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Abstract

Existing end-to-end task-oriented dialog sys-
tems often encounter challenges arising from
implicit information, coreference, and the pres-
ence of noisy and irrelevant data within the
dialog context. These issues hinder the sys-
tem’s ability to fully comprehend critical infor-
mation and lead to inaccurate responses. To
address these concerns, we propose Comet, a
dialog context fusion mechanism for end-to-
end task-oriented dialog, augmented with three
supplementary tasks: dialog summarization,
domain prediction, and slot detection. Dialog
summarization facilitates a more comprehen-
sive understanding of important dialog context
information by Comet. Domain prediction en-
ables Comet to concentrate on domain-specific
information, thus reducing interference from ir-
relevant information. Slot detection empowers
Comet to accurately identify and comprehend
essential dialog context information. Addition-
ally, we introduce a data refinement strategy
to enhance the comprehensiveness and recom-
mendability of the generated responses. Exper-
imental results demonstrate the superior per-
formance of our proposed methods compared
to existing end-to-end task-oriented dialog sys-
tems, achieving state-of-the-art results on the
MultiWOZ and CrossWOZ datasets.

1 Introduction

Task-oriented dialog systems are designed to ad-
dress fundamental tasks within dialog interactions,
such as hotel booking and restaurant reservation.
The current approach for these systems involves
a pipeline structure with sequential sub-modules
for dialog state tracking (Lee et al., 2019), dialog
policy (Takanobu et al., 2019), and response gen-
eration (Wen et al., 2015). Recent advancements
primarily rely on pre-trained models (Radford et al.,
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User (Turn 0): Hi! What can you 

tell me about the attractions on the 

east side?

Pred Belief state: [hotel] pricerange

expensive stars 4 [attraction] area east 

type museum

Pred Response: [value_name] is in the 

[value_area] and is [value_pricerange]. 

Would you like me to book it for you?

GT Belief state: [hotel] pricerange

expensive area east stars 4 [attraction] 

area east type museum

GT Response: There are no [value_stars] 

star [value_pricerange] [value_type] in 

the [value_area]. Would you prefer to try 

another area or price point?

Response: You have [value_type], 

[value_type], [value_type], 

[value_type], [value_type] and 

[value_type] to choose from.

User (Turn 1):  I am not sure. Can 

you tell me about my options?

Response: What type of attraction are 

you looking for?

User (Turn 2):   Can you give me an 

address to a museum you recommend?

Response: [value_name] is located at 

[value_address]

User (Turn 3):  I also need a 4 star 

expensive place to stay.

Response: I have [value_choice] in 

the [value_area] and one in the 

[value_area]. Do you have a 

preference?

User (Turn 4):  I want it very close 

to the museum.

User (Turn 0):  I haven't had Eritrean

in forever and would like to have 

some. Please find me a moderately 

priced restaurant that serves it.

Pred Belief state: [restaurant] pricerange

moderate 

Pred Response: I have [value_choice] 

options for you. Is there a particular area 

you would like to dine in?

GT Belief state: [restaurant] food 

Eritrean pricerange moderate 

GT Response: I am sorry, there are no 

restaurants like that in Cambridge.

Response: [value_name] is located at 

[value_address]. Their phone number 

is [value_phone]. You will 

[value_price] for their entry fee.

User (Turn 1):  Can you schedule me 

a taxi to take me there? 

Response: I can book you a taxi, can 

you tell me the arrival or departure 

time?

User (Turn 0): Can you help me find 

a night club in south cambridge?

User (Turn 2):  Also, I need a hotel 

with parking and 2 stars.

Pred Belief state: [hotel] area south 

type nightclub

Pred Response: I am sorry, there are no 

[value_stars] star [value_type] with 

parking. Would you like to try a 

different star rating?

GT Belief state: [hotel] parking yes 

stars 2 [attraction] area south type 

nightclub

GT Response: I have [value_choice] 

options for you – [value_choice] in the 

[value_area] in the [value_pricerange] 

price range and [value_choice] that 's 

[value_pricerange] in the [value_area].

Figure 1: Illustration of issues in the end-to-end task-
oriented dialog systems: (a) implicit information, (b)
coreference, and (c) noisy information that is irrelevant
to the current utterance. The context that is not under-
stood correctly is highlighted in red, whereas the context
that should be understood is indicated in blue.

2019; Raffel et al., 2020) to establish an end-to-end
framework to tackle all tasks, resulting in remark-
able performance (Yang et al., 2021; Sun et al.,
2023). However, these models occasionally strug-
gle to fully comprehend crucial information within
the dialog context, leading to incorrect responses.
This is primarily due to issues related to implicit
information, coreference, and noisy information, as
depicted in Figure 1. For instance, the model fails
to grasp the area information of the hotel conveyed
implicitly as ‘very close to the museum’, resulting
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in an incorrect hotel recommendation (Figure 1 (a)).
Additionally, the model struggles to resolve referen-
tial mentions ‘it’ and ‘Eritrean’ in user utterances,
leading to an erroneous restaurant suggestion (Fig-
ure 1 (b)). Moreover, the model becomes confused
by noisy information, such as ‘night club’, which
belongs to the attraction domain but is mistakenly
incorporated into the response related to the hotel
domain (Figure 1 (c)).

To address the aforementioned issues, we pro-
pose Comet, a dialog context fusion mechanism
for end-to-end task-oriented dialog with a multi-
task learning strategy. Our approach incorporates
three tasks: dialog summarization, domain pre-
diction, and slot detection, which aim to preserve
crucial content from the dialog history. The fu-
sion mechanism consists of both global and local
context fusion mechanisms. Dialog summariza-
tion generates a concise summary of the original
dialog context, allowing the model to grasp impor-
tant information more comprehensively through the
global context fusion mechanism. Domain predic-
tion assists in identifying the current dialog domain,
thereby reducing interference from irrelevant infor-
mation through the local context fusion mechanism.
Slot detection empowers the model to better iden-
tify and comprehend essential information within
the dialog context. To enhance the system’s capa-
bility in generating comprehensive and valuable
responses, we also devise a data refinement strat-
egy. Our proposed Comet achieves state-of-the-art
performance, as demonstrated through experiments
conducted on the MultiWOZ and CrossWOZ.

The contributions of this paper are as follows:
(1) We conduct an in-depth analysis of the limita-
tions present in current end-to-end task-oriented
dialog systems with regards to dialog context un-
derstanding. (2) We introduce a novel approach em-
ploying a multi-task learning strategy and context
fusion mechanism, enhancing the model’s ability
to comprehend the dialog context more effectively.
(3) A data refinement strategy is designed to en-
able the model to generate responses that are more
comprehensive and recommendable. (4) Empiri-
cal results demonstrate that our proposed Comet
achieves state-of-the-art performance on the Multi-
WOZ and CrossWOZ datasets.

2 Related Work

The advent of large-scale pre-training models
such as BERT (Devlin et al., 2019), GPT (Rad-

Model Dialog Context Composition

DAMD {Bt−1, Rt−1, Ut}
LABES {Bt−1, Rt−1, Ut}
BORT {Bt−1, Rt−1, Ut}
MinTL {Bt−1, Ut−2, Rt−2, Ut−1, Rt−1, Ut}
DoTS {Ut, Dt−1, Bt−1}

AuGPT {C∗
t , Ut}

SimpleTOD {C∗
t , Ut}

SOLOIST {C∗
t , Ut}

PPTOD {C∗
t , Ut}

UBAR {Ct, Ut}
MTTOD {Ct, Ut}
GALAXY {Ct, Ut}
Mars {Ct, Ut}
KRLS {Ct, Ut}

Table 1: Dialog context composition strategies of pre-
vious end-to-end models. Specifically, we denote t as
the dialog turn, U as the user utterance, R as the delexi-
calized system response, B as the belief state, and D as
the domain state. Dialog history Ct, contains the com-
plete dialog information for all previous turns. It is for-
mulated as {Ct−1, Ut−1, Bt−1, DBt−1, At−1, Rt−1},
where DB represents the database state, and A rep-
resents the action state. Another dialog history C∗

t ,
which contains user and system utterances for all previ-
ous turns, excluding previous intermediate states. It is
formulated as {Ct−1, Ut−1, Rt−1}.

ford et al., 2019), T5 (Raffel et al., 2020), and
GODEL (Peng et al., 2022) have led to the sig-
nificant advancements in end-to-end task-oriented
dialog systems (Hosseini-Asl et al., 2020; Yang
et al., 2021; Sun et al., 2023). These systems have
demonstrated impressive performance on various
multi-domain task-oriented dialog datasets, includ-
ing MultiWOZ (Budzianowski et al., 2018) and
CrossWOZ (Zhu et al., 2020). In fact, the cur-
rent end-to-end models need to first transfer dialog
context into belief and action states before gener-
ating the delexicalized1 system responses. Table 1
presents three strategies for dialog context composi-
tion, which are utilized in dialog context modeling.

DAMD (Zhang et al., 2020b), LABES (Zhang
et al., 2020a), and BORT (Sun et al., 2022) utilize
the previous belief state Bt−1, the previous system
response Rt−1, and the current user utterance Ut

as the dialog context. For MinTL (Lin et al., 2020),
the dialog history consists of the user and system
utterances from the last two turns. DoTS (Jeon
and Lee, 2021) incorporates the previous domain
state Dt−1. These approaches simplify the dialog

1Note that delexicalization, replacing specific slot values
in dialog utterances by placeholders, is applied to improve the
model’s generalization ability (Zhang et al., 2020b).
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history, reducing memory usage and computational
costs. However, they often struggle to capture suf-
ficient information from the dialog history, facing
the problem of error accumulation arising from
previously generated inaccurate dialog states.

Recently,there has been significant research in-
terest in developing task-oriented dialog systems
that leverage the entire dialog history. Several no-
table approaches, such as AuGPT (Kulhánek et al.,
2021), SimpleTOD (Hosseini-Asl et al., 2020),
SOLOIST (Peng et al., 2021), and PPTOD (Su
et al., 2021), adopt a strategy where the dialog his-
tory C∗

t includes both user and system utterances
from all previous turns. Additionally, Yang et al.
(2021) argue that incorporating intermediate states
such as belief state, action state, and database state
from previous turns can further enhance the dialog
system performance. To build upon these advance-
ments, systems such as UBAR (Yang et al., 2021),
MTTOD (Lee, 2021), GALAXY (He et al., 2022),
Mars (Sun et al., 2023), and KRLS (Yu et al., 2023)
achieve better performance by considering the en-
tire dialog history Ct. However, these systems that
rely on dialog history Ct or C∗

t are susceptible to
the presence of noisy and irrelevant information,
particularly in multi-domain scenarios. In this pa-
per, we concentrate on leveraging the complete
dialog history Ct and propose a multi-task learning
and context fusion mechanism to enable the model
to better comprehend the dialog context.

3 Methodology

In this section, we initially introduce the multi-task
learning strategy, followed by the presentation of
two context fusion mechanisms designed to en-
hance the model’s comprehension of the dialog
context. Additionally, we outline a data refinement
strategy aimed at generating more comprehensive
and recommendable responses.

3.1 Multi-task Learning Strategy

In Figure 2 (a), we present a shared encoder-
decoder framework designed for an end-to-end
task-oriented dialog system, encompassing five
tasks: dialog state tracking, response generation,
dialog summarization, domain prediction, and slot
detection. To accomplish the first three tasks, we
employ identical dialog context alongside distinct
learnable soft prompt tokens (Lester et al., 2021),
as depicted in Figure 2 (a).

3.1.1 Dialog State Tracking
Dialog state tracking is responsible for predicting
the belief state, encompassing the dialog domain,
slot name, and slot value. The accurate extraction
of slot values from the dialog context is vital for
successful task completion. During the training
process of dialog state tracking, the hidden repre-
sentation Hdst is generated by encoding the prompt
token Pdst, dialog history Ct, and the current user
utterance Ut using a shared encoder. Subsequently,
the shared decoder generates the corresponding
belief state Bt:

Hdst = encoder(Pdst, Ct, Ut),

Bt = decoder(H̃dst),
(1)

where H̃dst is equal to Hdst in the baseline sys-
tem and H̃dst is defined as Hfus

dst when the context
fusion mechanism is applied. A comprehensive
explanation of the context fusion mechanism is
provided in Section 3.2. The dialog state tracking
process is optimized by minimizing the following
objective function:

Ldst = −logP (Bt|Pdst, Ct, Ut). (2)

3.1.2 Response Generation
For the response generation task, our approach in-
volves simultaneous generation of the action state
and system response. Prior to generating them, we
utilize the generated belief state Bt to query the
domain-specific database to obtain the database
state DBt, which represents the number of entities
that match the user’s requirements. The database
state DBt serves as the start token embedding of
the shared decoder in response generation task.
Given the combination of the prompt token Prg,
the dialog history Ct, and the current user utterance
Ut, the shared encoder outputs hidden representa-
tion Hrg. Subsequently, the action state At and
the system response Rde

t are generated sequentially
using the shared decoder:

Hrg = encoder(Prg, Ct, Ut),

At, Rt = decoder(DBt, H̃rg),
(3)

where H̃rg is equivalent to Hrg when the model
serves as the baseline system and H̃rg is defined
as Hfus

rg when the context fusion mechanism is
employed. Consequently, the objective function for
optimizing the response generation process can be
formulated as follows:

Lrg = −logP (At, Rt|Prg, Ct, Ut, DBt). (4)
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[Prompt] [hotel] [value_name] is 

located in the [value_area] at 

[value_address]. It is a [value_stars] star 

hotel. Would you like to make a 

reservation? You, know I'll think about it, 

but can I get a train leaving cambridge

to arrive by 21:30? 

Shared 
Encoder

Shared 
Decoder

[Prompt] I am looking for the home 

from home hotel, I would also like to 

know how many stars this hotel has. 

[hotel] name home from home [db_1] 

[hotel] [inform] area name address stars 

[offerbook] [value_name] is located in 

the [value_area] at [value_address]. It is 

a [value_stars] star hotel. Would you 

like to make a reservation? You , know 

I'll think about it, but can I get a train 

leaving cambridge to arrive by 21:30? 

[Prompt] You, know I'll think about it, 

but can I get a train leaving cambridge

to arrive by 21:30? Yes you can. What 

day would that be for? 

The user is looking for a 

place to stay called home 

from home. Also, he is 

searching for a train from 

cambridge.

Dialog Summarization

hotel] name home from 

home [train] departure 

cambridge arrive 21:30

Dialog State Tracking

[train]

Domain Prediction

[train] [inform] [request] 

day Yes you can. What 

day would that be for?

Response Generation

Slot Detection

You, know I'll think about 

it, but can I get a train 

leaving [value_departure] 

to arrive by [value_arrive]? 

Yes you can. What day 

would that be for? 

𝑯∗
𝒂𝒔

𝑯∗
𝒎

𝑯∗
𝒈𝒍𝒐

𝑯∗

𝑯𝒂𝒔

𝑯𝒎

𝑨𝑺𝒕

𝑴𝒕
Shared 
Encoder

Shared 
Encoder

𝑯𝒅

𝑯𝒅𝒔

𝑯∗
𝒅𝒔

𝑯∗
𝒅

𝑯∗
𝒍𝒐𝒄

Shared 
Encoder

Shared 
Encoder

𝑫𝒕

𝑫𝑺𝒕

𝑯∗
𝒇𝒖𝒔

Fusion
Mechanism

context-summary 
attention

context-domain 
attention

context-domain
slot attention

context-all 
slot attention

Local 
gate

Global 
gate

Fusion
gate

(a) (b)

Figure 2: Illustration of our proposed Comet framework. (a) Multi-task learning strategy. User utterances are
represented by black tokens, belief states by orange tokens, database states by gray tokens, action states by yellow
tokens, system responses by purple tokens, dialog summaries by green tokens, and domain states by blue tokens.
(b) Context fusion mechanism. Layer normalization and residual connection are omitted for clarity. The symbol ∗
denotes dst and rg, indicating that the context fusion mechanism is specifically utilized for dialog state tracking and
response generation tasks.

3.1.3 Dialog Summarization
Dialog summarization aims to produce a concise
and informative abstractive overview that captures
the essential information from the original dialog
context. This task is crucial for enabling models
to comprehend the complete semantic structure of
the dialog. However, a significant challenge arises
due to the absence of dialog summary labels in
existing task-oriented dialog datasets. To address
this issue, we employ a dialog template written
by Shin et al. (2022) to automatically synthesize di-
alog summaries from dialog states. We encode the
soft prompt token Psum along with the correspond-
ing dialog context {Ct, Ut} to generate the dialog
summary Mt. Consequently, the dialog summariza-
tion process is optimized through the minimization
of the following objective function:

Lsum = −logP (Mt|Psum, Ct, Ut). (5)

3.1.4 Domain Prediction
A comprehensive dialog session typically encom-
passes multiple domains. Identifying the precise
domain enables the model to grasp the pertinent
information within the dialog history more effec-
tively. To forecast the domain state Dt for the
current turn, we incorporate several source inputs,
namely the soft prompt token Pdom, the previous
domain state Dt−1, the previous system response
Rt−1, and the current user utterance Ut. The opti-
mization of the domain prediction process involves

minimizing the following objective function:

Ldom = −logP (Dt|Pdom, Dt−1, Rt−1, Ut). (6)

3.1.5 Slot Detection

In task-oriented dialog, slot values hold greater sig-
nificance within the dialog context compared to
other elements. The model acquires the capability
to identify and comprehend this crucial informa-
tion from the slot detection task. The model would
predict the delexicalized version {Ude

t , Rt} condi-
tioned on the lexicalized user and system utterance
{Ut, R

le
t } as the source input. The slot detection

process is optimized by minimizing the objective
function expressed as follows:

Lsd = −logP (Ude
t , Rt|Psd, Ut, R

le
t ), (7)

where Ude
t denotes the delexicalized user utterance,

and Rle
t denotes the lexicalized system response.

Given that the first three tasks are considerably
more intricate compared to the domain prediction
and slot detection tasks, we introduce the hyper-
parameter λ to adjust the weights of these objective
functions. To summarize, the optimization of the
complete end-to-end task-oriented dialog system
can be achieved by minimizing:

Lall = Ldst + Lrg + Lsum + λ(Ldom + Lsd). (8)
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(1). User: Great, thanks! I am also looking for a 4 star hotel in the north. Can you please help with that?
System: There are [value_choice] that meet your criteria. Is there a price range you are interested in?

User: I would like to keep it in the moderate range, please.
System: I see [value_choice] options. They are [value_choice] [value_type]. Do you have preferences

for internet and parking? If not, I would recommend [value_name].

(2). User: I think Chinese sounds good, are there any of those in the centre?
System: Yes. I have [value_choice] places that are [value_food] food. Would you like to book one?

How about [value_name]?

(3). User: I am trying to find information about adc theatre, can you help me?
System: [value_name] is in the [value_area] of town on [value_address], the zip code is [value_postcode],

would you like their phone number?

Table 2: Examples of refined training data from three aspects. Our newly added tokens are highlighted in red.

3.2 Context Fusion Mechanism

To further enhance the dialog context modeling for
the task-oriented dialog system, we propose two
context fusion methods: the global context fusion
mechanism and the local context fusion mechanism.
These methods are designed to improve dialog state
tracking and response generation tasks, as depicted
in Figure 2 (b).

3.2.1 Global Context Fusion
To enhance dialog state tracking in our approach,
we introduce two crucial components: dialog sum-
mary and all slot names extracted from the dialog
ontology. These additions serve as global knowl-
edge, aiding the model in comprehending the dia-
log context more effectively. By leveraging dialog
summary, the system can acquire crucial details
from the dialog context in a more comprehensive
manner, thus mitigating the impact of noise, coref-
erence, and other inherent issues in the dialog his-
tory. Meanwhile, the slot names serve to direct the
model’s attention towards the slot values within the
dialog history, which plays a vital role in compre-
hending the user’s requirements and accomplishing
the corresponding task.

To encode the dialog summary Mt and the se-
quence of all slot names ASt, we employ the
shared encoder that transforms them into hidden
representations Hm and Has, respectively:

Hm = encoder(Mt), (9)

Has = encoder(ASt). (10)

The representations Hm and Has are then com-
bined with the normalized hidden representation
of the dialog context, HLN

dst , through multi-head at-
tention. This process results in a globally enriched
representation, which is obtained by applying a
residual connection (He et al., 2016):

HLN
dst = LayerNorm(Hdst), (11)

Hm
dst = MultiHead(HLN

dst , Hm, Hm) +Hdst, (12)

Has
dst = MultiHead(HLN

dst , Has, Has) +Hdst. (13)

To integrate the globally enriched representations
Hm

dst and Has
dst, a gate αg is employed. The es-

timation of the gate αg is achieved through the
following expression:

αg = σ(MLP (Hm
dst) +MLP (Has

dst)), (14)

where σ(·) represents the sigmoid function, MLP
refers to the multi-layer perceptron module. The
globally fused context representation can be de-
scribed as follows:

Hglo
dst = αgH

m
dst + (1− αg)H

as
dst. (15)

3.2.2 Local Context Fusion
To make the model focus on domain-related infor-
mation within the dialog context and minimize the
impact of irrelevant data, we incorporate domain
state and domain-specific slot names as supplemen-
tary local knowledge. The domain state, denoted
as Dt, and the sequence of domain-specific slot
names, represented as DSt, are encoded into hid-
den representations Hd and Hds using the shared
encoder:

Hd = encoder(Dt), (16)

Hds = encoder(DSt). (17)

Similarly, we integrate these two representations
Hd and Hds with the normalized context repre-
sentation HLN

dst by employing multi-head attention.
This process results in the locally enhanced rep-
resentation by utilizing a residual connection (He
et al., 2016):

Hd
dst = MultiHead(HLN

dst , Hd, Hd) +Hdst, (18)
Hds

dst = MultiHead(HLN
dst , Hds, Hds) +Hdst. (19)
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To integrate the locally enhanced representations
Hd

dst and Hds
dst, we employ the gate αl. The calcu-

lation of the gate αl is as follows:

αl = σ(MLP (Hd
dst) +MLP (Hds

dst)). (20)

Hence, the locally fused context representation can
be expressed as:

Hloc
dst = αlH

d
dst + (1− αl)H

ds
dst. (21)

3.2.3 Both Context Fusion
We combine the globally enriched representation
Hglo

dst with the locally enhanced representation H loc
dst

to combine the final fused context representation
Hfus

dst using the fusion gate αf :

Hfus
dst = αfH

glo
dst + (1− αf )H

loc
dst, (22)

αf = σ(MLP (Hglo
dst) +MLP (Hloc

dst)). (23)

The final fused context representation Hfus
dst is em-

ployed instead of the original representation Hdst

for generating the dialog state in the dialog state
tracking task. Similarly, we apply the same context
fusion strategy to obtain the fused context represen-
tation Hfus

rg for the response generation task.
During the inference process, the dialog sum-

mary and domain state are first generated. Subse-
quently, they are integrated as additional knowl-
edge using the context fusion mechanism to create
the dialog state and system response.

3.3 Data Refinement

We propose a data refinement strategy aimed at
enhancing the comprehensiveness and recommend-
ability of the generated responses. Our approach
involves modifying the training data from three
distinct aspects, as outlined in Table 2. First and
foremost, we observe that the system often makes
multiple requests when a user is searching for a par-
ticular entity. For instance, when a user is looking
for a hotel, the system may ask for additional de-
tails such as price, internet availability, and parking,
without providing a recommendation (Table 2 (1)).
To improve user satisfaction and the system’s rec-
ommendation capability, we propose incorporating
a recommendation sentence when the system seeks
further details for the second time. Secondly, when
the system asks users whether they would like to
make a booking, it should also present a recom-
mended entity for their consideration. Lastly, when
a user seeks information about a specific entity, the
system should deliver a more comprehensive and

complete response to fulfill their needs. By im-
plementing these refinements to the training data,
we aim to enhance the overall quality of the gener-
ated responses, making them more informative and
satisfying for users.

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate our proposed methods on two
task-oriented dialog datasets: MultiWOZ
2.0 (Budzianowski et al., 2018) and Cross-
WOZ (Zhu et al., 2020). MultiWOZ 2.0 is
a large-scale dataset that encompasses seven
domains, namely attraction, hospital, police, hotel,
restaurant, taxi, and train. The dataset is divided
into three subsets, consisting of 8438, 1000, and
1000 dialog sessions for the training, validation,
and testing sets, respectively. On the other hand,
CrossWOZ (Zhu et al., 2020) is a Chinese dataset
that covers five domains, including attraction,
restaurant, hotel, taxi, and metro. The dataset is
partitioned into 5012, 500, and 500 dialog sessions
for training, validation, and testing, respectively.

We evaluate our proposed Comet framework on
two benchmark task-oriented dialog tasks: end-to-
end dialog modeling for response generation and di-
alog state tracking. To assess the quality of the gen-
erated responses in the task-oriented dialog system
on MultiWOZ2.0, we employ the automatic eval-
uation metrics proposed by Nekvinda and Dušek
(2021). Inform rate measures whether the dialog
system has accurately provided the required enti-
ties. Success rate evaluates whether the dialog sys-
tem has successfully answered all the requested in-
formation. The BLEU score (Papineni et al., 2002)
assesses the fluency of the generated response. To
provide an overall evaluation of the dialog system’s
quality, we compute a combined score, which is
calculated as (Inform+Success)×0.5+BLEU .
In addition, we utilize the joint goal accuracy to
evaluate the performance of dialog state tracking
on both MultiWOZ 2.0 and CrossWOZ datasets.

4.2 Settings

Our proposed Comet framework is built upon the
MTTOD toolkit (Lee, 2021) and the Hugging-
Face Transformers library (Wolf et al., 2020). For
the MultiWOZ 2.0, we utilize T5-small (Raffel
et al., 2020), while for the CrossWOZ, we em-
ploy T5-base-Chinese (Zhao et al., 2019). To train
the model, we set the batch size to 4 and perform
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Model # Params Pre-trained Inform Success BLEU Combined

DAMD (Zhang et al., 2020b) 2M - 57.9 47.6 16.4 69.2
LABES (Zhang et al., 2020a) 6M - 68.5 58.1 18.9 82.2
AuGPT (Kulhánek et al., 2021) 117M GPT-2 76.6 60.5 16.8 85.4
MinTL (Lin et al., 2020) 102M T5-small 73.7 65.4 19.4 89.0
SOLOIST (Peng et al., 2021) 117M GPT-2 82.3 72.4 13.6 91.0
DoTS (Jeon and Lee, 2021) 110M BERT-base 80.4 68.7 16.8 91.4
UBAR (Yang et al., 2021) 81M DistilGPT2 83.4 70.3 17.6 94.5
PPTOD (Su et al., 2021) 223M T5-base 83.1 72.7 18.2 96.1
BORT (Sun et al., 2022) 144M T5-small 85.5 77.4 17.9 99.4
MTTOD (Lee, 2021) 361M T5-base 85.9 76.5 19.0 100.2
GALAXY (He et al., 2022) 109M UniLM-base 85.4 75.7 19.6 100.2
Mars (Sun et al., 2023) 102M T5-small 88.9 78.0 19.9 103.4
KRLS (Yu et al., 2023) 361M GODEL-base 89.2 80.3 19.0 103.8
DiactTOD (Wu et al., 2023) 584M T5-base 89.5 84.2 17.5 104.4
Baseline ({Bt−1, Rt−1, Ut}) 61M T5-small 83.5 73.6 19.3 97.9
Baseline ({C∗

t , Ut}) 61M T5-small 85.6 71.8 19.4 98.1
Baseline ({Ct, Ut}) 61M T5-small 85.6 76.4 19.5 100.5
Comet∗ ({C∗

t , Ut}) 68M T5-small 86.6 77.9 19.2 101.5
Comet ({Ct, Ut}) 68M T5-small 89.9 81.3 19.7 105.3

Table 3: Comparison of end-to-end models evaluated on MultiWOZ. The results of previous work are reported on
the official leaderboard of MultiWOZ (https://github.com/budzianowski/multiwoz).

gradient accumulation every 2 steps. The model
parameters are optimized using the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with linear
learning rate decay. We set the initial learning rate
to 0.0005 and the warm-up ratio to 0.2. To balance
the importance of different components, we set the
hyper-parameter λ to 0.1 for the end-to-end model
and 1 for the dialog state tracking model on the
MultiWOZ 2.0. On the CrossWOZ, we set λ to
0.1 for the dialog state tracking model. The se-
quence length of soft prompt tokens for every task
is set to 5. We train all dialog systems on a single
NVIDIA A100 GPU for 10 epochs and select the
checkpoint model with the best performance on the
validation dataset. Our baseline model employs
the base architecture of a task-oriented dialog sys-
tem, trained with dialog state tracking and response
generation tasks. We investigate three distinct
strategies for composing dialog context, namely
{Bt−1, Rt−1, Ut}, {C∗

t , Ut}, and {Ct, Ut}. These
three strategies serve as our respective baselines.
In this work, we implement Comet based on the
entire dialog context {Ct, Ut}, and a variant called
Comet∗ based on the dialog context {C∗

t , Ut}.

4.3 Main Results

Table 3 presents the detailed parameters, pre-
trained models, inform rates, success rates, BLEU
scores, and combined scores of end-to-end dia-
log models on the MultiWOZ dataset. Our re-

implemented baseline system, which is based on
the entire dialog context {Ct, Ut}, outperforms
the other two baselines based on {Bt−1, Rt−1, Ut}
and {C∗

t , Ut}, consistent with our analysis in Sec-
tion 2. Additionally, our re-implemented base-
line performs similarly with GALAXY and MT-
TOD, indicating that the baseline is a strong sys-
tem. Our proposed Comet and Comet∗ consistently
outperform the corresponding baseline by 3.4 and
4.8 combined scores, respectively. Furthermore,
Comet, using fewer parameters, substantially out-
performs the previous state-of-the-art DiactTOD
by 0.9 combined scores, achieving state-of-the-
art performance in terms of inform rate and com-
bined score. This demonstrates our proposed multi-
task learning and context fusion mechanism enable
Comet to better comprehend essential information
in the dialog context and generate more suitable
responses. Further analysis across various dialog
turns and domain is provided in Appendix A.

4.4 Dialog State Tracking

Tables 4 and 5 present the dialog state tracking
results on MultiWOZ 2.0 and CrossWOZ, respec-
tively. It is worth noting that the previous interme-
diate states in the dialog history Ct solely consist of
belief states for the dialog state tracking model. As
shown in Table 4, the baseline based on {C∗

t , Ut}
performs better than that based on {Ct, Ut}, which
is opposite to the performance of the end-to-end

https://github.com/budzianowski/multiwoz
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Model Joint goal accuracy

Baseline ({Ct, Ut}) 54.0
Baseline ({C∗

t , Ut}) 54.5
Comet ({Ct, Ut}) 54.9
Comet∗ ({C∗

t , Ut}) 56.4

Table 4: Dialog state tracking results on MultiWOZ 2.0.

Model Joint goal accuracy

TRADE (Wu et al., 2019) 36.1
BART-CSP (Moradshahi et al., 2021) 53.6
GEEX (Li et al., 2021) 54.7
Mars (Sun et al., 2023) 59.8
Comet ({Ct, Ut}) 61.1
Comet∗ ({C∗

t , Ut}) 61.9

Table 5: Dialog state tracking results on CrossWOZ.

model. This indicates that the inclusion of previous
intermediate states does not benefit the dialog state
tracking model. Our proposed Comet and Comet∗

consistently outperform the corresponding baseline
by 0.9 and 1.9 points on MultiWOZ 2.0. As shown
in Table 5, both Comet and Comet∗ substantially
outperform the previous state-of-the-art Mars by
1.3 and 2.1 points, respectively, resulting in joint
goal accuracies of 61.1 and 61.9 on CrossWOZ.
Moreover, Comet∗ achieves the highest joint goal
accuracy. These results further demonstrate the
effectiveness of our proposed strategies.

4.5 Ablation Study
We empirically investigate the performance of the
different components of Comet, as illustrated in
Table 6. In comparison to the baseline system and
Comet without data refinement, our proposed data
refinement strategy yields improvements of 0.4 and
1.7 combined scores, respectively. These results
indicate that the utilization of more comprehen-
sive and recommendable responses positively con-
tributes to task completion. Furthermore, through
the incorporation of multi-task learning along with
data refinement, an additional improvement of 0.4
combined scores is achieved. In terms of the two
proposed context fusion mechanisms, global con-
text fusion outperforms local context fusion by a
margin of 2.1 in combined scores. This outcome
can be attributed to the fact that global context
fusion enables Comet to more comprehensively
capture essential information from the dialog con-
text. Conversely, local context fusion may have a
tendency to overlook certain domain-irrelevant yet
potentially valuable details. For instance, certain

Model Inform Success BLEU Combined

Baseline ({Ct, Ut}) 85.6 76.4 19.5 100.5
+DR 86.4 76.5 19.4 100.9
+DR + ML 87.0 76.6 19.5 101.3
+DR + ML + LF 87.1 77.4 19.7 102.0
+DR + ML + GF 88.8 80.2 19.6 104.1
+ML + LF + GF (Comet w/o DR) 89.1 78.8 19.6 103.6
+DR + ML + LF + GF (Comet) 89.9 81.3 19.7 105.3

Table 6: The performance of the different components
on MultiWOZ. DR denotes data refinement, ML denotes
multi-task learning, LF denotes local context fusion, and
GF denotes global context fusion.
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Figure 3: Effect of λ for Comet on MultiWOZ test set.

hotel and restaurant names may be easily disre-
garded in the context of the taxi domain, but they
can serve as essential departure or destination val-
ues in the taxi domain. Moreover, the integration of
all these components can complement each other
to further improve the dialog system performance.

4.6 Hyper-parameter Analysis
We empirically investigate the influence of the
hyper-parameter λ in Equation (8) on the perfor-
mance of response generation, as illustrated in Fig-
ure 3. The selection of λ during multi-task training
significantly impacts the roles of domain prediction
and slot detection tasks. These tasks assume a more
crucial role compared to other loss terms when λ is
set to a large value. Conversely, reducing the value
of λ diminishes their importance. As illustrated in
Figure 3, the performance of Comet exhibits im-
provements across a wide range of λ values from
0.01 to 1, ultimately achieving optimal results with
a well-balanced λ of 0.1.

4.7 Case Study
In order to assess the effectiveness of Comet, we
conduct an analysis of response examples. Table 7
presents the predicted example mentioned in Fig-
ure 1 (a), while the remaining two examples can
be found in Appendix B. The dialog summary pro-
duced by Comet contains information about the
hotel’s location, enabling it to comprehend implicit
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User (Turn 0): Hi! What can you tell me about the attractions on the east side?
Response: What type of attraction are you looking for?
User (Turn 1): I am not sure. Can you tell me about my options?
Response: You have [value_type], [value_type], [value_type], [value_type],

[value_type] and [value_type] to choose from.
User (Turn 2): Can you give me an address to a museum you recommend?
Response: [value_name] is located at [value_address]
User (Turn 3): I also need a 4 star expensive place to stay.
Response: I have [value_choice] in the [value_area] and one in the

[value_area]. Do you have a preference?
User (Turn 4): I want it very close to the museum.

Golden BS: [hotel] pricerange expensive area east stars 4 [attraction] area east
type museum

Golden R: There are no [value_stars] star [value_pricerange] [value_type] in the
[value_area]. Would you prefer to try another area or price point?

Base BS: [hotel] pricerange expensive stars 4 [attraction] area east type museum
Base R: [value_name] is in the [value_area] and is [value_pricerange].

Would you like me to book it for you?
Comet SUM: The user is looking for an attraction which is a museum located in

the east. Also, he is searching for a place to stay ranked 4 stars with
an expensive price located in the east.

Comet DOM: [hotel]
Comet BS: [hotel] pricerange expensive area east stars 4 [attraction] area east

type museum
Comet R: I am sorry, there are no [value_type] in the [value_area]. Would you

like to try a different area?

Table 7: Comparison of generated responses between
baseline and Comet.

details such as ‘very close to the museum’ through
the fusion mechanism of dialog summary and con-
text. This illustrates the effectiveness of Comet
in comprehending dialog context and generating
appropriate system responses in comparison to the
baseline model.

5 Conclusion

We first analyze certain shortcomings observed in
current end-to-end task-oriented dialog systems
regarding dialog context comprehension. To over-
come these concerns, we present a multi-task learn-
ing strategy and context fusion mechanism. Fur-
thermore, we introduce a data refinement strategy
to enhance the model’s capability to generate more
comprehensive and recommendable responses. Ex-
perimental results on the MultiWOZ and Cross-
WOZ datasets demonstrate that our proposed strate-
gies substantially outperform the original baseline,
ultimately achieving state-of-the-art performance.

Limitations

In contrast to the original baseline system, our pro-
posed Comet exhibits certain limitations in terms of
training efficiency. The introduction of a multi-task
learning strategy and context fusion mechanism
leads to an increase in training time and compu-
tational costs. However, it is worth noting that
we employ a smaller pre-trained model, resulting
in our proposed Comet having the fewest num-
ber of parameters among the currently available
task-oriented dialog systems, as presented in Ta-
ble 3. Consequently, despite these trade-offs, our

proposed Comet still offers a lower computational
cost compared to existing task-oriented dialog sys-
tems such as MTTOD and GALAXY.
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Figure 4: Illustration of the dialog system performance
with respect to (a) different dialog turns, (b) single-
domain vs. multi-domain, and (c) different domains.

A Dialog Turn and Domain Analysis

To provide a comprehensive assessment of the ef-
fectiveness of our proposed multi-task learning and
context fusion mechanism, we thoroughly examine
the performance of Comet and the baseline system
across various dialog turns and domains. As de-
picted in Figure 4(a), we categorize the test sets into
four groups based on dialog turns. Notably, in each
dialog turn group, Comet consistently outperforms
the baseline system, underscoring the robustness
of Comet. Particularly in multi-domain dialogs,
Comet exhibits a more pronounced improvement
compared to single-domain dialogs, as illustrated
in Figure 4(b). This observation can be attributed
to the fact that the baseline model is more suscepti-
ble to the challenges we address in Section 1 when

User (Turn 0): I haven’t had Eritrean in forever and would like to have some.
Please find me a moderately priced restaurant that serves it.

Golden BS: [restaurant] food Eritrean pricerange moderate
Golden R: I am sorry, there are no restaurants like that in Cambridge.
Base BS: [restaurant] pricerange moderate
Base R: I have [value_choice] options for you. Is there a particular

area you would like to dine in?
Comet SUM: The user is looking for a restaurant serves eritrean with a moderate

price.
Comet DOM: [restaurant]
Comet BS: [restaurant] food eritrean pricerange moderate
Comet R: I am sorry, there are no restaurants that meet your criteria.

Would you like to try a different type of food?

Table 8: Comparison of generated responses between
baseline and Comet.

User (Turn 0): Can you help me find a night club in south cambridge?
Response: [value_name] is located at [value_address]. Their phone number is

[value_phone]. You will [value_price] for their entry fee.
User (Turn 1): Can you schedule me a taxi to take me there?
Response: I can book you a taxi, can you tell me the arrival or departure time?
User (Turn 2): Also, I need a hotel with parking and 2 stars.

Golden BS: [hotel] parking yes stars 2 [attraction] area south type nightclub
Golden R: I have [value_choice] options for you – [value_choice] in the

[value_area] in the [value_pricerange] price range and
[value_choice] that ’s [value_pricerange] in the [value_area].

Base BS: [hotel] area south type nightclub
Base R: I am sorry, there are no [value_stars] star [value_type] with parking.

Would you like to try a different star rating?
Comet SUM: The user is looking for a place to stay ranked 2 stars has parking.

Also, he is searching for an attraction which is a nightclub located
in the south.

Comet DOM: [hotel]
Comet BS: [hotel] parking yes stars 2 [attraction] area south type nightclub
Comet R: I have [value_choice] options for you. Do you have a price range in

mind? If not, I would recommend [value_name].

Table 9: Comparison of generated responses between
baseline and Comet.

dealing with multi-domain dialogs. However, our
proposed Comet effectively mitigates these issues.
A similar trend is observed in long-turn dialogs, as
depicted in Figure 4(a). Additionally, Figure 4(c)
presents the performance across different domains.
We observe that Comet achieves a substantial im-
provement of 7.8 combined scores in the hotel do-
main. Overall, these findings establish the supe-
rior effectiveness of our proposed Comet approach,
lending support to its suitability for various dialog
turns and domains.

B More examples

Table 8 illustrates an example of prediction as men-
tioned in Figure 1 (b). The dialog summary gen-
erated by Comet encompasses crucial restaurant-
related information. Additionally, the slot detec-
tion task employed by Comet aids in the identifi-
cation and comprehension of the term ‘Eritrean’.
Consequently, our proposed Comet model adeptly
resolves referential mentions such as ‘it’ and ‘Er-
itrean’ within user utterances, owing to the dialog
summary and context fusion mechanism. Table 9
presents another prediction example as discussed
in Figure 1 (c). The domain prediction task accu-
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rately identifies the relevant domain. Through the
use of domain prediction and context fusion mech-
anism, the model effectively disregards extraneous
information ‘night club’, which pertains to the at-
traction domain. These findings further validate
the effectiveness of Comet in comprehending the
dialog context and generating appropriate system
responses in comparison to the baseline model.
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