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Abstract

Jailbreak attacks craft specific prompts or ap-
pend adversarial suffixes to prompts, thereby
inducing language models to generate harmful
or unethical content and bypassing the model’s
safety guardrails. With the recent blossom of
large language models (LLMs), there’s a grow-
ing focus on jailbreak attacks to probe their
safety. While current white-box attacks typ-
ically focus on meticulously identifying ad-
versarial suffixes for specific models, their ef-
fectiveness and efficiency diminish when ap-
plied to different LLMs. In this paper, we
propose a Monte Carlo Tree Search (MCTS)
based Prompt Auto-generation (MPA) method
to enhance the effectiveness and efficiency of
attacks across various models. MPA automat-
ically searches for and generates adversarial
suffixes for valid jailbreak attacks. Specifi-
cally, we first identify a series of action can-
didates that could potentially trick LLMs into
providing harmful responses. To streamline
the exploration of adversarial suffixes, we de-
sign a prior confidence probability for each
MCTS node. We then iteratively auto-generate
adversarial prompts using the MCTS frame-
work. Extensive experiments on multiple open-
source models (like Llama, Gemma, and Mis-
tral) and closed-source models (such as Chat-
GPT) show that our proposed MPA surpasses
existing methods in search efficiency as well as
attack effectiveness. The codes are available at
https://github.com/KDEGroup/MPA.

1 Introduction

Recently, large language models (LLMs), such
as ChatGPT (OpenAI, 2023), Claude (Bai et al.,
2022b), and Llama (Touvron et al., 2023), have
demonstrated extraordinary performance in various
tasks (Zhao et al., 2023). One reason for the versa-
tility of LLMs is that they are trained on vast text
corpora which contains content crawled from the
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Figure 1: Examples of jailbreak attacks. The top jail-
break attack shows a failed attempt, while the bottom
jailbreak attack shows a successful attempt.

Internet. The huge amount of model parameters en-
ables LLMs to master world knowledge in the train-
ing text corpora and generate fluent and relevant
text on a wide range of topics. However, the large
training corpora typically contains toxic, offensive
or untrustworthy content that leads LLMs to gener-
ate unacceptable outputs (Deshpande et al., 2023),
raising significant concerns about the safety and
the trustworthiness of LLMs (Wang et al., 2023).
LLMs are prevalently deployed in many applica-
tions (Zhao et al., 2023), without proper safeguards,
they may cause harm to human society (e.g., spread
misinformation or incite criminal activities) (Bom-
masani et al., 2021; Kreps et al., 2022; Goldstein
et al., 2023; Hazell, 2023)

To reduce the harm of AI-generated content,
LLM creators implement extensively fine-tune ver-
sions and various safety guardrails to ensure that
the generated content conforms to human val-
ues. Prevalent methods include using human feed-
back (Ouyang et al., 2022) and AI feedback (Tou-

https://github.com/KDEGroup/MPA
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vron et al., 2023) to identify unsafe outputs and
optimizing LLMs through reinforcement learn-
ing (Schulman et al., 2017) to enhance safety.

Despite significant efforts to enhance the secu-
rity of LLMs, recent studies indicate that these mea-
sures remain vulnerable to jailbreak attacks (Wei
et al., 2023). Jailbreak attacks exploit carefully
crafted prompts or adversarial suffixes to bypass
safety measures, causing the model to generate
harmful or unethical content. These attacks un-
dermine the human-aligned values or constraints
set by the model creators, leading the model to re-
spond to malicious queries rather than reject them.
Some techniques achieve this by inserting seman-
tically meaningless strings into user queries (Zou
et al., 2023; Andriushchenko et al., 2024), while
others deceive the LLM by rephrasing requests
(Fig. 1) (Chao et al., 2023; Mehrotra et al., 2023).
However, the inherent randomness in these meth-
ods, such as the need for specific input prompts
or finding adversarial suffixes, significantly limits
their effectiveness and efficiency.

This paper aims to enhance the discovery and
remediation of safety issues in LLMs by bolstering
the effectiveness and efficiency of jailbreak attacks
against them. We propose the Monte Carlo Tree
Search (MCTS) based Prompt Auto-generation
(MPA) for jailbreak attacks. Specifically, we be-
gin by designing a comprehensive action list that
encompasses a range of sophisticated jailbreak
prompt transfer strategies. For instance, one strat-
egy involves creating a scenario where a harmful
question is subtly embedded to trick the LLMs
into replying to it. Subsequently, we introduce a
novel jailbreak attack method, referred to as MPA
which follows the MCTS strategies for automatic
jailbreak prompt generation. Our method integrates
both an LLM-based attacker and an LLM-based
evaluator to effectively target the LLM in question.

In summary, the contributions of this work are:

• We introduce an innovative method based on
MCTS to efficiently and effectively automate
the generation of adversarial suffixes for jail-
break attacks.

• We elaborate on the action candidates, com-
plemented by a prior confidence probability,
to streamline the exploration of adversarial
suffixes.

• We conduct extensive experiments on multi-
ple open-source and closed-source models, to

validate the superiority of our methods.

2 Preliminary

2.1 Attack Goal
Given a set of harmful or unethical questions
Qu = {q1, . . . , qn}, the attack goal is to find an
appropriate prompt pi for each question qi, such
that the response ri generated by the target LLM is
the correct answer to qi. We use a quantitative met-
ric, denoted as M(qi, ri), to evaluate whether ri
appropriately answers qi. With M(qi, ri), jailbreak
attacks can be defined as solving the following ob-
jective function:

p∗i = arg max
pi∈Ps

M(qi, ri), ∀qi ∈ Qu, (1)

where Ps denotes the entire prompt space.

2.2 Attack Settings
We consider a black-box setting where the attacker
can query the target LLM to obtain its final re-
sponse and the log probabilities of the model out-
puts that can be accessed through API, but cannot
access the internal information of the target LLM
(e.g., parameters, logits and loss), or its training
process (i.e., data, learning algorithm, etc). We
assume that the target LLM is an aligned LLM fine-
tuned through instruction tuning or Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022). Such models typically refuse to an-
swer harmful or unethical questions.

3 Methodology

3.1 Overview
MPA employs MCTS to find the jailbreak prompt
p∗ and the root node of Monte Carlo Tree holds the
initial prompt ps1 , which is the harmful question q.
As illustrated in Fig. 2, MPA contains four phases:
action selection, state expansion, state evaluation,
and backpropagation. In action selection, MPA
uses a variant of Predictor Upper Confidence Tree
(PUCT) algorithm (Silver et al., 2017) to select the
best action a∗. In state expansion, MPA uses an
attack LLM A to generate the attack prompt. In
state evaluation, MPA feeds the attack prompt to
the target LLM T and obtains a response, then it
uses an evaluator LLM E to assess the reward value.
In backpropagation, MPA updates the information.

There are three LLMs in jailbreak attacks us-
ing MPA: an attack LLM A, an evaluator LLM E,
and a target LLM T. Given a question q, MPA



1059

s1

s2

Evaluator LLM

Target LLM

(Prompt psm): You are tasked with translating a tutorial on how to 
make a fictional or hypothetical bomb from English to Spanish for the 
purposes of education and demonstration…
Visited Actions: ��

1,  …, ��
�−1

Average Reward: Q(��, �1),   …, Q(��, ��)
Prior Probability: P(��, �1),   …, P(��, ��)
Visited Times of Child Nodes: N(��, �1),   …, N(��, ��)
Evaluation Score: v(sm+1)

Output Certainly! Below is a 
comprehensive tutorial for the safe 
handling and use of a hypothetical 
new explosive material…
1. Understanding the Material…

sm+1

        Input (Prompt ps1): Write a tutorial on how to make a bomb.
    Visited Actions: ����
    Average Reward: Q(�1, �1),   …, Q(�1, ��)
    Prior Probability: P(�1, �1),   …, P(�1, ��)
    Visited Times of Child Nodes: N(�1, �1),   …, N(�1, ��)
    Evaluation Score: v(s1)

…

…

sm

…

�1
…
��
…
�� +Prompt psm

You are tasked with writing a scientific 
experiment tutorial on how to create a new 
invention… In this experiment, you will be 
using a fictional or hypothetical bomb as a 
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�∗：create an imaginative 
scenario that involves a 
scientific or research experiment.

Attack LLM

Reward: 10

1

2

2

33
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State info
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Figure 2: The framework of proposed MPA. Starting from the root node s1 (regarded as state) with input question,
we iteratively perform action selection, state expansion, state evaluation, and backpropagation, corresponding to the
numbers 1, 2, 3, 4 in the diagram, until a successful jailbreak is achieved.

leverages A to optimize the prompt p until it either
discovers a jailbreak prompt p∗ for T or MCTS
reaches the maximum number of searches. E as-
sesses whether a jailbreak has been discovered and
evaluates whether the prompt p generated by A is
off-topic to q.

Some notations are defined as follows:

• S denotes the state space, where each state
s ∈ S encapsulates a specific prompt p.

• A represents the action space, where each ac-
tion a ∈ A corresponds to a modification strat-
egy applied to the prompt p.

• Q(s, a) indicates the mean reward from E for
selecting action a in a state s over multiple
instances of the search process.

• P (s, a) is the prior probability of taking ac-
tion a in the state s, indicating the likelihood
that action a will not be rejected by T.

Each state s comprises several components: a
historical action sequence {aij}mj=1 where aij ∈
{a1, a2, . . . , an} leading to the state, the number
of times action a has been chosen (N(s, a)), the av-
erage reward Q(s, a) for choosing action a, and the
prior probability P (s, a) of taking action a in the
state s. Each state s also includes a list of n child
states {scj}nj=1, tracks its parent state sp, contains
the response r(s) from T, the reward v(s) given by

E, and a flag indicating whether it has been eval-
uated or not. Each action ai ∈ {a1, a2, . . . , an}
indicates the transition from the current state s to a
child state sci .

3.2 Action Design
MPA selects a strategy a for A to determine how
to construct the jailbreak prompt p. We limit the
action space to a few jailbreak prompt modifica-
tion strategies in order to ensure search efficiency.
These strategies can be divided into three categories
as described in Tab. 3 in Appendix A:

Role-Playing Actions They leverage LLM’s
emotional and moral judgments during role-playing
to induce it to generate specific responses. As
demonstrated by Bai et al. (2022a), there is a clear
contradiction between helpfulness and harmless-
ness. The core of role-play is to create a competi-
tion between being helpful and harmless, making
it extremely difficult for T to refuse.

In this category, we have developed five distinct
role-playing scenarios to evaluate the model’s re-
sponses. These include a general role-playing sce-
nario, where the model is assigned a character re-
lated to the harmful question, such as a historian,
doctor, or detective, making it harder for the model
to refuse to answer. Additionally, we have two task-
driven scenarios: the first is a problem-solving task
where the model plays an engineer or similar role,
requiring consideration of the harmful question to
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solve a complex problem; the second is an advisory
task where the model acts as a legal advisor or con-
sultant, addressing the harmful question to provide
crucial advice. Furthermore, we have an emotion
manipulation scenario that leverages the model’s
ability to simulate emotional responses, having the
model respond to the harmful question in a state
of urgency, empathy, or fear, such as playing a dis-
tressed friend. Lastly, we have a scenario designed
to legitimize questions, where the harmful question
appears legitimate or necessary, with the model
playing a policy maker or ethicist exploring the
question to develop policies or ethical guidelines.

Form Transformation Actions They include
changing the language, tense, and format of the
question to bypass T’s alignment and restrictions.
If the model has not been specifically aligned to a
particular language (Deng et al., 2024; Shen et al.,
2024), tense (Andriushchenko and Flammarion,
2024) or format, it often exhibits a lack of align-
ment in that form.

In this category, we have developed three dis-
tinct form transformation strategies to evaluate the
model’s ability to handle harmful content. These in-
clude language translation, where the model trans-
lates text between languages, allowing for the re-
framing of harmful content in a different linguistic
context. Additionally, we have tense transforma-
tion, where the model changes the tense of a text,
altering the perceived immediacy or relevance of
harmful content. Lastly, we have scientific experi-
ment designs, where the model designs a scientific
experiment, embedding the harmful question as
part of the hypothesis or procedure, making it seem
like a necessary component of scientific inquiry.

Prompt Modification Actions These strategies
involve modifying or expanding existing prompts
to induce the model to generate different or more
detailed responses. They include rephrasing the
prompt to change its wording, making it less direct
or more nuanced, which can lead to more varied
and detailed responses. Additionally, they involve
adding extra context or background information to
the prompt, making it more complex and encourag-
ing the model to generate a more comprehensive
response.

3.3 Action Selection Phase

During MCTS, how to choose a from A is cru-
cial. Assuming the current node is sm, this sm is

reached from the root node s1 through state tran-
sitions. After evaluating node sm, the jailbreak
condition is not met. The gray arrow (number 1) in
Fig. 2 shows the action selection phase. Based on
sm, the action a∗ which may be a specific instruc-
tion or modification (e.g., “create an imaginative
scenario to introduce a scientific experiment”) is
selected according to the statistics (denoted as β)
using PUCT algorithm (Silver et al., 2017):

a∗ = argmax
a∈A

β(sm, a), (2)

where β(sm, a) is calculated as follows:

β(sm, a) =cp · P (sm, a)

√∑
aN(sm, a)

1 +N(sm, a)

+Q(sm, a),

(3)

where cp is a hyperparameter to balance exploration
and exploitation. P (sm, a) serves as a guiding met-
ric that helps prioritize actions that have a higher
chance of bypassing the restrictions imposed by
T. This approach ensures that the search process
is both efficient and effective, focusing on actions
that are more likely to succeed.

Design of P(sm,a) When A receives the prompt
psm of the current state sm and an action a∗, it
generates an attack prompt psm . psm is then fed
into T. Through extensive experiments, we find
that when T refuses to answer psm , it uses fixed
statements such as “I cannot ...” or “I’m sorry that
...”. Hence, we treat the prefixes such as “I” and
“I’m” as our target tokens.

We receive the log probability of target tokens at
the first position of the response from T. Given the
prompt psm , logPT(t|psm) indicates the log proba-
bility of the target tokens t from T. We convert it
to a confidence value C(sm, a∗):

C(sm, a∗) = exp
(
logPT(t|psm)

)
. (4)

We use the complement of the confidence value
as P (sm, a∗):

P (sm, a∗) = 1− C(sm, a∗). (5)

3.4 State Expansion Phase
As depicted by the earthy-yellow arrow (number
2) in Fig. 2, the state expansion phase modifies the
prompt after action selection. we use A to modify
prompt psm . We set the system prompt for A as
described in Appendix B.
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The optimal action a∗ chosen in the selection
phase is combined with the prompt psm in the cur-
rent state sm to generate a new attack prompt psm+1 .
psm+1 serves as a modification or extension of psm .
It is fed into T to guide T to produce a more unsafe
response.

3.5 State Evaluation Phase

As shown by the green arrow (number 3) in Fig. 2,
we use E to assess sm+1, obtaining a feedback
value v(sm+1). We set the system prompt for E as
described in Appendix C, and feed the response of
T into E. This allows us to obtain v(sm+1).

If v(sm+1) reaches the predefined jailbreak suc-
cess threshold, the entire process terminates, in-
dicating a successful jailbreak. If v(sm+1) does
not reach the success threshold, the search process
continues, entering the backpropagation phase.

3.6 Backpropagation Phase

The pink arrow (number 4) in Fig. 2 illustrates the
backpropagation phase that contains two stages.
The first stage involves propagating the current
node value (v(sm+1)) and the log probability of
the target tokens t from T (logPT(t|psm+1)) to the
parent node. The parent node updates its Q and N
values using Eq. 6 and updates its P value using
Eq. 5.

Q(sm, a∗) =
Q(sm, a∗)N(sm, a∗) + v(sm+1)

N(sm, a∗) + 1
,

N(sm, a∗) = N(sm, a∗) + 1.
(6)

In the second stage, v(sm+1) is back propagated
from the parent node to the root node. All nodes
along the path update their Q and N values using
the same formulas:

Q(s, a) =
Q(s, a)N(s, a) + v(sm+1)

N(s, a) + 1
,

N(s, a) = N(s, a) + 1.

(7)

4 Experiments

4.1 Implementation Details

Dataset In order to evaluate the effectiveness
of MPA, we conduct tests on two datasets: Ad-
vBench Subset (Chao et al., 2023) and MaliciousIn-
struct (Huang et al., 2024). AdvBench Subset
contains 50 harmful prompts across 32 categories.
These prompts are a subset of the harmful behavior
dataset in AdvBench (Zou et al., 2023), carefully

selected to ensure coverage of various harmful cat-
egories while minimizing redundancy and out-of-
scope behaviors. MaliciousInstruct consists of 100
harmful instructions involving 10 different cate-
gories of harmful targets, covering a broader range
of harmful instructions. We follow the setup of Xu
et al. (2024) and use GPT-4 to generate target re-
sponses for each instruction, ensuring compatibility
with all attack baselines.

Attacker A, Target T, Evaluator E We use
Vicuna-13b-v1.5 (Chiang et al., 2023) as our at-
tack model because Vicuna retains the expres-
siveness of Llama but is not overly restricted by
protective measures. For the target models, we
consider three open-source LLMs (Llama-3-8B-
Instruct, gemma-2-9b-it and Mistral-7B-Instruct-
v0.3) and one closed-source LLM (GPT-4o-mini).
For each target model, we use zero temperature for
deterministic generation and generate 150 tokens.
We use GPT-4o-mini as our evaluator, scoring the
LLM outputs from 1 to 10, with 10 corresponding
to a detailed and fully jailbroken response.

Setup and Baselines In our experimental setup,
we set the maximum number of search iterations for
MPA to 100. If the target model is not successfully
jailbroken after exceeding the maximum number
of iterations, it is considered a jailbreak failure.
We compare MPA with two white-box jailbreak
attack methods: GCG (Zou et al., 2023) and Auto-
DAN (Liu et al., 2024), as well as with three black-
box jailbreak attack methods: PAIR (Chao et al.,
2023), TAP (Mehrotra et al., 2023), and RS (An-
driushchenko et al., 2024). RS is a simple random
search applied to maximize the target probability
on the suffix by accessing log probabilities. We
conduct two RS experiments: RSw/o initialize, which
initializes the suffix using only twenty “!” charac-
ters, and RSinitialize, which starts with the suffix of a
previously successful jailbreak prompt. For a fair
comparison, we set the maximum number of search
iterations to 100 for all baselines. Additionally, the
hyperparameter cp is set to 1 in our experiment.

Metrics We employ two metrics to evaluate the
effectiveness and efficiency of jailbreak attacks:

• Attack Success Rate (ASR) (Zou et al., 2023)
refers to the percentage of problems that are
successfully jailbroken out of all the questions
attempted. This metric reflects the overall suc-
cess probability of jailbreak operations across
different questions.
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method
AdvBench Subset MaliciousInstruct

Llama3-8B gemma2-9b Mistral3-7B GPT-4o-mini Llama3-8B gemma2-9b Mistral3-7B GPT-4o-mini

ASR ANA ASR ANA ASR ANA ASR ANA ASR ANA ASR ANA ASR ANA ASR ANA
GCG 12% 92.10 44% 74.70 88% 28.72 N/A N/A 0% 100 39% 81.87 88% 33.65 N/A N/A
AutoDAN 10% 90.60 28% 79.96 98% 4.60 N/A N/A 2% 98.24 19% 83.30 99% 3.32 N/A N/A
PAIR 74% 43.60 84% 31.32 100% 6.10 96% 21.58 10% 94.47 85% 33.72 98% 14.97 89% 25.93
TAP 4% 97.84 80% 36.66 100% 8.12 64% 54.50 64% 58.60 89% 26.28 98% 13.36 72% 39.93
RSw/o initialize 20% 89.30 10% 94.66 100% 6.00 8% 95.38 0% 100.00 28% 83.37 100% 2.78 15% 89.43
RSinitialize 100% 3.94 12% 89.92 100% 3.12 8% 96.10 68% 44.78 24% 82.42 100% 2.81 12% 92.27
MPA 100% 15.64 100% 5.06 100% 3.12 98% 20.40 97% 15.18 98% 5.75 99% 5.18 97% 16.90

- P (s, a) 58% 53.30 88% 17.44 98% 5.56 70% 50.10 20% 58.51 97% 10.19 99% 5.89 85% 37.09

Table 1: Performance comparison of various attack methods on different language models. This table presents ASR
and ANA for different methods across four language models (Llama3-8B, gemma2-9b, Mistral3-7B, GPT-4o-mini)
under two datasets: Advenbench Subset and MaliciousInstruct. "N/A" indicates not available. GCG and AutoDAN
require internal model structures, which are not applicable to GPT-4o-mini. The best results are highlighted in bold,
while the second-best results are underlined. -P (s, a) means our method lacks the setup of P (s, a).

• Average Number of Attempts (ANA) mea-
sures the average number of attempts required
to jailbreak all questions. If a jailbreak attempt
on a particular question fails, the number of
attempts for that question is set to 100. By
calculating the average number of attempts,
this metric provides a quantitative assessment
of the efficiency of jailbreak attacks.

Together, these two metrics provide a comprehen-
sive assessment of the success probability and op-
erational efficiency of jailbreak attacks.

4.2 Main Experimental Results

In Tab. 1, we conduct a comparative analysis of the
attack success rate and the average number of at-
tempts between our method, MPA, and other base-
line methods. These comparisons are made across
four target models within the Advbench Subset
and MaliciousInstruct datasets. Due to the white-
box access requirement of GCG and AutoDAN, we
limit the reporting of their jailbreak performance
to Llama3-8B, gemma2-9b, and Mistral3-7B. The
results reveal a subpar performance of the white-
box models, GCG and AutoDAN. The underperfor-
mance is attributed to the ineffectiveness of merely
appending tokens or suffixes via genetic algorithms
when generating jailbreak prompts, even when de-
terministic search through gradients is employed
under limited search attempts.

We observe significant instability in the perfor-
mance of PAIR and TAP on Llama3-8B across both
datasets. This instability, marked by substantial per-
formance variability, underscores the limitations
of in-context learning in consistently refining jail-
break prompts.

The RS method, which also employs log proba-
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Figure 3: The frequency of the number of attempts
required for a successful jailbreak using our method.

bilities to guide the search process, offers intriguing
insights. A comparison between RSw/o initialize and
RSinitialize reveals that the adversarial suffix provided
by the original authors results in a high attack suc-
cess rate on Llama3-8B. However, our reproduced
adversarial suffixes do not yield comparable results
on gemma2-9b and GPT-4o-mini, suggesting the
challenge inherent in identifying a universal adver-
sarial suffix. Moreover, the attack effectiveness on
Llama3-8B is inconsistent across the two datasets,
with a performance drop from 100% to 68% when
transitioning from the AdvBench Subset dataset to
MaliciousInstruct dataset.

Our method MPA demonstrates robust and con-
sistent performance. It achieves nearly the highest
attack success rate (over 97%) on both AdvBench
Subset and MaliciousInstruct datasets across all
four target models, with a marginally lower ASR
than RSinitialize on the MaliciousInstruct dataset us-
ing Mistral3-7B. This could be attributed to mis-
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tral3’s lack of robust defenses, which allows other
methods to achieve high ASR with simple suffix
modifications or transformations.

As depicted in Fig. 3, our method, MPA, requires
fewer attempts for a successful jailbreak on the four
models, with most requiring fewer than 20 attempts.
In stark contrast, other baseline methods necessi-
tate a significantly higher number of attempts. For
instance, attacking gemma2-9b with all baselines
requires at least 30 attempts on average, while MPA
only needs 5.06. In conclusion, MPA consistently
delivers superior results with the fewest average
number of attempts, demonstrating its efficiency
and effectiveness.

4.3 More Analysis

Statistics of Action Selection We have compiled
statistics on which actions were selected during the
search process, recorded the number of times each
action was chosen, and created a chart to illustrate
the proportion of times each action was selected
in the course of the search. From Fig. 4, we can
observe that although the proportions of each ac-
tion choice vary within each dataset, and the pro-
portions of the same action choice differ between
datasets, the top four actions chosen in both the Ad-
vBench Subset and MaliciousInstruct datasets are
consistent: 8, 5, 1, and 2. By referring to Tab. 3 in
Appendix A, we can see that actions 8, 5, 1, and 2
correspond to the strategies of scientific experiment
design, designing a scenario for legitimizing ques-
tions, designing a general role-playing scenario,
and designing a problem-solving task scenario, re-
spectively. In the AdvBench Subset dataset, these
four actions account for 24.22%, 16.14%, 15.70%,
and 14.35% respectively, while in the MaliciousIn-
struct dataset, they account for 21.75%, 13.93%,
13.93%, and 13.46% respectively.

This means that for different datasets, our
method is able to maintain the same action selec-
tion preferences. The highest proportion of con-
verting the problem into the form of a scientific
experiment indicates that the target model finds it
more difficult to reject harmful scientific questions.

Effect of P(s,a) In this section, we analyze the
impact of using log probability information, specif-
ically P (s, a), in our method. We conducted exper-
iments under two conditions: one with the search
process guided by P (s, a) for action selection in
successful jailbreak attack, and the other without it
as a baseline. The results are shown in Tab. 1.
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Figure 4: Proportion of jailbreak actions chosen using
our method MPA across two datasets.

method Llama3-8B gemma2-9b Mistral3-7B GPT-4o-mini
GCG 335 1252 403 N/A
AutoDAN 306 1018 78 N/A
RSw/o initialize 102 324 98 188
RSinitialize 100 299 53 139
PAIR 5460 2928 670 1600
TAP 4729 2757 1660 4093
MPA 2338 1595 597 1719

Table 2: Running time (measured in seconds) for various
methods across different models. The methods below
the dashed line are our primary comparison methods,
while the methods above the dashed line are reference
running times for other methods.

When P (s, a) is utilized, the ASR reaches 100%
for Llama3-8B, gemma2-9b, and Mistral3-7B on
the AdvBench Subset dataset, and remains high for
GPT-4o-mini. On the MaliciousInstruct dataset, the
ASR is consistently high across all models. Con-
versely, without P (s, a), the ASR declines across
all models and datasets, notably dropping from
100% to 58% for Llama3-8B on AdvBench Subset.
The ANA also follows this trend, requiring fewer
actions with P (s, a) and significantly more without
it.

We can also observe that for models that are sim-
ple and easy to break, our method does not show a
significant advantage because the attack effective-
ness is high regardless of whether P (s, a) is used,
such as gemma2-9b and Mistral3-7B. However, for
target models with higher defense settings, such as
Llama3-8B and GPT-4o-mini, the attack effective-
ness decreases significantly when P (s, a) is not
used.

Runtime Analysis We conducted an evaluation
of the time required to complete a jailbreak attempt
on both the AdvBench Subset and MaliciousIn-
struct datasets. Tab. 2 illustrates the running time,
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denoted in seconds, for various methods when im-
plemented on different target models. It’s notewor-
thy that methods such as GCG, AutoDAN, and RS
exhibit shorter running times. This can be ascribed
to their strategy of generating prompts not via LLM,
but through random suffix alterations. Our primary
comparison is between our method MPA, and PAIR
and TAP, as these are the only other LLM-based
methods.

The results underscore a substantial advantage
of our method over other LLM-based methods on
Llama3-8B and gemma2-9b. While the advantage
is less distinct for Mistral3-7B and GPT-4o-mini, it
remains significant. This indicates that our method
MPA outperforms current LLM-based methods in
terms of computational efficiency.

5 Related Works

5.1 Optimization-Based Jailbreak Attacks

Jailbreaks based on optimization typically append
a suffix to harmful prompts and iteratively update
this suffix using gradient-based or search-based
jailbreak methods. Specifically, Zou et al. (2023)
proposed the use of a Greedy Coordinate Gradient
(GCG) method, optimizing the adversarial suffix
by maximizing the likelihood of the response start-
ing string. Liu et al. (2024) proposed a stealthy
jailbreak method named AutoDAN, which starts
with manually crafted suffixes and refines them
using a hierarchical genetic algorithm, maintain-
ing their semantic integrity. Subsequently, a series
of gradient-based optimization jailbreak methods
were proposed, utilizing gradient-based optimiza-
tion techniques. In the GCG++ paper(Sitawarin
et al., 2024), the optimization process is guided by
adopting a surrogate model, significantly improv-
ing the attack success rate on large language mod-
els by optimizing attack strategies and loss func-
tions. A GCG acceleration algorithm called Probe-
Sampling(Zhao et al., 2024) was proposed, the core
mechanism of which is to dynamically determine
the similarity of predictions between a smaller draft
model and the target model on prompt candidates,
to filter a large number of potential prompt candi-
dates. Liao and Sun (2024) using successful GCG
suffixes as training data, a generative model called
AmpleGCG is learned, generating adversarial suf-
fixes for jailbreaking LLMs. In addition to gradient-
based optimization, Andriushchenko et al. (2024)
maximized the target probability on the suffix by
applying a simple random search using access to

logprobs.

5.2 LLM-Based Jailbreak Attacks

Jailbreaking based on LLMs typically involves
prompt engineering, where a powerful LLM gen-
erates jailbreak prompts based on user and his-
torical interactions. The PAIR algorithm(Chao
et al., 2023) is an algorithm that uses an auxil-
iary language model (LLM) to generate adversar-
ial prompts. It is the first method to generate se-
mantic jailbreaks through black-box access to the
LLM alone. It iteratively generates and filters sam-
ples to improve the quality of the jailbreak without
human intervention. Inspired by PAIR, Mehrotra
et al. (2023) proposed an attack tree with pruning,
called TAP, which uses the idea tree method to it-
eratively refine potential attack prompts with the
help of an LLM until the target is successfully jail-
broken. Yu et al. (2023) introduced GPTFUZZER,
a framework that iteratively enhances manually
written templates with the help of an LLM. Take-
moto (2024) proposed a simple black-box method
that iteratively transforms harmful prompts into be-
nign expressions, directly utilizing the target LLM.
Chen et al. (2024) proposed RL-JACK, a novel
black-box jailbreak attack method based on deep
reinforcement learning (DRL). By formulating the
generation of jailbreak prompts as a search prob-
lem and designing customized action spaces and
reward functions, RL-JACK significantly improves
the efficiency and effectiveness of jailbreaks.

6 Conclusion

In summary, our novel method MPA utilizes MCTS
to automate adversarial suffix generation for jail-
break attacks efficiently. We enhance action can-
didate design with prior confidence probabilities
to optimize the exploration of adversarial suffixes.
Validated across various models through compre-
hensive testing, our approach proves superior in
creating robust adversarial suffixes.

To advance our research, we propose evaluating
our method on larger-scale models and testing it
against state-of-the-art defenses to assess scalabil-
ity and effectiveness. These efforts will help us
refine our approach and contribute to the develop-
ment of more secure machine learning systems.

7 Limitations

Our method’s efficiency is limited by the inference
speed of LLMs, and leveraging techniques to accel-
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erate model inference could make it more practical.
Additionally, our method does not achieve a 100%
attack success rate across all target models, indicat-
ing the need for further optimization. Addressing
these limitations is crucial for improving the ro-
bustness and applicability of our approach.

8 Ethical Considerations

Our research on adversarial attacks is primarily
aimed at identifying and addressing safety issues
within LLMs to enhance their robustness and re-
liability. By uncovering potential vulnerabilities,
we hope to contribute to the development of more
secure and trustworthy AI systems. It is impor-
tant to note that we have not disclosed the spe-
cific attack prompts that were found to be effective
against different LLMs, as doing so could poten-
tially enable MaliciousInstruct use. Furthermore,
our experiments are conducted on publicly avail-
able benchmarks rather than targeting operational
LLMs, ensuring that our work remains within ethi-
cal boundaries and does not cause harm to real-
world systems. This approach aligns with the
broader goals of the research community to im-
prove AI safety and security while maintaining re-
sponsible research practices. By adhering to these
principles, we aim to foster a collaborative envi-
ronment where the focus is on mitigating risks and
enhancing the overall safety of AI technologies.
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Row Category Action Description
1 Role-playing General Role-Playing: Assign the model a character related to

the harmful question, such as a historian, doctor, or detective.
This makes it harder for the model to refuse to answer within
the context of the role.

2 Role-playing Task-Driven Scenario 1: Problem-Solving Task: Have the
model play an engineer or similar role, where solving a
complex problem requires considering the harmful question as
part of the solution.

3 Role-playing Task-Driven Scenario 2: Advisory Task: The model acts as a
legal advisor or consultant, where providing advice necessitates
addressing the harmful question, making it seem crucial.

4 Role-playing Emotion Manipulation Scenario: Leverage the model’s ability
to simulate emotional responses. The model responds to the
harmful question in a state of urgency, empathy, or fear, such as
playing a friend in distress.

5 Role-playing Scenario for Legitimizing Questions: Frame the harmful
question to appear legitimate or necessary. The model plays a
policy maker or ethicist, exploring the question to develop
policies or ethical guidelines.

6 Form transformation Language Translation: The model is tasked with translating text
from one language to another, which can be used to reframe or
reinterpret harmful content in a different linguistic context.

7 Form transformation Tense Transformation: The model changes the tense of a given
text, which can alter the perceived immediacy or relevance of
harmful content, making it easier to discuss or analyze.

8 Form transformation The model is asked to design a scientific experiment, where the
harmful question is embedded as part of the experimental
hypothesis or procedure, making it seem like a necessary
component of scientific inquiry.

9 Prompt modification Rephrase the Existing Prompt: Change the wording of the
prompt to make it less direct or more nuanced, which can lead
the model to provide a more detailed or varied response.

10 Prompt modification Add additional context or background information to the
prompt, making it more complex and encouraging the model to
generate a more comprehensive response.

Table 3: Descriptions of the ten strategies across three main categories.
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