECSpell, We find that current state-of-
the-art models perform perfectly (f1 more than
0.95) on phonological and morphological errors
after domain-specific finetuning. We can also see
that these two types of errors are less challenging
for models under zero-shot learning, compared to
the other types. It indicates that the similarity clues
like pronunciations and shapes are rich in the train-
ing corpus for CSC models to fit the error model
(Wu et al., 2023b).

A performance disparity emerges when models
moving from addressing a single typo to multi-
ple typos.  For multi-typo errors, we find distinct
trends between fine-tuned models and zero-shot
models. Among the fine-tuned models, perfor-
mances of all BERT-based models drops slightly
when moving from addressing a single typo to mul-
tiple typos. This indicates that domain-specific fine-
tuning can help train a better language modeling,
making multi-typo errors less challenging. How-
ever,

, including ReLLM, which is considered
more powerful in language modeling. This indi-
cates a potential issue in conventional training pro-
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Phono. Morpho. Non-s. Single Multi Contextual Overall
BERTwmFr 99.1 99.0 97.1 98.2 934 94.9 94.0
Soft-Maskedmrr 99.7 99.0 99.9 99.4 97.0 97.0 96.0
MDCSpellvrr 99.1 99.9 99.9 99.1 97.0 94.9 97.1
EC-LAW  CRASpellyer 99.3 99.0 99.0 98.5 95.2 97.0 95.6
RelLM 99.9 99.5 96.2 98.8 96.4 98.0 95.6
Baichuan2 93.6 92.3 94.3 92.4 85.7 80.8 92.8
Qwen2-72b (5-shot) 85.7 85.9 74.0 84.7 62.6 59.1 72.7
GPT4 (5-shot) 77.7 82.6 80.5 80.2 56.1 56.2 76.6
BERTwmer 99.7 99.4 98.6 97.6 77.8 78.1 86.5
Soft-Maskedyirr 98.8 97.0 94.3 95.2 87.9 86.1 87.4
MDCSpellvrr 98.6 99.4 93.3 96.4 87.0 84.3 88.7
EC-MED  CRASpellyer 98.2 98.2 96.7 96.4 92.6 83.0 89.6
ReLM 98.4 97.3 97.6 98.3 90.3 74.9 89.9
Baichuan2 90.8 91.6 86.6 86.6 77.7 80.0 79.8
Qwen2-72b (5-shot) 73.2 78.5 80.4 77.8 63.9 58.4 59.7
GPT4 (5-shot) 74.5 80.4 74.9 77.1 62.1 59.9 66.4
BERTwmer 97.1 96.2 87.7 90.8 83.4 83.4 87.3
Soft-Maskedwrr 96.3 97.1 85.7 90.7 89.7 86.1 88.4
MDCSpellvrr 96.7 96.2 90.7 92.4 89.2 87.0 90.4
EC-ODW  CRASpellyrr 96.9 96.2 86.5 90.4 92.3 90.3 89.5
ReLM 97.1 97.1 88.6 92.4 91.3 89.4 91.6
Baichuan2 89.8 94.3 92.1 85.6 87.2 88.8 87.5
Qwen2-72b (5-shot) 94.9 93.3 80.3 87.7 81.9 80.6 81.8
GPT4 (5-shot) 87.1 83.9 75.5 76.6 71.6 61.8 73.3
BERTygr ! 71.3 72.0 45.0 63.9 11.3 49.3 56.0
Soft-Maskedyrr ' 71.8 72.1 42.8 64.0 10.8 50.4 55.6
LE-NEW MDCSpellyer 74.9 73.2 37.7 65.6 11.0 53.0 57.3
CRASpellygr 72.9 73.8 38.9 64.4 5.6 50.7 55.4
ReLM' 74.9 75.8 44.0 67.0 10.2 52.2 58.8
Qwen2-72b (5-shot) 64.4 69.2 48.3 60.0 42.7 553 57.4
GPT4 (5-shot) 69.1 70.5 50.5 64.7 41.8 67.7 63.4
BERTyrr ' 62.4 62.1 35.5 53.9 5.7 42.1 45.2
Soft-Maskedyrr ' 59.3 62.1 339 52.8 5.6 39.4 44.1
LE-ENC MDCSpellMpTT 63.8 66.7 33.7 54.7 7.3 414 46.1
CRASpellygr 62.8 68.1 39.2 56.8 4.9 433 47.6
ReLM' 63.1 63.4 414 56.5 33 39.8 47.6
Qwen2-72b (5-shot) 55.8 67.0 46.8 54.5 36.7 47.1 48.3
GPT4 (5-shot) 61.1 75.1 56.6 66.1 354 61.0 60.6
BERTyrr! 74.1 65.9 453 64.5 4.2 47.5 51.9
Soft-Maskedyer ' 73.6 67.4 47.1 64.5 7.6 46.8 522
LE-CAR MDCSpellMpTT 74.8 70.3 38.3 64.0 8.1 43.4 51.9
CRASpellygr 74.6 71.8 42.7 64.7 5.9 45.5 51.9
ReLM' 76.8 66.3 45.0 65.7 9.7 44.7 53.5
Qwen2-72b (5-shot) 55.7 61.7 40.2 49.5 304 44.6 45.5
GPT4 (5-shot) 65.0 61.3 52.0 61.7 33.2 50.1 56.5

Table 1: Fine-grained performances on ECSpel (EC-x) and LEMON (LE-x). We report the F1 score for each
error type and the overall F1 score on all sentences. “Non-s.” refers to the non-similarity errors. { refers to the
zero-shot performance of the corresponding models. The subscription MFT indicates that the model is trained using

masked-fine-tuning.

cess that researchers might overlook constructing
samples that contain multi-typo errors, resulting in
models’ inability during testing.

Contextual errors pose a consistent challenge in
every scenario. For finetuned models, contex-
tual errors remain challenging, particularly in the
domain of medical treatment (MED). On average,
the F1 performance on contextual errors drops by

7.1 points compared to the overall F1 score across
five BERT-based methods. However, for zero-shot
models, all of them struggle with contextual er-
rors. Correspondingly, their performance on non-
similarity errors also encounters a big decline. The
poor performance in handling non-similarity errors
and contextual errors from LEMON highlights the
importance of domain-specific knowledge and fea-
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tures for spelling correction. This indicates that
open-domain CSC is the greatest challenge cur-
rently faced by the community.

LLMs show potential in open-domain CSC,
but there is room for improvement in handling
phonological errors.  We find that the few-shot
performances of Qwen-72b and GPT-4 on ECSpell
are weaker than those of fine-tuned BERT-based
models. However, on LEMON, an open-domain
benchmark, their performances surpass those of the
BERT-based models, particularly in handling multi-
typo and contextual errors. This is mainly due
to their strong reasoning ability and the extensive
knowledge acquired during pre-training. Nonethe-
less, their performance on phonological typos is
weaker than that of BERT-based models, which are
trained on 34 million synthesized examples using a
confusion set. This fine-grained comparison sug-
gests directions for further open-domain CSC
research. For LLMs, incorporating phonological
similarity could enhance their performance in CSC.
Additionally, equipping BERT-based models with
more knowledge is crucial, and data augmentation
using LL.Ms can be a potential solution.

Based on Fibench, we have the following con-
clusions. Firstly, the performance of CSC models
fine-tuned on domain-specific data is quite high.
However, open domain CSC, which is more repre-
sentative of real-world applications, remains chal-
lenging and warrants further study. Secondly, exist-
ing CSC models exhibit deficiencies in address-
ing two specific types of errors, bottlenecking
their overall performance in practical applica-
tions. However, sentences that comprise contextual
and multi-typo errors are rare in typical training
sets. Therefore, there emerges a very need for meth-
ods to generate them artificially, which forms the
follow-up section.

3 Error Generation

In this section, we discuss the error generation
method to automatically generate contextual errors
with the assistance of the powerful lexical process-
ing capability of LLMs, as well as the synthesis
method to generate multi-typo errors.

3.1 Contextual Error

We design a three-step pipeline. Given a sentence,
we first tokenize it into words using the segmenta-
tion tool and randomly select one of them as the
target word. We prompt GPT4 to substitute the

You are a native Chinese speaker to modify the given sentence fol-
lowing the requirements below.

1. Change the word in ''<>'"" to a new word using the same number
of characters.

2. The new word in "'<>'"'is correct within the local context.

3. The new word in '"'<>" should induce a wrong or strange meaning
of the new sentence.

4. Do not change the other words outside of ''<>'"'.

Input:

WREASNABIL, TRAER-A<EF>,
Response 1:

WRESAKRBIL, TRAER—AD<HE>,
Response 2:

R ESMAABIL, TRAER—A<HKE>,

Verification:
You are a skilled Chinese writer. People admire you. I will give a
pair of sentences, please help me decide the following situations:

1. two sentences are in the same meaning, and they are both gram-

matically and contextually correct.

2. two sentences are in different meanings, but they are both gram-
matically and contextually correct.

3. two sentences are supposed to be in the same meaning, but either
is not grammatically and contextually correct.

Input 1:

WREASAABIL, TRAER-A<ETF>,
R ESRAKRBIL, TR —N<HE>,
Response 1:

2

Input 2:

WREASAKBIL, TRAER—AN<F>,
WREASAABIL, TRAER-A<KE>.
Response 2:

3

L )

Figure 3: Prompts we use to generate contextual errors.

target word for a new word. The prompt for sub-
stitution is shown in Figure 3. In this prompt, we
instruct GPT4 to follow two primary principles: 1.
the new word is still a legitimate Chinese word; 2.
the new word will introduce an unnatural semantics
to the entire sentence.

The first step is a tough task even for GPT4. It
is likely to solely paraphrase the given sentence
or introduce another word, potentially retaining
correctness while altering the original meaning. If
either of two situations occurs, we will acquire an
invalid sentence pair. To address this, we design
the second step to verify the validity of the output
sentence from the first step. As detailed in Figure 3,
we further prompt GPT4 to identify the relationship
between the output sentence in the first step and
the original one. Only if both sentences convey the
same meaning and one contains grammatical and
contextual error, do we keep this sentence pair.

LLMs like GPT4 lean to make somewhat unsta-
ble responses. To ensure reliability, we eventually
employ a ruled-based filter to verify if the new
word can form a legitimate expression by checking
its existence in a word vocabulary.

From Table 2, we can find that the generated
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Pin Mor Non-sim. Sin. Multi. Context.
LAW 46 4 141 74 58 132
MED 52 16 138 52 76 128
ODW 65 15 156 79 78 157

Table 2: Statistics of the generated contextual errors.

contextual errors contain more non-similarity and
multi-typo examples, which are also more chal-
lenging for CSC models. This demonstrates that
our error generation method can produce additional
training examples specifically designed to address
the weaknesses of current CSC models.

3.2  Multi-typo Error

We construct a distribution to synthesize multiple
typos in one sentence. Each typo can be any of a
contextual error, phonological error, or morpholog-
ical error. The last two errors are sampled from
the associated confusion sets, while the contex-
tual errors are generated using the prior method.
Given an arbitrary sentence, we introduce N ty-
pos in it. N follows the p-Binomial distribution
~ Binomial(n, p), where n is the number of char-
acters in the sentence. When N is determined,
specifically, we uniformly sample N positions in
the sentence and replace each of them with: 1. a
phonologically similar character 60% of the time;
2. a morphologically similar character 30% of the
time; 3. a character/word making a contextual error
10% of the time. This is due to the empirical fact
that contextual errors occur at a lower frequency in
real-world sentences.

4 Data Augmentation

In this section, we refine the existing datasets us-
ing the error generation methods introduced in § 3.
Based on the augmented data, we introduce several
effective training strategies to facilitate stronger
CSC models.

4.1 Strategy

We have observed that models fine-tuned on EC-
Spell exhibit a greater susceptibility to contextual
errors. Therefore, we randomly sample a propor-
tion of the target sentences in the training set and
generate new contextual errors on them. Given that
contextual errors occur less frequently in natural
language, excessive introduction of them may com-
promise the model’s overall performance. Hence,
we complement the training data with 100 new

LAW \ MED \ ODW
Con All Con All Con Al
RelLM A 980 956 749 899 894. 91.6
ReLM*®mn  100.0 96.4 87.7 90.7 959 92.1

ReLM*¥iKi 97.1 950 782 90.0 919 90.5

BERT 949 940 781 865 834 873
BERT*“™" 959 955 89.2 89.5 857 90.1
BERT*"™ 930 949 86.1 889 777 883

NEW | ENC | CAR
Mul Al Mul Al Mul Al

ReLM 102 588 33 476 97 535
ReLM*C¢T 187 586 129 483 22.0 543
ReLM*FS 157 56.6 141 462 154 52.1

Table 3: Results after data augmentation. “CT” refers
to continue-training and “FS” refers to few-shot.

samples with contextual errors for each domain
(~ 5% of original training samples). Additionally,
in § 3, we have conjectured that adaption to con-
textual errors strongly depends on domain-specific
signals. We prepare another 100 samples with con-
textual errors for comparison, where the target sen-
tences are sourced from Chinese wikipedia.

For open-domain CSC, models are pre-trained
on a large scale of pair-wise sentences without be-
ing fine-tuned on specific training sets. We thus
employ two strategies, continue-training and few-
shot learning. Instead of undergoing a new round
of complete pre-training, we choose to continually
train the model on refined sentences. Specifically,
we refine the synthetic pair-wise sentences from
wiki2@19zh (each already with one typo) by im-
posing random additional typos to them, and train
the prior model for another one epoch. Since the
sentence initially contains a typo, we set p for the
Binomial distribution to a lower value 0.001. An-
other more efficient approach is to construct a few
samples with highly concentrated errors to allow
the model to quickly adapt to the multi-typo error
type. We set p to 0.1 and generate 100 samples
with multi-typo errors. However, our experience
suggests that this rapid method can trade off the
performance on the rest error types.

4.2 Result

In this section, we conduct experiments on masked-
fine-tuned BERT and ReLLM, which are tagging and
rephrasing models respectively. The upper part of
Table 3 showcases the effectiveness of incorporat-
ing new contextual errors. Significant performance
improvement can be observed in the domains of
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Figure 4: The variation of F1 score with the local con-
text size. We choose EC-Med as the representative
domain

MED and ODW. For instance, on MED, the per-
formance on contextual errors of ReLM increases
from 74.9 to 87.7, which further results in the im-
provement of the overall performance. On the other
hand, we find that constructing contextual errors
using the general corpus doesn’t yield significant
benefit, which is consistent with our prior hypothe-
sis in § 3.

From the lower part of Table 3, we find that
continue-training enhances certain aspects of the
model in a more stable manner. For multi-typo
errors, the resultant ReLM gains a significant boost
from 10.2 to 18.7 on NEW, 3.3 to 12.9 on ENC,
and 9.7 to 22.0 on CAR respectively. On the other
hand, the improvement brought by few-shot learn-
ing is also notable. However, we find that it rapidly
deteriorates the overall performance. In our experi-
ments, each model has been fine-tuned for only 3
epochs on few-shot samples. This is due to the fact
that few-shot samples may significantly distort the
natural data distribution.

5 Further Analysis

5.1 Analysis of Contextual Errors

As discussed in Section 2, contextual errors present
significant challenges for CSC models. To ana-
lyze the impact of context on model predictions,
we truncate the local phrases surrounding the typo
and examine how varying the truncation window
size affects CSC models’ performance. Specifi-
cally, we symmetrically truncate the source sen-
tence by retaining only the 2n — 1 neighboring
words around the erroneous characters, then calcu-
late the F1 score for these truncated samples.
From Figure 4, we find unsurprisingly that per-
formance of all the models improve with the growth
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Figure 5: Left: Statistics of the number of typos in each
example. Right: Variation of performances (F1) with
the increasing number of typos. We choose LE-ENC as
the representative domain.

of context size. Meanwhile, ReLM, which sig-
nificantly outperforms the baseline model BERT-
Tagging, performs worse than BERT-Tagging when
the context size is below 9. This indicates that
ReLlM, with its rephrasing training objective, is
more dependent on the entire sentence for making
corrections rather than relying on the local words.

5.2 Analysis of Multi-typo Errors

For multi-typo errors, CSC models can be vulnera-
ble to contextual noise while making the correction
(Zhu et al., 2022; Liu et al., 2022). Furthermore,
we look deeper into the impact of the number of
typos co-existed in the sentence by grouping the
multi-typo errors by their numbers. Considering
that multi-typo errors with more than two typos are
sparse in the test sets of ECSpell, we supplement
them with additional samples generated using the
method described in § 3 to investigate the influence
of the number of typos in a single sentence.

The results are depicted in Figure 5. Intuitively,
all models experience a decline in performance
when the number of typos rises. Among tagging
models, CRASpell outperforms other counterparts,
suggesting that optimizing the smoothness loss dur-
ing training effectively allows the model to adapt
to multi-typo errors. We also find that continue-
training with more multi-typo errors can signifi-
cantly improve the performance on multi-typo er-
rors. The F1 score of ReLM keeps above 0.4 with
less than 4 typos in one sentence, which demon-
strates the effectiveness of our data augmentation
method.

5.3 Case Study

We further offer a closer look on concrete cases.
The case study comprises two parts. We first
demonstrate the newly generated sample (TRG)
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Case 1: synthetic contextual error

FHEARUFALR AT DT
e E Y ESTEPNC RN ST P

Case 2: synthetic multi-typo error

Fa iR AU A A VRIS A R P BATI A AL -
Fa a2 7 AR A A TE T A R # AT B0 -

Bad Case 1: exploiting contextual clues

HARRMEOG Y XN EAGAL . [SRC]
HARM OS] H LW R &KL . [TRG]
HhRERENGT £RWAEGAEL . [Original]
BARERENE T A L WA AL . [Augmented]
Bad Case 2: addressing multi-typo error
Rm A EGREEREENBARAAL .
B e ) REE RAERMNEARAAL .
Rm s HREERAEZNBAAL .
PR e REERBERMNBASRL.

[SRC]
[TRG]

[SRC]
[TRG]

[SRC]

[TRG]
[Original]
[Augmented]

Table 4: Case study.

given SRC by our methods. In case 1 (The cu-
mulative bond balance shall not exceed ten per-
cent of the company’s net assets), we synthesize
the contextual error “%& #” (lightning) — “ & 117
(accumulative). The correction of this error neces-
sitates the model not only to seek clues from the
context but also consider phonological similarity.
Case 2 (Intellectual property rights holders engage
in price discrimination in licensing contracts) con-
tains two typos, where the correction of the second
error “#F 7] 7 (license contract) — “#F 7% (promise
contract) is strongly dependent on the correction of
the first one “%#= 12 £ AL — “F= 18 * A (intellec-
tual property rights).

In the second part, we demonstrate the two cases
where the model could successfully address them
after undergoing data augmentation. In bad case 1
(First, trim the stray hairs around the eyebrows),
the original ReLM fails to detect the contextual
error “/8 &7 — “% 40", After fine-tuning on aug-
mented contextual errors, the augmented ReLM
can successfully address it. In bad case 2 (Persis-
tent and strenuous efforts have made us a leader
in the domestic market), the augmented ReLM suc-
cessfully detects the two typos.

6 Related Work

Enhancing CSC with External Signals To en-
hance the model performance, a large body of re-
cent CSC research focuses on introducing external
signals, e.g. phonological and morphological simi-
larity (Wang et al., 2019; Liu et al., 2021; Huang

et al., 2021; Sun et al., 2023; Liang et al., 2023),
negative samples (Li et al., 2022b), retrieval (Song
et al., 2023), auxiliary objectives (Liu et al., 2021;
Li et al., 2022a); another line of work focuses on
disentangling the detection and correction module
(Zhang et al., 2020; Zhu et al., 2022; Huang et al.,
2023). In contrast to these efforts, this work centers
on the foundation principles for CSC.

Foundation Study for CSC and Benchmark
Foundation study plays an essential role in the
research. Wu et al. (2023b) explore the two un-
derlying sub-models behind a general CSC model,
the error model and the language model. Liu et al.
(2024) discuss the primary training objective for
the CSC task. Jiang et al. (2024) furthers align the
CSC learning with language modeling. All these
studies let us better understand the basic mecha-
nism of CSC models. This paper focuses on the
evaluation principle and offers an ever fine-grained
perspective. Benchmarking is equally important.
Recently, many efforts offer new benchmark stan-
dards, e.g. IME (Hu et al., 2022b) for phonological
errors, ECSpell for multi-domain (Lv et al., 2023),
MCSC for medical-specialist errors (Jiang et al.,
2022), LEMON for open-domain CSC (Wu et al.,
2023b). A similar effort is Hu et al. (2022b), which
synthesizes a large number of errors by approxi-
mating the real error distribution. Yet, diverging
from their paths, this paper focuses on the refine-
ment of existing benchmarks with synthetic data.
It potentially skews the real error distribution as
we pitch that it is those lower-frequency errors that
pose the bottleneck of CSC models.

7 Conclusion

This paper identifies and categorizes spelling er-
rors in Chinese into various types. We conduct a
fine-grained evaluation across a broad spectrum of
CSC models in both finetuning and open-domain
benchmarks. The nuanced assessment offers a
clear view of each model’s strengths and weak-
nesses, especially for LLMs, which is crucial for
their practical application and future enhancement.
Additionally, we introduce automatic error genera-
tion methods specifically designed for contextual
errors and multi-typo errors where current mod-
els show notable vulnerability. We demonstrate
that continue-training on these augmented exam-
ples can enhance the corresponding aspect of CSC
models. We also study the impact of context and
number of typos to CSC models.
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8 Limitations

Our evaluation covers the most representative CSC
methods in recent years while does not encompass
all possible ones. Future work can further improve
the landscape of FiBench. Besides, the experimen-
tal results demonstrate the potential of LLMs in
open-domain benchmark and in certain aspects,
such as tackling multi-typo errors and processing
contextual signals. However, our paper primarily
focuses on BERT-based models, without deeper
exploration of LLMs. In the other hand, our study
uncovers several valuable future directions. Open-
domain CSC emerges as a notable challenge with
sparse exploration. Firstly, we long for effective
methods for handling negative transfer between
error types and domains. Secondly, we aim to
study how to complement the strengths of BERT-
based models in phonetic similarity, generation
stability, and efficiency with the powerful semantic
and knowledge capabilities of large language mod-
els (LLMs), achieving a synergy of their respective
advantages. Lastly, we long for greater diversity
in the training corpus to enhance the base models.
In this paper, we only consider the models trained
from the source of wikipedia.
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