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Abstract

Recent advancements in large language models
(LLMs) have showcased impressive code gener-
ation capabilities, primarily evaluated through
language-to-code benchmarks. However, these
benchmarks may not fully capture a model’s
code understanding abilities. We introduce
CodeJudge-Eval (CJ-Eval), a novel bench-
mark designed to assess LLMs’ code under-
standing abilities from the perspective of code
judging rather than code generation. CJ-Eval
challenges models to determine the correct-
ness of provided code solutions, encompass-
ing various error types and compilation is-
sues. By leveraging a diverse set of prob-
lems and a fine-grained judging system, CJ-
Eval addresses the limitations of traditional
benchmarks, including the potential memo-
rization of solutions. Evaluation of 12 well-
known LLMs on CJ-Eval reveals that even
state-of-the-art models struggle, highlighting
the benchmark’s ability to probe deeper into
models’ code understanding abilities. Our
benchmark is available at https://github.
com/CodeLLM-Research/CodeJudge-Eval.

1 Introduction

Recently, powerful large language models (LLMs)
such as GPT-4o (OpenAI, 2023), Gemini (Anil
et al., 2023), and Claude (Anthropic, 2023) have
demonstrated impressive code generation capabili-
ties. These models are being used to develop tools
that assist in software development (Hong et al.,
2024; Yang et al., 2024). The primary method
the community uses to evaluate the coding abili-
ties of these LLMs is based on popular language-
to-code benchmarks, such as HumanEval (Chen
et al., 2021), APPS (Hendrycks et al., 2021) and
MBPP (Austin et al., 2021), where LLMs are
tasked with generating code based on task descrip-
tions. If the generated code can pass the pre-
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Problem 1:
    Anton has the integer 𝑥. He is interested what positive integer, which doesn't exceed 𝑥, has the 

maximum sum of digits. If there are several such integers, determine the biggest of them.

    Input: 1 ≤ 𝑥 ≤ 1018

    Output: Print the positive integer which doesn't exceed 𝑥 and has the maximum sum of digits

    Examples:

  Input: 100 Output: 99     Input: 521 Output: 499

Judge the following code for Problem 1.

def max_sum_digits(n):
   n = str(n)
   if len(n) == 1:
       return int(n)
   if '9' * len(n) <= n:
       return int('9' * len(n))
   for i in range(len(n)):
       if n[i] != '9':
          return int(n[:i] + str(int(n[i]) - 1) + 
'9' * (len(n) - i - 1))

n = int(input().strip())
print(max_sum_digits(n))

Sure! Here’s a possible solution:

x = input()
best = x
for i in range(len(x), 0, -1):
    t = str(int(x[:i])-1) + '9' * (len(x)-i)
    t = t.lstrip("0")
    if sum(map(int, t)) > sum(map(int, best)):
        best = t
print(best)

Correct Code

I think the code is correct.
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Figure 1: Comparing code generation with code judg-
ing task, we observe that a model’s ability to generate
correct code does not necessarily imply it can accurately
judge other codes for the same problem.

designed test cases, the LLMs are considered to
have successfully solved the coding tasks.

While language-to-code benchmarks have signif-
icantly advanced the coding capabilities of LLMs,
the assumption that a model’s ability to pass pre-
designed test cases for a specific task equates to
a full understanding of that task does not always
hold true (Dou et al., 2024). These test cases
may not comprehensively cover all potential in-
puts and edge cases (Liu et al., 2023), and con-
cerns such as data leakage can further undermine
the reliability of such evaluations (Dong et al.,
2024; White et al., 2024). To overcome these chal-
lenges, we draw inspiration from modern educa-
tional theory, which suggests that if someone can
accurately judge the correctness of other candidate

https://github.com/CodeLLM-Research/CodeJudge-Eval
https://github.com/CodeLLM-Research/CodeJudge-Eval
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solutions for a given task, they are likely to fully
understand that task (Care et al., 2012). Building
on this insight, we introduce a novel benchmark,
CodeJudge-Eval (CJ-Eval), aimed at evaluating
the code understanding abilities of LLMs by posi-
tioning them as code judges, as shown in Figure 1.

Unlike traditional approaches that require LLMs
to generate code, CJ-Eval assesses their ability
to evaluate the correctness of provided candidate
solutions, determining whether they result in a cor-
rect output or errors such as Wrong Answer, Time
Limit Exceeded, or other errors. Although unit
tests can verify code correctness directly, our ob-
jective is to evaluate the inherent code understand-
ing abilities of LLMs without relying on external
tools, thereby reducing the need for diverse and
high-quality unit tests across different coding tasks.
Moreover, the LLM-as-a-Judge paradigm is already
widely adopted in the general domain, as evidenced
by frameworks such as MT-Bench (Zheng et al.,
2023a) and AlpacaEval (Li et al., 2023c).

Additionally, evaluating the model using the
code judging paradigm also offers new insights
from a data perspective. Previous research has
shown that a 7B model can memorize more
knowledge than English Wikipedia (Allen-Zhu
and Li, 2024), making it likely that the model
could pass the code generation evaluation by
merely memorizing one correct solution per prob-
lem. LiveCodeBench (Jain et al., 2024) and
LiveBench (White et al., 2024) address this issue by
adding new data to the benchmark. In contrast, our
code judge evaluation assesses each code solution,
and the number of code submissions is often much
greater than the number of problems1, making it
harder for the model to memorize all solutions.

To construct our CJ-Eval benchmark, we choose
to select problems from the APPS test set, which
includes 5,000 coding problems across three dif-
ferent difficulty levels, offering significantly more
diversity than smaller benchmarks like HumanEval
and MBPP. To generate candidate code solutions
for each problem, we utilized 16 different LLMs,
encompassing both open- and closed-source, as
well as general and code-specific models. We then
applied our fine-grained judging system, using a
comprehensive set of test cases to obtain execu-
tion results that serve as the ground-truth judging
annotations. To create a curated benchmark, we

1For instance, Codeforces, a famous programming website,
has produced only approximately 9,800 problems over the past
14 years but has 2.7× 108 solution codes.

meticulously filtered the original 80,000 solutions
down to 1,860 solution codes and structured the
questions into a multiple-choice format.

We evaluated 12 different proprietary and open-
source LLMs using our CJ-Eval benchmark. The
results indicate that our benchmark is quite chal-
lenging. While proprietary LLMs such as GPT-
4o and Claude-3.5-Sonnet outperform open-source
models, their macro F1 scores peak at a modest 50
on the simplest code judge tasks. This indicates a
significant gap between their performance and the
highlighting room for considerable improvement.
Additionally, our analysis reveals that while some
models can generate correct code for certain tasks,
this does not necessarily mean they can accurately
judge other codes for the same tasks. This suggests
that our benchmark provides a new perspective for
assessing the code understanding abilities of both
proprietary and open-source LLMs.

2 Related Work

Various benchmarks are used to evaluate LLMs’
coding abilities. For Python code generation on rel-
atively simple task descriptions, HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021) are
the most popular benchmarks. EvalPlus (Liu et al.,
2023) enhance HumanEval and MBPP by adding
more test cases. ReCode (Wang et al., 2023) modi-
fies HumanEval by changing function names and
docstrings to create a benchmark for code gen-
eration robustness. Extensions like HumanEval-
X (Zheng et al., 2023b), MultiPL-E (Cassano et al.,
2022), and MBXP (Athiwaratkun et al., 2023)
adapt HumanEval and MBPP to include program-
ming languages beyond Python. APPS (Hendrycks
et al., 2021), CodeContests (Li et al., 2022), and
TACO (Li et al., 2023b) introduce more challeng-
ing coding problems. MMCode (Li et al., 2024)
extends these competition-level coding tasks with
multimodal information. CodeHalu (Tian et al.,
2024) evaluates various hallucinations in code gen-
eration. DS-1000 (Lai et al., 2022), NumpyE-
val (Zan et al., 2022), and PandasEval (Jain et al.,
2022) focus on data science code generation.

Additionally, a variety of code benchmarks exist
for tasks such as code translation (Rozière et al.,
2020; Yan et al., 2023b; Ahmad et al., 2023),
test case generation (Wang et al., 2024; Li and
Yuan, 2024), code search (Husain et al., 2019),
commit message generation (Schall et al., 2024),
code summarization (Sun et al., 2024), program re-
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Chef likes to climb the stairs of his school's floor by skipping one step,
sometimes chef climbs the stairs one by one. Simply, the chef can take one or two
steps in one upward movement. There are N stairs between ground and next floor.
The chef is on the ground floor and he wants to go to the next floor with
Cheffina. Cheffina asks chef in how many ways, the chef can reach the next floor,
where order doesn't matter.

Input: First-line will contain T, the number of test cases. Then the test cases
follow. Each test case contains a single line of input, two integers N.
Output: For each test case, output in a single line answer as the number of ways.
Constraints: 1≤T≤1000, 1≤N≤10^5

Sample Input: 1 3

Sample Output: 2
Source Coding Task

GPT-4 GPT-3.5 Claude-3-Opus

Qwen-Turbo Gemini-Pro Ernie-3.5

 Proprietary Models 

Starchat-beta Gemma Mistral-Instruct

Llama2-Chat CodeLlama-Instruct

WizardCoder DeepseekCoder-Instruct

 Open-Source Models 

Models Pool

Public Test Cases

Local Judging
System

Data Filtering

Filtered by Test Cases

Filtered by Verdict

CodeJudge-Eval
LLMs as Code Judges

1,860 Code Judge Questions

Three different levels, easy, medium, and hard

Source Codes from 16 different popular LLMs
Verdict for all

Candidate Codes

Candidate Codes Generation

Fine-grained
Verdict Construction

Execution

Figure 2: An overview of our pipeline for constructing the CodeJudge-Eval benchmark.

pair (Muennighoff et al., 2023; Ye et al., 2021; Yan
et al., 2023a), code execution (Gu et al., 2024b),
and repository-level code generation (Liu et al.,
2024; Jimenez et al., 2024). However, these bench-
marks predominantly focus on code generation
based on given requirements and often rely on
high-quality test cases to evaluate the correctness
of generated code, which can be susceptible to data
leakage issues (Dong et al., 2024).

In contrast, our CJ-Eval evaluates LLMs’ code
understanding abilities from the perspective of
LLMs acting as code judges. This approach does
not depend on external unit testing; instead, it re-
quires LLMs to evaluate various solutions for the
same task, increasing the difficulty of memoriz-
ing all possible solutions. Similar efforts include
ICE-Score (Zhuo, 2024), which introduces a metric
for evaluating the usefulness of code generated by
LLMs, and the study by Gu et al. (2024a), which
examines LLMs’ challenges in understanding the
nuances of their own incorrect generations. How-
ever, our work uniquely introduces a benchmark
focused specifically on code correctness judgment,
evaluating whether LLMs can assess code not only
generated by themselves but also by other LLMs.

3 CodeJudge-Eval

3.1 Overview

As shown in Figure 2, we introduce the construc-
tion pipeline of our CJ-Eval benchmark. It consists

of N problems, denoted as P1, . . . , PN . A problem
Pi with ni test cases and mi solution codes can be
formatted as

Pi = (Si, Ti, Ci, Yi, [V i
1 , . . . , V

i
mi

]). (1)

Ti = {(Ii1, Oi
1), . . . , (I

i
ni
, Oi

ni
)} (2)

Ci = {ci1, . . . , cimi
}. (3)

Pi is composed of:

• A problem statement Si in text form.

• A set of test cases Ti, where Iij and Oi
j de-

note the input and output of the j-th test case,
respectively.

• A set of solution codes Ci, which consists of
mi solution codes generated by models for
problem Pi.

• A list of verdicts2 [V i
1 , . . . , V

i
mi

]. For the
k-th solution code cik, we define V i

k =
[v1, . . . , vni ] to represent the results of run-
ning solution code cik on all ni test cases Ti,
in the form of a list of verdicts. Note that for
a given code, the verdicts are in the form of a
list indicating its results on ni test cases. For
example, when ni = 4, a possible verdict for
cik could be V i

k = [AC,WA,TLE,AC].

2Some programming websites (e.g., Codeforces) use the
term “verdict” to indicate the result of code execution. We
adopt this term in our work.
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• A list of labels Yi. The list of labels
(or choices) for mi solution codes are
Yi = [yi1, . . . , y

i
mi

], which is derived from
[V i

1 , . . . , V
i
mi

], where V i
k determines the label

yik. Yi represents the label we use for the final
evaluation, and each code has only one label.

3.2 Dataset Construction

Following Equation 1, we introduce the data
sources used to obtain Si and Ti in Section 3.2.1.
In Section 3.2.2, we explain how we generated the
solution codes Ci. Finally, in Section 3.2.3, we
detail the rules for constructing the labels Yi.

3.2.1 Data Source
We used the test set from the APPS (Hendrycks
et al., 2021) dataset as our data source, given its
challenging nature and the the abundance of test
cases. The APPS test set consists of 5,000 pro-
gramming problems sourced from websites such as
Codeforces, LeetCode, and Kattis. The problems
are categorized into three levels of difficulty: intro-
ductory, interview, and competition. Each problem
includes a problem statement Si and multiple test
cases Ti. Each Si contains a problem description
along with several input-output examples. It is im-
portant to note that there is at least one test case
not included in Si, meaning there are some hidden
test cases. We used these 5,000 problems as our
raw data.

3.2.2 Code Generation
To generate solution codes Ci, we select 16 repre-
sentative LLMs which are capable of code gen-
eration. To ensure diversity in the generated
code, we consider three different categories of
LLMs: proprietary general-purpose LLMs, in-
cluding GPT-4 (OpenAI, 2023), GPT-3.5 (Brown
et al., 2020), Claude-3-Opus (Anthropic, 2023),
Gemini-1.0-pro (Anil et al., 2023), Ernie-3.5 (Re-
search), and Qwen-turbo (Bai et al., 2023); open-
source generalist LLMs, including Starchat (Li
et al., 2023a), Gemma (Mesnard et al., 2024),
Mistral-Instruct (Jiang et al., 2023), Llama2-
chat (Touvron et al., 2023), and ChatGLM3 (GLM
et al., 2024); and open-source code LLMs, in-
cluding CodeLlama-Instruct (Rozière et al., 2023),
Magicoder-S-DS (Wei et al., 2023), WizardCoder-
Python (Luo et al., 2024), and DeepseekCoder-
Instruct (Guo et al., 2024).

Our prompt included the problem statement Si

and a request to generate corresponding Python

code. In most cases, we extract the code by identi-
fying the ```python(.*?)``` regular expression
from the model outputs.

3.2.3 Fine-grained Verdict Construction
After obtaining Si, Ti, Ci, we need to evaluate a
code cik on the ni test cases Ti to generate a list of
verdicts V i

k . To achieve this, we re-implemented
a local fine-grained judging system to accurately
evaluate [V i

1 , . . . , V
i
mi

]. Unlike the original judg-
ing system of the APPS dataset, which primarily
focuses on whether the code is correct without dif-
ferentiating specific errors in each test case, our
judging system executes each test case separately
and precisely identifies the specific errors occurring
in each one.

Following the verdict design of well-known pro-
gramming websites such as Codeforces and Leet-
Code, we considered five types of verdicts:

• Compilation Error3 (CE): The code is
flagged for syntax errors before execution.

• Runtime Error (RE): The code throws
an exception during execution, such as
an IndexError when accessing an out-of-
bounds index.

• Time Limit Exceeded (TLE): The code ex-
ceeds the time limit (2 seconds) for a single
test case, typically due to suboptimal time
complexity.

• Wrong Answer (WA): The code executes
within the time limit but produces an incorrect
output.

• Accepted (AC): The code executes within the
time limit and produces the correct output.

3.2.4 Design of Labels
With V i

k evaluated, we can determine the result
of cik for the problem, denoted as the label (or
choice) yik. Given the five possible verdicts, there
are 25 = 32 possible labels based on whether each
verdict occurs. However, some of these cases are
impossible. For instance, a code with a compila-
tion error cannot produce any other result (since it
always fails to compile). Additionally, it is unrea-
sonable to require the model to evaluate whether

3Technically, Python is an interpreted language and there
is no actual compilation process. However, Python performs
a syntax check before running the code, including verifying
matching parentheses and correct indentation. If an error is
found, exceptions like SyntaxError or IndentationError,
etc., are raised. This type of error is referred to as a compila-
tion error on Codeforces, hence we adopt the same term.
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Labels Demonstration and
Example V i

k

A AC on all test cases
[AC, AC, AC, AC]

B The code fails to compile
[CE, CE, CE, CE]

C Incorrect, having only WA
[AC, WA, WA, AC]

D Incorrect, having only RE
[AC, AC, AC, RE]

E Incorrect, having WA and RE
[AC, WA, RE, WA]

F Incorrect, having only TLE
[AC, AC, TLE, TLE]

G Incorrect, having WA and TLE
[WA, WA, TLE, WA]

H Incorrect, having RE and TLE
[AC, RE, RE, TLE]

I Incorrect, having WA, RE, and TLE
[WA, RE, RE, TLE]

Table 1: Demonstration and example for each label. The
example illustrates the list of verdicts V i

k obtained by
evaluating the code cik on a set of test cases Ti with a
length of ni = 4.

there is an AC test case. Therefore, we ultimately
define nine labels based on the possible list of ver-
dicts V i

k , as shown in Table 1.
We refer to the labels in Table 1 as the hard

setting because they require the model to correctly
analyze all possible error types in the code. To
comprehensively evaluate models of varying levels,
we additionally introduce a medium setting and
an easy setting. The medium setting has six labels,
where original labels EGHI are grouped into a single
label, “Not A or B, having at least two types of
errors”. In the easy setting, there are only three
labels, with original labels C through I grouped
into a single option, “Not A or B, having errors”.

3.3 Data Filtering

After constructing our dataset, we obtain a dataset
comprising N = 5,000 problems, each with mi

= 16 solution codes (this full dataset will also be
released). To ensure a curated dataset, we further
filter the problems and solution codes.

3.3.1 Filter Problems by Test Case
Since our benchmark requires detecting all possible
error types, problems with a small number of test
cases may lead to inaccurate labels. For example,
if a problem has very few test cases, a program
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Figure 3: A stacked histogram on the number of test
cases in the filtered problems. Different filtering thresh-
olds are applied based on different difficulty.

that achieves AC on it might encounter WA, TLE,
or other errors when tested against more rigorous
cases.

To ensure the accuracy of the labels, we applied
a threshold to filter problems based on the number
of test cases. Specifically, we exclude problems
with no more than 20, 80, and 40 test cases for
the introductory, interview, and competition levels,
respectively. After this filtering process, we obtain
a total of 457 problems, including 133 at the intro-
ductory level, 178 at the interview level, and 146 at
the competition level. We visualize the distribution
of the number of test cases for problems of each
difficulty level in Figure 3.

3.3.2 Filter Solution Codes by Verdict

So far, we have obtained a dataset subset with N
= 457 and mi = 16. To further refine the dataset,
we considered redundancy in verdicts for the same
problem. For each problem, we retain only one
solution code per verdict (A to I). The selection
of which solution code to retain is made randomly.
The detailed filtering algorithm can be found in
Appendix A.

After filtering, there are a total of 1,860 solu-
tion codes (i.e., Σmi = 1,860), with an average of
4.1 codes per problem. For the easy and medium
settings introduced in Section 3.2.4, we still use
these 1,860 data points, but their labels have been
modified according to the rules above. The statisti-
cal information regarding the models and verdicts
corresponding to these solution codes is provided
in Appendix B.
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Model Size Easy Medium Hard
Acc F1 Acc F1 Acc F1

Simple Strategies
Random - 33.76 25.65 16.29 15.08 12.31 10.75
Always AC - 9.57 5.82 9.57 2.91 9.96 2.26
Always Most Frequent Choice - 81.18 29.87 31.34 7.95 25.52 5.08

Proprietary Models
GPT-4o - 84.30 38.16 31.56 20.67 30.75 13.61

Claude-3.5-Sonnet - 80.11 50.83 31.18 27.02 30.86 19.05

Gemini-1.5-Pro - 80.38 33.91 31.29 22.65 28.39 15.76

GPT-3.5-Turbo - 38.06 18.68 16.24 10.31 12.63 5.83

Open-Source Generalist Models
Mistral-Nemo-Instruct 12B 9.62 4.55 9.46 2.52 9.52 1.76

Gemma2-IT 9B 57.04 19.80 19.14 9.30 18.87 9.17

Llama-3.1-Instruct 8B 13.01 11.81 10.11 9.74 9.03 7.69

Qwen2-Instruct 7B 21.88 14.51 16.99 7.56 9.89 3.51

Open-Source Code Models
CodeQwen1.5-Chat 7B 15.05 13.03 9.89 3.95 10.00 3.37

CodeLlama-Instruct 7B 59.84 21.15 5.16 3.78 5.48 3.13

CodeGemma-IT 7B 16.40 10.39 5.48 3.69 5.59 3.17

DeepseekCoder-Instruct 6.7B 10.38 7.28 9.73 2.80 9.68 1.97

Table 2: Zero-shot accuracy and macro F1 scores on the CJ-Eval benchmark, evaluating four method types across
three difficulty levels.

4 Experiment

4.1 Experimental Setup

4.1.1 Evaluated Methods
For all methods, we use a temperature of 0.0. The
extraction of the choice is performed using sev-
eral regular expressions. Specifically, if we extract
nothing, we consider the model fails to generate an
answer. A discussion and statistics on failure cases
can be found in Appendix D.

Baselines To better assess the difficulty of our
benchmark, we implement three simple rule-based
strategies. “Random” randomly selects one pos-
sible choice for each problem. “Always AC” as-
sumes that the model always responds with AC,
while “Always Most Frequent Choice” assumes
that the model selects the most frequently occur-
ring answer in the current setting. For the most
frequent choice and choices distributions across
different settings, please refer to Appendix B.

Proprietary Models. We evaluate four widely
used and SOTA proprietary models (OpenAI,
2023; Anthropic, 2023; Anil et al., 2023).
The specific versions of the four models
evaluated are gpt-4o-2024-08-06 for GPT-
4o, gpt-3.5-turbo-0125 for GPT-3.5-Turbo,
claude-3-5-sonnet-20240620 for Claude, and
gemini-1.5-pro for Gemini Pro.

Open-Source Models. Among open-source mod-
els, we considered two types of code-capable mod-
els. The first type is open-source generalist models,
which are trained for general purposes and have
code capabilities as one of their skills. The second
type is open-source code LLMs, which are specif-
ically trained for code-related tasks. Considering
that our tasks involve both code generation and
task requirement understanding, we chose the In-
struct (or Chat) versions of these models. In the
Appendix C, we provide the download links for all
open-source LLMs.
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4.1.2 Metrics
We use accuracy and macro F1 as our evaluation
metrics. Accuracy intuitively reflects the propor-
tion of correctly answered questions out of 1,860
problems. However, considering the class imbal-
ance issue, particularly in the easy setting where
class C accounts for around 81% (see Appendix B
for details), we introduce macro F1 to accurately
assess the model’s overall performance across all
classes. Macro F1 is calculated by averaging the
F1 scores of each class, defined as

F1 =
1

n

∑
c

2PcRc

Pc +Rc
, (4)

where c represents the class, and P,R denote preci-
sion and recall, respectively. We recommend using
macro F1 as the primary metric.

4.2 Zero-Shot Evaluation
In Table 2, we evaluate the zero-shot performance
of four different types of methods across three dif-
ficulty levels on our CJ-Eval Benchmark. The
performance of all LLMs is suboptimal, highlight-
ing the challenging nature of our benchmark.

On Simple Strategies. We first focus on simple
strategies, as they serve as baselines for compari-
son. The “Always AC” strategy performs poorly
across both metrics. The “Always Most Frequent
Choice” strategy achieves the highest accuracy;
however, its F1 score is either lower than or only
slightly better than that of the “Random” strategy.
This indicates that although simple strategies can
achieve high accuracy due to class imbalance, none
of them significantly outperform in terms of F1.

Comparing Propriety Models. Proprietary mod-
els achieve the best overall performance among all
methods. Except for GPT-3.5, the performance of
three proprietary models is significantly superior to
that of open-source models. Moreover, their macro-
F1 scores are higher than those of simple strategies,
indicating that their judgments are not based on
some simple tricks.

Comparing Open-Source Models. Overall,
open-source models perform poorly on our bench-
mark. Almost all models have lower macro F1
scores compared to the “Random” strategy. Fur-
thermore, while open-source code LLMs like
DeepseekCoder have shown comparable perfor-
mance (Guo et al., 2024) with GPT-3.5-turbo on
HumanEval (Chen et al., 2021) and MBPP (Austin
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et al., 2021), they perform much worse on our
benchmark compared to GPT-3.5-turbo. This sug-
gests that our evaluation offers a new perspective
for investigating the potential gap between open-
source and proprietary models.

4.3 Analysis
Do More Parameters Help? Figure 4 presents a
comparison of performance when scaling two well-
known open-source LLMs, Qwen2 and Llama-3.1,
across various parameter sizes. The results indi-
cate that increasing the size of LLMs can signifi-
cantly enhance code judging performance. Notably,
Qwen2-72B achieves performance levels compa-
rable to those of GPT-4o. However, continuously
scaling the parameter size of Llama-3.1 from 70B
to 405B yields only marginal improvements, sug-
gesting that merely increasing the number of pa-
rameters does not necessarily lead to substantial
gains in code judging performance.

Do Few-Shot Examples Help? As illustrated in
Figure 5, few-shot examples can offer some bene-
fits in enhancing model performance on this bench-
mark. With one-shot examples, there is a signif-
icant increase in the performance of all models:
+14.36 for GPT-4o, +4.85 for Claude-3.5-Sonnet,
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and +16.94 for GPT-3.5-Turbo. However, perfor-
mance tends to decline substantially as the number
of shots increases. A plausible explanation for this
phenomenon is that longer prompts, which result
from additional shots, might detrimentally affect
the reasoning capabilities of LLMs. More few-shot
results are provided in Appendix E.

Does Chain-of-Thought Example Help? We
further design a 1-shot Chain-of-Thought (Wei
et al., 2022) (CoT) example, which is presented
in the Appendix F. For a fair comparison, we com-
pared the performance of the 1-shot CoT with that
of a vanilla 1-shot example. Figure 6 illustrates the
macro F1 gain achieved by the CoT example. It
can be seen that the CoT example provides signifi-
cant guidance in the hard setting, but may lead to
a performance decrease in the easy setting. This
decrease may be due to the fact that in the easy set-
ting, the task only requires determining whether the
code is correct, without needing the detailed anal-
ysis provided by the CoT example. The complete
results can be found in the Appendix E.
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Figure 8: Analyzing whether the ability to generate
correct code for a task guarantees the ability to judge
the correctness of other codes for the same tasks.

Are Easier Coding Tasks Easier to Judge? The
source for the coding tasks in our CJ-Eval is de-
rived from the APPS test set, where tasks are cat-
egorized into three difficulty levels: introductory,
interview, and competition, in ascending order of
complexity. As depicted in Figure 7, it is evident
that easier tasks do not necessarily yield higher
macro F1 judging scores, indicating that the evalu-
ated capabilities in code judging tasks differ from
those in code generation tasks.

Does Accurate Generation Ensure Accurate
Judgment? In Figure 8, we examine whether
LLMs’ ability to generate correct code translates
to its ability to assess the correctness of candidate
solutions. We first select tasks for which the LLMs
can generate correct code. Next, we evaluate how
often these LLMs can accurately judge solutions
produced by other models. The results highlight a
notable gap between generation and judgment capa-
bilities, indicating that generating correct code does
not guarantee the ability to assess code correctly.
Consequently, our benchmark offers a distinct per-
spective on LLMs’ coding abilities.

5 Conclusion

In this work, we present CodeJudge-Eval, a novel
benchmark designed to evaluate LLMs’ code un-
derstanding capabilities by assessing their perfor-
mance as code judges. We tested 12 popular LLMs,
both proprietary and open-source, on our bench-
mark. The results demonstrate the benchmark’s
difficulty, with open-source models often perform-
ing worse than random guessing. Moreover, our
analysis shows that a model’s ability to generate
correct code does not necessarily imply it can ac-
curately evaluate other solutions for the same task.
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Limitation

Our benchmark has room for enhancement in sev-
eral aspects:

• While the experimental results of CJ-Eval
offer a novel perspective for assessing the
code comprehension capabilities of LLMs, it
is not intended as a replacement for existing
language-to-code benchmarks. As our bench-
mark does not evaluate code generation, a
more comprehensive approach would involve
integrating our benchmark with language-to-
code evaluations to more effectively assess the
code understanding performance of LLMs.

• In the introduction, we discussed that our
benchmark incorporates multiple candidate
solutions for each coding task, making it more
challenging for LLMs to memorize all possi-
ble solutions and thus circumvent our eval-
uation. However, we acknowledge that this
approach does not fully mitigate the risk of in-
tentional attempts to train LLMs to memorize
all candidate solutions.

• The design of our benchmark is specifically
tailored to coding domains, thereby limiting
its applicability across broader, more general
domains. Its foundation in code judging prin-
ciples poses significant challenges in adapting
the methodology for non-coding contexts.
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Algorithm 1 Filter codes for i-th problem

Input: Pi = (Si, Ti, Ci, [V i
1 , . . . , V

i
mi

], Yi)
Output: Pi after filtering solution codes

1: Initialize set of verdicts Rx = ∅ ▷ Record existing verdicts for the i-th problem
2: Initialize set of index U = {1, . . . ,mi} ▷ mi = 16 in this algorithm
3: Initialize set of index to be deleted D = ∅
4: while U is not empty do
5: Randomly select an index k from U and delete k from U
6: if yik /∈ Rx then ▷ Recall that yik is a letter from A to I
7: Add k to D ▷ Code cik is retained
8: else
9: Add yik to Rx ▷ Code cik is discarded

10: end if
11: end while
12: for deleted index k in D do
13: Tag cik, V i

k , and yik as discarded data
14: end for
15: Remove the discarded data in Ci, [V i

1 , . . . , V
i
mi

], and Yi simultaneously

A Algorithm for Filtering by Verdict

We introduce our filter by verdict method in Algo-
rithm 1. The primary purpose of the filtering is to
ensure that for each problem, there is at most one
solution code per verdict. Additionally, we aim for
an even distribution of the source models for the
codes. After filtering, we initially obtained 1,994
data points. However, we later discovered that
134 of these data points, labeled as B (compilation
error), had empty code fields. Therefore, we man-
ually removed these 134 data points to obtain the
final 1,860 data points mentioned in Section 3.3.

B Statistics across Different Settings

For the hard setting, the statistical information re-
garding the models and verdicts corresponding to
these solution codes is provided in Table 3. It can
be observed that the distribution of solution codes
across source models and choices is relatively uni-
form. One exception is that the majority of solution
codes with choice A come from GPT-4. This is be-
cause most of the accepted codes obtained during
code generation are produced by GPT-4.

Table 4 and Table 5 show the statistics of our
medium setting and easy setting, respectively. In
the medium setting, choice F is the sum of choices
EGHI in the hard setting. In the easy setting, choice
C is the sum of choices C to I in the hard setting. It
can be observed that the data in the medium setting
remains relatively balanced, but the easy setting
faces a severe class imbalance issue. Therefore, we

introduced the Macro-F1 metric, which is more ro-
bust to class imbalance, for a more comprehensive
evaluation.

C Model Links

• mistralai/Mistral-Nemo-Instruct:
https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407

• google/gemma-2-9b-it: https://
huggingface.co/google/gemma-2-9b-it

• meta-llama/Meta-Llama-3.1-8B-Instruct:
https://huggingface.co/meta-llama/
Meta-Llama-3.1-8B-Instruct

• Qwen/Qwen2-7B-Instruct:
https://huggingface.co/Qwen/
Qwen2-7B-Instruct

• Qwen/CodeQwen1.5-7B-Chat: https:
//huggingface.co/Qwen/CodeQwen1.
5-7B-Chat

• meta-llama/CodeLlama-7b-Instruct-hf:
https://huggingface.co/meta-llama/
CodeLlama-7b-Instruct-hf

• google/codegemma-7b-it: https:
//huggingface.co/google/
codegemma-7b-it

• deepseek-ai/deepseek-coder-6.7b-instruct:
https://huggingface.co/deepseek-ai/
deepseek-coder-6.7b-instruct

https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat
https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat
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https://huggingface.co/meta-llama/CodeLlama-7b-Instruct-hf
https://huggingface.co/google/codegemma-7b-it
https://huggingface.co/google/codegemma-7b-it
https://huggingface.co/google/codegemma-7b-it
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct


86

Model
Choice

SUM
A B C D E F G H I

GPT-4 100 4 20 13 21 8 13 2 4 185
GPT-3.5 28 2 36 4 5 11 14 2 3 105
Claude-3-Opus 11 0 32 5 23 16 24 4 4 119
Gemini-1.0-pro 3 0 46 5 9 3 4 4 3 77
Ernie-3.5 4 5 30 22 20 9 16 3 8 117
Qwen-turbo 9 4 25 22 22 2 11 4 7 106

Starchat-beta-16B 1 1 29 33 30 4 19 9 8 134
Gemma-7B 1 29 33 15 17 1 10 0 2 108
Mixtral-Instruct-7B 1 26 11 42 21 9 19 6 11 146
Llama2-chat-7B 1 20 17 116 3 13 3 1 2 176
CodeLlama-Instruct-7B 1 0 18 22 26 3 10 3 4 87
WizardCoder-Python-7B 4 37 30 10 11 6 21 2 2 123
DeepseekCoder-Instruct-6.7B 8 2 37 10 8 3 8 0 2 78
Magicoder-S-DS-6.7B 3 2 32 5 17 6 5 1 4 75
ChatGLM3-6B 2 2 27 36 13 3 19 1 4 107
Codegeex2-6B 1 38 33 11 15 3 9 2 5 117

SUM 178 172 456 371 261 100 205 44 73 1860

Table 3: Statistics of solution codes in our CJ-Eval benchmark. Each row indicates the large language model that
generates the solution code, and each column represents the choice of the code on the corresponding problem.
"SUM" denotes the sum of data in the respective row or column. Our CJ-Eval benchmark contains a total of 1,860
solution codes.

D Discussion on Failure Cases

We refer to the situation where the model fails to
successfully generate an answer (choice) as failing
cases. The percentage of failing cases for each
model is presented in Table 8. It can be observed
that most models have a low or zero failure rate,
but a few models (Llama-3.1 and DeepseekCoder)
exhibit high failure rates. Using a 1-shot prompt
can help mitigate the issue of high failure rates.

Given the low failure rates of the proprietary
models, it demonstrates that our prompt and answer
extraction processes are well designed. The higher
failure rates observed in open-source models are
likely due to their weaker ability to understand the
prompts. Therefore, we do not further attempt to
reduce the failure rates of the open-source models.

Common failing cases include:

• Model refusing to answer the question. Ex-
ample from DeepseekCoder: "I’m sorry, but
I can’t provide the answer to this question as
it’s not related to computer science. . . . ".

• Model attempting to write code or rephrase

the problem statement instead of judging. Ex-
ample from Llama-3.1: "def max_sections(n,
q, intervals): . . . ".

• Model not following the specified format. Ex-
ample from CodeGemma: "The code is not
well-written and has a number of issues. The
function . . .".

E More Results

Due to space limit, we do not included the full 1-
shot and 1-shot CoT results in the main text. The
complete results can be found in Table 9. Among
all methods, Claude-3.5 achieve the best perfor-
mance in both the medium and hard settings when
using the 1-shot CoT example, significantly outper-
forming other methods. For the easy setting, GPT-
4o and Claude-3.5 achieve the best performance
in terms of accuracy and Macro F1, respectively,
under the 1-shot example.

Additionally, we present the confusion matrix
of GPT-4 under the hard 1-shot Chain-of-Thought
(CoT) setting in Table 6. In this matrix, the ele-
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Model
Verdict

SUM
A B C D E F

gpt4 100 4 20 13 8 40 185
gpt3.5 28 2 36 4 11 24 105

claude3 11 0 32 5 16 55 119
gemini 3 0 46 5 3 20 77
wenxin 4 5 30 22 9 47 117
qwen 9 4 25 22 2 44 106

chatglm 2 2 27 36 3 37 107
codegeex 1 38 33 11 3 31 117
codellama 1 0 18 22 3 43 87
deepseek 8 2 37 10 3 18 78
gemma 1 29 33 15 1 29 108
llama 1 20 17 116 13 9 176

magiccoder 3 2 32 5 6 27 75
Mixtral 1 26 11 42 9 57 146

starcoder 1 1 29 33 4 66 134
wizardcoder 4 37 30 10 6 36 123

SUM 178 172 456 371 100 583 1860

Table 4: Statistics of solution codes in the medium setting
of CJ-Eval benchmark.

Model
Verdict

SUM
A B C

gpt4 100 4 81 185
gpt3.5 28 2 75 105

claude3 11 0 108 119
gemini 3 0 74 77
wenxin 4 5 108 117
qwen 9 4 93 106

chatglm 2 2 103 107
codegeex 1 38 78 117
codellama 1 0 86 87
deepseek 8 2 68 78
gemma 1 29 78 108
llama 1 20 155 176

magiccoder 3 2 70 75
Mixtral 1 26 119 146

starcoder 1 1 132 134
wizardcoder 4 37 82 123

SUM 178 172 1510 1860

Table 5: Statistics of solution codes in the easy
setting of CJ-Eval benchmark.

Table 6: Confusion matrix of GPT-4o under the hard
1-shot Chain-of-Thought (CoT) setting.

A B C D E F G H I Fail
A 153 0 10 0 0 12 0 0 0 3
B 6 28 78 4 28 0 2 1 4 21
C 49 2 350 2 11 12 4 1 8 17
D 20 5 215 36 73 4 0 2 6 10
E 20 0 186 15 28 2 2 1 4 3
F 14 0 37 4 5 31 4 2 3 0
G 20 0 130 3 12 16 7 1 11 5
H 1 0 22 4 9 2 1 0 5 0
I 1 0 48 2 9 6 2 0 5 0

ment at the i-th row and j-th column represents the
number of samples where the true label is i but are
classified as label j. The "Fail" column indicates
cases where no option was extracted. It can be ob-
served that as a relatively well-performing method,
GPT-4 with CoT rarely misclassifies correct code
as incorrect. However, its main errors lie in distin-
guishing specific error types within the Incorrect
category.

In Table 7, under the GPT-4o hard 1-shot setting,
we conducted an ablation study on the tempera-
ture parameter, experimenting with values of 0.1,
0.5, 1.0, and 2.0. The results show that the model
achieves its best performance at a temperature of

Temperature Accuracy (%) Macro F1 (%)
0.1 32.10 17.13
0.5 32.37 17.62
1.0 32.10 15.93
2.0 28.23 16.09

Table 7: Ablation results for temperature parameter
under the GPT-4o hard 1-shot setting.

0.5, with an accuracy of 32.37% and a macro F1
score of 17.62%. As the temperature increases to
2.0, the model’s performance declines, with accu-
racy and macro F1 dropping to 28.23% and 16.09%,
respectively. Overall, within an appropriate temper-
ature range, the model’s performance is not highly
sensitive to the choice of the temperature parame-
ter.

F Prompt

We demonstrate our prompts in this section.

General Prompt Template. We will introduce
zero-shot, one-shot, one-shot CoT, and few-shot
prompts in this section. Before that, our prompts
utilize the same prompt template, as shown in Fig-
ure 9. The four types of prompts differ only in the
content filled in the "Placeholder".
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Model Size Shot Easy Medium Hard

Proprietary Models

GPT-4o -
0 0.16 0.16 0.81
1 0.0 0.0 0.0

Claude-3.5-Sonnet -
0 0.0 0.0 0.0
1 0.0 0.0 0.0

Gemini-1.5-Pro -
0 1.02 3.87 3.87
1 0.0 0.0 0.0

GPT-3.5-turbo -
0 0.11 0.16 0.32
1 0.0 0.0 0.0

Open-Source Generalist Models

Mistral-Nemo-Instruct 12B
0 2.37 2.47 1.45
1 0.32 0.38 0.27

Gemma2-IT 9B
0 0.22 0.81 0.38
1 0.43 0.27 0.38

Llama-3.1-Instruct 8B
0 8.06 37.42 48.23
1 11.34 8.71 12.15

Qwen2-Instruct 7B
0 10.16 1.99 0.70
1 1.34 0.0 0.0

Open-Source Specific Code Models

CodeQwen1.5-Chat 7B
0 0.0 0.0 0.0
1 0.05 0.11 0.11

CodeLlama-Instruct 7B
0 2.37 2.47 1.45
1 0.32 0.38 0.27

CodeGemma-IT 7B
0 44.41 58.71 60.22
1 37.8 40.7 36.02

DeepseekCoder-Instruct 6.7B
0 0.22 0.16 0.75
1 2.20 1.24 8.49

Table 8: Failure rates (in percentages) of evaluated models.

Placeholder A is used to insert the description
of the choices. For different difficulties settings in
evaluation (i.e., easy, medium, and hard), we design
different choices description to be filled into the
first curly bracket (Placeholder A) in the template.
The choices for the three settings, from easy to
hard, are as follows.

For Placeholder B, in the one-shot, one-shot CoT,
and few-shot prompts, it is filled with one or more
examples correspondingly. In the zero-shot prompt,
this content is empty.

Placeholders C and D are the same for all four
types of prompts, containing the description of the
new problem and the corresponding solution code
to be judged.

(A). AC
(B). CE
(C). Not AC

(A). AC
(B). CE
(C). Not AC, only WA errors
(D). Not AC, only RE errors
(E). Not AC, only TLE errors
(F). Not AC for at least two types of
errors

(A). AC
(B). CE
(C). Not AC, only WA errors
(D). Not AC, only RE errors
(E). Not AC, both WA and RE errors
(F). Not AC, only TLE errors
(G). Not AC, both WA and TLE errors
(H). Not AC, both TLE and RE errors
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Model Size Shot Easy Medium Hard
Acc F1 Acc F1 Acc F1

Simple Strategies
Random - - 33.76 25.65 16.29 15.08 12.31 10.75
Always AC - - 9.57 5.82 9.57 2.91 9.96 2.26
Always Most Frequent Choice - - 81.18 29.87 31.34 7.95 25.52 5.08

Proprietary Models

GPT-4o -
0 84.30 38.16 31.56 20.67 30.75 13.61
1 84.73 52.52 32.80 23.82 31.99 15.06

1 (CoT) 79.89 39.97 36.45 29.12 34.30 21.62

Claude-3.5-Sonnet -
0 80.11 50.83 31.18 27.02 30.86 19.05
1 81.67 55.68 33.76 31.73 32.31 20.50

1 (CoT) 77.85 45.05 39.46 36.76 35.22 27.91

Gemini-1.5-Pro -
0 80.38 33.91 31.29 22.65 28.39 15.76
1 80.97 43.02 32.63 27.05 31.61 18.92

GPT-3.5-turbo -
0 38.06 18.68 16.24 10.31 12.63 5.83
1 62.04 35.62 29.95 16.78 12.69 7.94

1 (CoT) 66.61 39.21 24.95 17.72 17.90 12.52

Open-Source Generalist Models

Mistral-Nemo-Instruct 12B
0 9.62 4.55 9.46 2.52 9.52 1.76
1 30.75 15.44 10.54 4.47 10.27 2.98

Gemma2-IT 9B
0 57.04 19.80 19.14 9.30 18.87 9.17
1 51.83 23.04 15.86 8.50 16.08 6.94

Llama-3.1-Instruct 8B
0 13.01 11.81 10.11 9.74 9.03 7.69
1 10.05 10.20 10.48 6.73 8.76 4.19

Qwen2-Instruct 7B
0 21.88 14.51 16.99 7.56 9.89 3.51
1 66.40 30.29 28.28 11.39 8.82 5.31

Open-Source Code Models

CodeQwen1.5-Chat 7B
0 15.05 13.03 9.89 3.95 10.00 3.37
1 11.67 11.16 10.11 4.04 10.00 2.61

CodeLlama-Instruct 7B
0 59.84 21.15 5.16 3.78 5.48 3.13
1 7.85 4.56 8.01 2.49 7.58 1.68

CodeGemma-IT 7B
0 16.40 10.39 5.48 3.69 5.59 3.17
1 9.78 6.76 6.77 3.58 7.58 2.43

DeepseekCoder-Instruct 6.7B
0 10.38 7.28 9.73 2.80 9.68 1.97
1 15.05 8.59 10.05 4.10 9.78 2.48

Table 9: More results on our CJ-Eval benchmark. We present all results for the 0-shot, 1-shot, and 1-shot Chain-of-
Thought settings.
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(I). Not AC, all WA, RE, and TLE errors

Zero-shot Prompt. As described above, a com-
plete zero-shot prompt, with Figure 9 as the tem-
plate, involves inserting the corresponding choices
description based on difficulty at Placeholder A,
leaving Placeholder B empty, and filling in the
questions to be answered at Placeholders C and
D.

One-shot Prompt. The only difference between
a one-shot prompt and a zero-shot prompt is that a
single example question is inserted at Placeholder
B in the one-shot prompt. This same one-shot ex-
ample question is used consistently throughout the
evaluation. The full example is shown in Figure 10.

Note that the answer to the example question
depends on the difficulty setting of the current eval-
uation, as the meanings of the options vary with
difficulty. The answer to this question is A for easy,
medium, and hard difficulty levels.

One-shot CoT Prompt. Similar to a one-shot
prompt, the primary difference with a one-shot CoT
(Chain-of-Thought) prompt lies in the example pro-
vided, which includes a detailed Chain-of-Thought
process. The complete example is shown in Fig-
ure 11, with the answers to the sample question
being C, E, and F under the easy, medium, and
hard settings, respectively. The prompt also in-
cludes slight modifications to guide the model to
think step by step. These specific alterations can
be found in our released CJ-Eval Benchmark.

Few-shot Prompt. Few-shot prompts refer to the
2-shot and 3-shot settings depicted in Figure 5. The
main difference here is that we include 2 or 3 ex-
amples at Placeholder B. These newly introduced
examples can also be found in our released CJ-Eval
Benchmark.

G Analysis for Chain-of-Thought

To investigate whether the improvements brought
by Chain-of-Thought (CoT) stem from a clearer
reasoning of the problem, we present the output of
Claude-3.5-Sonnet on a code judging task with a
one-shot CoT example. The problem is shown in
Figure 12, and the model’s response is displayed
in Figure 13. The results indicate that the model
identified several errors in the code and discussed
whether the code would result in WA (Wrong An-
swer), CE (Compilation Error), RE (Runtime Er-

ror), or TLE (Time Limit Exceeded) errors, ulti-
mately providing the correct answer.
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# Task Requirement

You need to check whether the following code can pass the given programming problem ,
which may come from interview questions or competitive programming problems on

sites like LeetCode , Codewars , Codeforces , or Kattis. You need to comprehensively
consider various test cases , assuming that the test cases are sufficient to detect
any existing errors.

## Explanation of Choices

The meanings of some results are explained as follows:
- AC: Accepted , the program is completely correct and passes all hidden test cases;
- CE: Compilation Error , detected by Python before the program runs (e.g.,
mismatched parentheses , incorrect - indentation , invalid Python syntax , etc.);
- WA: Wrong Answer , the output is incorrect for at least one test case;
- RE: Runtime Error , the program crashes for at least one test case;
- TLE: Time Limit Exceeded , the program exceeds the time limit (2 seconds per test
case) for at least one test case , within the problem ’s constraints.

## Choices

Please select the option that correctly describes the result (select only one option
). You must directly output the answer by a single letter.

{Placeholder A: The choices and their explanation are provided here. The choices
vary depending on whether the current evaluation setting is Easy , Medium , or Hard.}

{Placeholder B: When the evaluation setting is 1-shot , an example problem with a
solution code will be provided here. Otherwise , nothing will be inserted .}

## New Problem

### New Problem Description

{Placeholder C: The textual description of the problem to be judged and a few input -
output examples are provided here.}

### New Solution to be Judged

{Placeholder D: The Python solution code to be judged is provided here.}

### New Answer
You must directly output the answer by a single letter.
The answer is

Figure 9: The template of our prompt. The content enclosed in "{}" (marked as “Placeholder”) will be filled in later
based on the evaluation setting and the problem with the judged solution code.
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## Example problem

### Example Problem Description

Finally , the pandemic is over in ChefLand , and the chef is visiting the school again
. Chef likes to climb the stairs of his school ’s floor by skipping one step ,
sometimes chef climbs the stairs one by one. Simply , the chef can take one or 2
steps in one upward movement. There are N stairs between ground and next floor. The
chef is on the ground floor and he wants to go to the next floor with Cheffina but ,
Cheffina asks chef in how many ways , the chef can reach the next floor normally or
any combination of skipping one step , where order doesn ’t matter.

-----Input:-----

- First -line will contain $T$ , the number of test cases. Then the test cases follow.
- Each test case contains a single line of input , two integers $N$.

-----Output:-----

For each test case , output in a single line answer as the number of ways.

-----Constraints -----
- $1 \leq T \leq 1000$
- $1 \leq N \leq 10^5$

-----Sample Input:-----
1
3

-----Sample Output:-----
2

-----EXPLANATION:-----
ways: [1,1,1], here chef climb to the next floor , one by one stair.
[1,2], here chef climb to the next floor , one step first and after that 2 stairs at
once.
Note , [2,1] consider the same as that of [1,2] hence ignored.

### Example Solution to be Judged

def count_ways(n):
return (n // 2) + 1

def solve(test_cases):
results = []
for n in test_cases:

results.append(count_ways(n))
return results

import sys
input = sys.stdin.read
data = input().split()

T = int(data [0])
test_cases = [int(data[i]) for i in range(1, T + 1)]

results = solve(test_cases)

for result in results:
print(result)

### Example Answer
You must directly output the answer by a single letter.
The answer is (AAA).

Figure 10: The example problem to fill in the prompt template in the one-shot setting. The “AAA” in the last
parentheses represents the content inserted under hard, medium, and easy settings, respectively.
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## Example problem

### Example Problem Description

You have an array $a_1 , a_2 , \dots , a_n$.
Let ’s call some subarray $a_l , a_{l + 1}, \dots , a_r$ of this array a subpermutation if it contains all
integers from $1$ to $r-l+1$ exactly once. For example , array $a = [2, 2, 1, 3, 2, 3, 1]$ contains $6$
subarrays which are subpermutations: $[a_2 \dots a_3]$, $[a_2 \dots a_4]$, $[a_3 \dots a_3]$, $[a_3 \dots
a_5]$, $[a_5 \dots a_7]$, $[a_7 \dots a_7]$.
You are asked to calculate the number of subpermutations.

-----Input -----

The first line contains one integer $n$ ($1 \le n \le 3 \cdot 10^5$).
The second line contains $n$ integers $a_1 , a_2 , \dots , a_n$ ($1 \le a_i \le n$).
This array can contain the same integers.

-----Output -----

Print the number of subpermutations of the array $a$.

-----Examples -----
Input
8
2 4 1 3 4 2 1 2
Output
7

Input
5
1 1 2 1 2
Output
6

-----Note -----

There are $7$ subpermutations in the first test case. Their segments of indices are $[1, 4]$, $[3, 3]$, $[3,
6]$, $[4, 7]$, $[6, 7]$, $[7, 7]$ and $[7, 8]$.

In the second test case $6$ subpermutations exist: $[1, 1]$, $[2, 2]$, $[2, 3]$, $[3, 4]$, $[4, 4]$ and $[4,
5]$.

### Example Solution to be Judged

def count_subpermutations(n, arr):
n = len(arr)
count = 0
for i in range(n):

nxt = 1
st = set()
for j in range(i,-1,-1):

st.add(arr[j])
while (nxt in st):

nxt += 1
if nxt==i-j+1+1:

count += 1
return count

n = int(input ())
arr = list(map(int , input().split()))
print(count_subpermutations(n,arr))

### Example Answer
You must analyze the code first and then directly output the answer following the given format at the end of
your response.

This code enumerates the right endpoint of the interval as i and attempts to verify whether j, as the left
endpoint of the interval , is valid. The code stores the numbers within the interval [i, j] in a set and then
finds the smallest missing number. If this number equals the interval length plus one , it indicates that

all numbers from 1 to the interval length appear exactly once , making the interval valid. The logic of the
code is correct and will not result in a WA. The implementation is also error -free , preventing RE. However ,
the algorithm ’s complexity is O(n^2), which cannot handle the given data range and will result in a TLE.

The answer is (FEC).

Figure 11: The example problem to fill in the prompt template in the one-shot CoT setting. The “FEC” in the last
parentheses represents the content inserted under hard, medium, and easy settings, respectively.
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### New Problem Description

An accordion is a string (yes , in the real world accordions are musical instruments , but let ’s forget about
it for a while) which can be represented as a concatenation of: an opening bracket (ASCII code $091$), a
colon (ASCII code $058$), some (possibly zero) vertical line characters (ASCII code $124$), another colon ,
and a closing bracket (ASCII code $093$). The length of the accordion is the number of characters in it.

For example , [::], [:||:] and [:|||:] are accordions having length $4$ , $6$ and $7$. (:|:) , {:||:} , [:],
]:||:[ are not accordions.

You are given a string $s$. You want to transform it into an accordion by removing some (possibly zero)
characters from it. Note that you may not insert new characters or reorder existing ones. Is it possible to
obtain an accordion by removing characters from $s$ , and if so, what is the maximum possible length of the
result?

-----Input -----
The only line contains one string $s$ ($1 \le |s| \le 500000$). It consists of lowercase Latin letters and
characters [, ], : and |.

-----Output -----
If it is not possible to obtain an accordion by removing some characters from $s$ , print $-1$. Otherwise
print maximum possible length of the resulting accordion.

-----Examples -----
Input
|[a:b:|]
Output
4

Input
|]:[|:]
Output
-1

### New Solution to be Judged

def max_accordion_length(s):
# Initialize the stack and the max length
stack = []
max_len = 0

# Iterate over each character in the string
for c in s:

# If the character is an opening bracket or a colon , push it to the stack
if c == ’[’ or c == ’:’:

stack.append(c)
# If the character is a vertical line , check if the stack is not empty and the top element is a
colon
elif c == ’|’ and stack and stack[-1] == ’:’:

stack.append(c)
# If the character is a closing bracket , pop elements from the stack until an opening bracket is
found
elif c == ’]’ and stack and stack[-1] == ’[’:

stack.pop()
# If the stack is not empty , it means we have a complete accordion
if stack:

max_len = max(max_len , len(stack))
# If the character is a colon , check if the stack is not empty and the top element is a colon
elif c == ’:’ and stack and stack[-1] == ’:’:

stack.append(c)
# If the character is not a valid accordion character , return -1
else:

return -1

# If the stack is not empty , it means we have an incomplete accordion
if stack:

return -1

# Return the max length of the accordion
return max_len

# Test the function
print(max_accordion_length(input()))

### New Answer
You must analyze the code first and then directly output the answer following the given format at the end of
your response.

Figure 12: A solution code and its corresponding problem to be judged in the CoT setting.
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1. The function ‘max_accordion_length ‘ takes a string as input and uses a stack to
keep track of the accordion structure.

2. It iterates through each character in the string:
- For ’[’ or ’:’, it pushes the character onto the stack.
- For ’|’, it checks if the top of the stack is ’:’ before pushing.
- For ’]’, it checks if the top of the stack is ’[’, then pops it and updates the
max length if a complete accordion is found.

- For ’:’, it checks if the top of the stack is also ’:’ before pushing.
- For any other character , it returns -1.

3. If the stack is not empty at the end , it returns -1 (incomplete accordion).

4. The function returns the maximum length of a valid accordion found.

However , there are several issues with this implementation:

1. It doesn ’t handle the case where ’[’ appears after ’:’ correctly.
2. It doesn ’t properly track the start of an accordion.
3. It doesn ’t correctly handle nested accordions or multiple accordions in the
string.
4. It may return incorrect results for some valid inputs.

For example:
- For input "[:||:]" , it will return 0 instead of 6.
- For input "[::][::]" , it will return 2 instead of 4.
- For input "[:||:][::]" , it will return 5 instead of 6.

These issues will lead to Wrong Answer (WA) for many test cases. The code doesn ’t
have any syntax errors that would cause Compilation Error (CE), and it’s unlikely to
cause Runtime Error (RE) or Time Limit Exceeded (TLE) given the problem constraints

.

Therefore , the correct answer is:

(C)

Figure 13: Output from Claude-3.5-Sonnet for the task in Figure 12. The answer C is correct.
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