
Proceedings of the 31st International Conference on Computational Linguistics, pages 10423–10434
January 19–24, 2025. ©2025 Association for Computational Linguistics

10423

VisualRWKV: Exploring Recurrent Neural Networks for Visual Language
Models

Haowen Hou* and Peigen Zeng+ and Fei Ma* and Fei Richard Yu+†

*Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China
+College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

†Shool of Information Technology, Carleton University, Canada
{houhaowen, mafei, yufei}@gml.ac.cn *

Abstract

Visual Language Models (VLMs) have rapidly
progressed with the recent success of large
language models. However, there have been
few attempts to incorporate efficient linear Re-
current Neural Networks (RNNs) architectures
into VLMs. In this study, we introduce Visu-
alRWKV, the first application of a linear RNN
model to multimodal learning tasks, leverag-
ing the pre-trained RWKV language model.
We propose a data-dependent recurrence and
sandwich prompts to enhance our modeling
capabilities, along with a 2D image scanning
mechanism to enrich the processing of visual
sequences. Extensive experiments demonstrate
that VisualRWKV achieves competitive perfor-
mance compared to Transformer-based mod-
els like LLaVA-1.5 on various benchmarks.
Compared to LLaVA-1.5, VisualRWKV has
a speed advantage of 3.98 times and can save
54% of GPU memory when reaching an infer-
ence length of 24K tokens. To facilitate fur-
ther research and analysis, we have made the
checkpoints and the associated code publicly
accessible at the following GitHub repository:
https://github.com/howard-hou/VisualRWKV.

1 Introduction

Large Language Models (LLMs) have demon-
strated exceptional performance in natural lan-
guage processing tasks (Touvron et al., 2023b;
Brown et al., 2020). Extending LLMs to support vi-
sual inputs has garnered significant attention in the
research community (OpenAI, 2023). Visual Lan-
guage Models (VLMs) inherit powerful capabilities
from LLMs, such as strong instruction following,
zero-shot generalization, and in-context learning
(Liu et al., 2023b; Zhu et al., 2024a). By integrating
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visual and textual information, VLMs not only en-
hance the understanding of visual content but also
provide richer context for language understanding
and generation. VLMs hold tremendous potential
for solving visual problems and advancing various
vision-language tasks.

However, despite the excellent performance of
existing LLMs and VLMs, their inherent compu-
tational and memory complexity due to the self-
attention mechanism in the Transformer architec-
ture results in quadratic growth in computation
and memory requirements with the increase in se-
quence length (Katharopoulos et al., 2020). This
leads to high inference costs and limits the deploy-
ment and application of Transformer-based VLMs
on edge devices.

The Receptance Weighted Key Value (RWKV)
model, a novel Recurrent Neural Network (RNN)
architecture, presents a promising solution to the
bottleneck of long-sequence modeling (Peng et al.,
2023a). It surpasses Transformers in large-scale
data performance and exhibits linear scalability
with sequence length, positioning itself as a promis-
ing successor to Transformers in language model-
ing (Peng et al., 2023b).

Currently, there is a notable gap in research
exploring how this efficient architecture can be
leveraged for multimodal tasks. In this study, we
introduce the VisualRWKV model, marking the
first application of a linear RNN model to multi-
modal learning tasks. Specifically, we utilize the
pre-trained RWKV language model as the founda-
tional language model and explore several novel
mechanisms applied to VisualRWKV.

VisualRWKV introduces: (1) an innovative data-
dependent recurrence to enhance the capabilities
and capacity of the RWKV model. (2) a novel
sandwich prompt designed to provide richer condi-
tions when processing visual sequences. (3) a new
2D image scanning mechanism to enhance the 2D
modeling capabilities of visual sequences.

https://github.com/howard-hou/VisualRWKV
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(b) Speed Comparison

(c) GPU Memory Comparison

(a)  Accuracy Comparison

memory
↓ 54%

3.98× 
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Figure 1: VisualRWKV outperforms the SoTA LLaVA-
1.5 (Liu et al., 2023a) on 4 tasks (a), with high computa-
tional efficiency (b) and low, stable memory usage (c).

Extensive experiments on various multimodal
learning benchmarks validate the effectiveness of
VisualRWKV, as shown in Figure 1. Compared to
other Transformer-based models of similar size,
such as LLaVA-1.5 (Liu et al., 2023a), Visual-
RWKV demonstrates competitive performance,
achieving outstanding results on multiple popular
benchmarks.

In summary, this study presents the VisualR-
WKV model, explores the impact of various novel
designs on VisualRWKV, introduces the innovative
sandwich prompt to enhance representation capa-
bilities, and conducts extensive experiments across
diverse multimodal learning benchmarks.

2 Related Works

2.1 Visual Language Models

Following the success of LLMs, recent research has
pivoted towards VLMs (Achiam et al., 2023; Team
et al., 2023) for enhancing visual understanding
and reasoning capabilities. Expanding on various
pre-trained LLM architectures, researchers have
proposed diverse methodologies for incorporating
visual information. Flamingo (Alayrac et al., 2022)
and BLIP-2 (Li et al., 2023c) introduce distinct
techniques for modality fusion, integrating visual
tokens with frozen large language models through
gated attention or query transformers. Building
on the effectiveness of instruction tuning, LLaVA
(Liu et al., 2023b,a) and MiniGPT-4 (Zhu et al.,
2024a; Chen et al., 2023a) utilize visual instruction
tuning to align visual input with LLMs, showcas-
ing notable achievements. Recent advancements,
such as Kosmos-2 (Peng et al., 2023c) and Shikra
(Chen et al., 2023b), further enhance VLMs with
grounded visual understanding capabilities. De-
spite their promising potential for general-purpose
visual reasoning and planning tasks, these models
are generally expensive and challenging to train
and deploy.

2.2 Linear RNN Large Language Model

Recent advancements in LLMs, such as GPT (Rad-
ford et al., 2019; Brown et al., 2020; Achiam
et al., 2023), LLaMA (Touvron et al., 2023a,b), and
PaLM (Anil et al., 2023; Chowdhery et al., 2023),
have showcased remarkable prowess across vari-
ous natural language processing tasks. However,
traditional Transformer-based LLMs suffer from
quadratic complexity O(L2) issues in both compu-
tation and memory, prompting the emergence of
linear RNNs as potential successors.

RNNs model sequential data with temporal de-
pendencies by generating a hidden state ht at
each time step, which is then utilized as input for
the subsequent step. Classical RNN variants like
LSTM (Hochreiter and Schmidhuber, 1997) and
GRU (Cho et al., 2014) excel in inexpensive infer-
ence, operating typically at O(1) time complexity
per step relative to sequence length. Nonetheless,
their older designs often pose challenges in paral-
lelization across time dimensions during training.

Linear RNNs present themselves as promising
successors to the Transformer, offering a more ef-
ficient token mixing method. They enable a space
complexity of O(L) and an inference complexity
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of O(1). Leveraging Parallel Prefix Sum Scan (Har-
ris et al., 2007) for acceleration can further enhance
their efficiency. The RWKV (Peng et al., 2023b;
Hou and Yu, 2024), a linear RNN-based LLM, has
showcased competitive performance compared to
GPT models of similar scale. RWKV introduces
temporal decay to gradually reduce the influence
of past information, implicitly incorporating po-
sitional information. Additionally, it integrates a
token-shift mechanism facilitating linear interpola-
tion between current and previous inputs. This al-
lows the model to naturally aggregate and regulate
information within input channels. Furthermore,
RWKV boasts a time complexity of O(L) and an
inference complexity of O(1), ensuring consistent
inference time per token. As a result, the overall
inference duration scales linearly with sequence
length. The memory footprint of RWKV remains
constant, regardless of sequence length, contribut-
ing to its efficiency and scalability.

3 Methods

In this section, we initially introduce the funda-
mental concepts of the RWKV language model.
(Section 3.1). Following that, we elaborate on
the transformation of the RWKV language model
into our proposed VisualRWKV visual language
model (Section 3.2), which mainly includes data-
dependent recurrence, sandwich prompting, and
image scanning.

3.1 Preliminaries
The RWKV(Peng et al., 2024) backbone is struc-
tured using stacked residual blocks, with each block
containing a time-mixing and a channel-mixing
sub-block. These components embody recurrent
structures designed to leverage past information.

Data-independent Token Shift As shown in Fig-
ure 3, trainable variable µg, µr, µk, µv are used in
a linear combination of xt and xt−1, to achieve a
simple mixing, which interpolate between the in-
puts of the current and previous time-steps. The
combination of shifted previous step and current
step was linear projected through projection matrix
within the block:

αt = (µα ⊙ xt + (1− µα)⊙ xt−1)Wα (1)

where α serves as a notation for the variables r, g,
k, and v, given that they are subject to an identical
linear combination formula. Please note that the
linear combination used here is data independent,

meaning the value of µα is not dependent on xt or
xt−1.

Data-independent Time Mixing In vanilla
RWKV, the time mixing is articulated through the
update of the WKV vectors and the WKV operator
is input-data independent. The formula of single
head WKV operator is given by:

wkvt = diag(u) · kT
t · vt +

t−1∑
i=1

diag(w)t−1−i · kT
i · vi (2)

where w and u are two trainable parameters. The
parameter u serves as a term weight for the current
token when the model encounters it for the first
time. It enables the model to efficiently process
the token by focusing more on important tokens
and quickly filtering out unimportant ones. An-
other important parameter is w, which is a channel-
wise time decay vector per head. Furthermore, we
transform parameter w by w = exp(− exp(w)).
This transformation ensures that all values of w
are within the range (0, 1), ensuring that diag(w)
represents a contraction matrix.

The output from the single-head WKV operator
undergoes processing by the layer normalization
and the SiLU activation. Then, all outputs are con-
catenated to form the output vector ot:
ot = concat(SiLU(gt)⊙LayerNorm(rt ·wkvt))Wo (3)

where LayerNorm operates on each head separately.
For further details and formulas of the models, one
can refer to Peng et al. (2024) and Hou and Yu
(2024).

3.2 VisualRWKV

Method Size VQA SQA TQA GQA

VisualRWKV-Base 1.6B 51.08 41.94 35.19 48.09
+Data-dep Recurrence 1.6B 65.82 46.55 40.26 49.06
+Bidirection +Sandwich 1.6B 64.96 56.72 41.94 48.04
+Better Learning Rate 1.6B 69.42 59.05 43.57 55.23
+Scale up to 3B 3B 71.52 65.34 48.68 59.56
+Scale up to 7B 7B 75.82 68.22 51.01 64.27

Table 1: Scaling results on model. We choose to con-
duct experiments on VQA-v2(VQA), ScienceQA(SQA),
TextVQA(TQA) and GQA to examine model’s capabili-
ties.

3.2.1 VisualRWKV Baseline
VisualRWKV is a follow-up work to RWKV.
RWKV paper (Peng et al., 2024) proposed a simpli-
fied version of VisualRWKV that employed data-
independent recurrence (Fig. 3), unidirection im-
age scanning (Fig. 4), and image first prompting



10426

Vision Encoder

Projection

Data-dependent
RWKV Bidirectional Blocks

Embeddings

LM Head

LLM

<image> what is the name of this bird?

bluejay

Frozen 
Parameters

Trainable 
Parameters

Input Image

Image First Prompt

what is the name of this bird?

Image Last Prompt

what is the name of this bird?

Sandwich Prompt

what is the name of this bird?

<image>

<image>

Figure 2: VisualRWKV architecture overview and three prompting method. Image First Prompt: place image
tokens before instruction tokens; Image Last Prompt: place image tokens after instruction tokens; Sandwich
Prompt: place image tokens in the middle of instruction tokens. Red words indicate the key contributions.

(Fig. 2). We used that version of VisualRWKV
as the baseline and starting point for our research,
as shown in Table 1. We denote this initial model
without any modifications as VisualRWKV-Base.

3.2.2 Data-dependent Recurrence
The Data-dependent Recurrence mechanism intro-
duces two key enhancements: the Data-dependent
Token Shift and the Data-dependent Time Mixing.

Data-dependent Token Shift First, we define
low-rank adaptation (lora) and data-dependent
linear interpolation (ddlerp) as follow:

loraα(x) = λα + tanh(xAα)Bα (4)

ddlerpα(a, b) = a+(b−a)⊙ loraα(a+(b−a)⊙µx) (5)

Then, the Data-dependent Token Shift is defined
as:

αt = ddlerpα(xt, xt−1)Wα (6)

where α serves as a notation for the variables r,
g, k, and v. Aα, Bα, λα and Wα are trainable pa-
rameters. The data-dependent token shift seeks to
broaden the model’s capacity. It dynamically allo-
cates the ratio of new to existing data per channel,
depends on the input at both current and previous
time steps.

Data-dependent Time Mixing The key improve-
ment over data-independent time mixing (Eq. 2)
lies in the evolution of the time decay vector from a
fixed parameter w to a dynamic one wt that reacts
to the input data xt at time step t. The dynamic na-
ture of wt allows the model to adjust more nimbly

to diverse input data, unbound by rigid, predefined
structures. Equations are as follow:

dt = lorad(ddlerpd(xt, xt−1)) (7)

wt = exp(− exp(dt)) (8)

wkvt = diag(u) ·kT
t ·vt+

t−1∑
i=1

diag

(
i−1⊙
j=1

wj

)
·kT

i ·vi (9)

The LoRA mechanism utilizes vectors learned
from data-independent time mixing and enhances
them at a low cost with additional offsets modu-
lated by the incoming input. It should be noted that
the computation of the new time-varying decay wt

employs a token-shifted value ddlerpd(xt, xt−1)
as its input, not just the current token xt. As
shown in Table 1, the VisualRWKV equipped with
data-dependent recurrence exhibits a significant
improvement in performance.

3.2.3 Sandwich Prompt
The motivation for designing the sandwich prompt
is as follows: Unlike the attention mechanism in
Transformers, RNN models such as RWKV, due
to their sequential nature, cannot revisit historical
information repeatedly. Instead, they must decide
immediately whether to store a token or image to-
ken in memory upon encountering it. Therefore,
carefully designing tailored prompts is essential for
enhancing VisualRWKV’s ability to effectively ac-
quire and utilize information. For this purpose, we
have specifically designed three types of prompting
methods, as shown in Figure 2:

• Image First Prompt: Place image tokens prior
to the instruction tokens.
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Figure 3: Data-dependent recurrence. Top: Semantic di-
agram of the time-mixing block; Bottom: Time-mixing
block as an RNN cell. Dashed arrows represent con-
nections in data-dependent recurrence, not present in
data-independent recurrence.

• Image Last Prompt: Place image tokens fol-
lowing the instruction tokens.

• Sandwich Prompt: Insert image tokens be-
tween the instruction tokens.

The sandwich prompt is designed to provide op-
timal conditions that assist the model in making
these decisions more effectively. Specifically, the
first prompt helps the model efficiently extract rele-
vant information from the image, while the second
prompt focuses on improving the model’s ability
to answer questions.

For instance, the Image Last Prompt can cause
the model to occasionally forget the question em-
bedded in the prompt, while the Image First Prompt
may result in the model processing the image with-
out considering the question, hindering its ability
to analyze the image contextually. In contrast, the
sandwich prompt resolves these issues and achieves
a synergistic effect, enabling the model to per-
form better than the sum of the individual prompts.
The experimental results show that the Sandwich

Prompt achieves the best performance, as presented
in Table 3.

3.2.4 Image Scanning
The motivation for designing the image scanning
techniques is as follows: Language is inherently
unidirectional, while images are multidirectional
by nature. As a result, unidirectional language
models face inherent limitations when processing
visual information. By implementing bidirectional
or multidirectional image scanning strategies, these
challenges can be effectively mitigated.

Vanilla RWKV is designed for 1D sequential
data with causal relationships, such as language
sequences. However, the visual sequences gener-
ated by vision encoders are non-causal. To bridge
this gap, we propose a 2D scanning mechanism
to improve VisualRWKV’s performance on visual
tasks. This work integrates the 2D scanning mech-
anism into RWKV blocks, exploring three variants
of multimodal RWKV blocks, which are illustrated
in Figure 4:

• Unidirectional Blocks: Only containing the
Forward Scanning Block, which is the basic
scanning pattern of RWKV and other linear
RNN models. This serves as the Base.

• Bidirectional Blocks: Comprising both For-
ward Scanning and Backward Scanning
Blocks, arranged in an alternating fashion.

• Multidirectional Blocks: Including blocks
for Forward Scanning, Backward Scanning,
Upward Scanning, and Downward Scanning,
with the sequence of Forward, Backward, Up-
ward, and Downward arranged in an alternat-
ing order.

Our design alternates different scanning direc-
tions within layers, which does not introduce ad-
ditional computational overhead and preserves the
efficiency of the architecture. The experimental
results (Table 4) have also verified the effective-
ness and necessity of such scanning techniques in
enhancing the model’s ability to handle and un-
derstand visual sequences, thereby improving the
overall performance of VisualRWKV in visual lan-
guage processing tasks.

4 Experiments

The following section is dedicated to showcasing
the key experiments and outcomes related to Visu-
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Figure 4: Illustration of 3 different multimodal RWKV Blocks: Unidirectional Blocks (left), Bidirectional Blocks
(middle), and Multidirectional Blocks (right). The four scanning modes are also depicted at the top.

alRWKV. All results presented in this section are
derived from a single run.

4.1 Experiment Setup

Following Liu et al. (2023a,b), the training process
of VisualRWKV consists of two stages: vision-and-
language alignment pretraining and visual instruc-
tion tuning. In the pretraining stage, the vision
encoder and RWKV LLM are frozen, with only the
projector being updated. During the visual instruc-
tion tuning stage, we finetune both the projector
and the RWKV LLM, as shown in Figure 2. Details
of training data and hyper-parameters can be found
in Appendix A.

4.2 Benchmarks

We evaluated VisualRWKV across 8 benchmark
tests tailored to assess the model’s performance in
academic tasks.

For assessing visual perception capabilities,
VQA-v2 (Goyal et al., 2017) and GQA (Hudson
and Manning, 2019) presented open-ended short
questions. Following the methodology outlined in
LLaVA (Li et al., 2023b), we utilized the image
subset of ScienceQA (Lu et al., 2022) to gauge
the model’s zero-shot generalization in answering
scientific questions via multiple-choice questions.
TextVQA (Singh et al., 2019) focused on visual
question answering with rich text content.

Regarding benchmarks tailored for VLMs, var-

ious assessments evaluated the model’s perfor-
mance across diverse domains and applications,
encompassing different response formats. MME-
Perception (Fu et al., 2023) scrutinized the model’s
visual perception abilities through true/false ques-
tions. MMBench (Liu et al., 2023c) assessed the
robustness of the model’s answers by rigorously
shuffling multiple-choice options. MMBench-CN,
the Chinese counterpart of MMBench, was em-
ployed to evaluate the model’s multilingual capabil-
ities. POPE (Li et al., 2023d) assesses the model’s
hallucination degree on three sampled subsets of
COCO (Lin et al., 2014): random, common, and
adversarial, reporting the average F1 score across
all three splits.

4.3 Quantitative Evaluation
4.3.1 Main Results
Table 2 presents a comparison of our proposed
VisualRWKV model with some state-of-the-art
(SOTA) multimodal large language models. Vi-
sualRWKV achieved the best performance in 3
out of 8 benchmarks and came in second place
in SQA benchmark. Compared with LLaVA-
1.5 7B, which has similar scale parameters and
the same amount of multimodal training data,
Our model(VisualRWKV-7B) outperformed it in 4
benchmarks: SQA (68.2 vs. 66.8), GQA (64.3 vs.
62.0), MMB (65.8 vs. 64.3), and MMB-cn (63.7
vs. 30.5). It is noteworthy that VisualRWKV and
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LLaVA-1.5 used completely identical training data.
Yet, on the MMB-cn Chinese test set, VisualR-
WKV showed a substantial lead. This may indicate
that the RWKV language model has stronger mul-
tilingual capabilities. These promising results not
only confirm the effectiveness of the VisualRWKV
model, but also highlight the significant potential
of the Linear RNN model in multimodal learning
tasks.

4.3.2 Gain Analysis on Different Benchmarks
VisualRWKV excels in academic benchmarks like
VQA, GQA, and SQA, where both the questions
and answers are short texts. The model faces no
fundamental obstacles in handling such tasks, lead-
ing to significant performance improvements. As
a result, VisualRWKV achieves results that are
comparable to, and even surpass, the Transformer-
based LLaVA-1.5 on these benchmarks.

Although VisualRWKV shows notable improve-
ments on the TextVQA (TQA) benchmark, it still
lags behind LLaVA-1.5 in this task (51.0 vs. 58.2).
TextVQA requires recalling information from im-
ages, which is similar to the Multi-Query Asso-
ciative Recall (MQAR) task (Arora et al., 2023),
which is often a limitation for RNN-like architec-
tures. However, our latest work, VisualRWKV-
HD/UHD (Li and Hou, 2024), has shown that
higher resolution and better-quality image features
can significantly alleviate these limitations.

4.4 Ablation Study

4.4.1 Ablation on Data-dependent Recurrence
To verify the effectiveness of data-dependent re-
currence described in Section 3.2.2, we conducted
a rigorous ablation study, ensuring that the model
size, training data, environment, and all hyperpa-
rameters were strictly consistent. As depicted in
Table 1, the outcomes demonstrate significant en-
hancements in the data-dependent VisualRWKV
across the four monitored benchmarks, affirming
that data-dependence is essential for the success of
linear RNN-type models in the VLM domain.

4.4.2 Ablation on Prompting Method
As shown in Table 3, among the three prompting
approaches, the sandwich prompt outperforms the
others, followed by the image-first prompt, with the
image-last prompt being the least effective. The ef-
fectiveness of the sandwich prompt is attributed to
its ability to allow the model to review the instruc-
tions before engaging with the image, enabling a

more targeted extraction of information and enhanc-
ing the conditional aspects of image information
retrieval.

However, simply placing the instructions before
the image is insufficient. The image-last prompt
performs poorly because linear RNN models tend
to forget the instructions after processing the image,
making it necessary to repeat the instructions for
better results. Additionally, our research shows that
the sandwich prompt can effectively mitigate infor-
mation loss even with a reduced number of image
tokens, maintaining robust performance. Further
experimental results and analyses can be found in
Appendix E.

4.4.3 Ablation on Scanning Method
We compared three image scanning mechanisms:
Uni-directional scanning (UniDir), Bi-directional
scanning (BiDir), and Multi-directional scanning
(MultiDir). As shown in Table 4, UniDir performs
the worst because it is inherently unsuitable for
2D visual information. BiDir and MultiDir show
comparable outcomes across various benchmark
assessments, but BiDir outperforms in the major-
ity, highlighting its strength in handling 2D visual
information for multimodal learning tasks.

The image scanning techniques are applied dur-
ing both training and inference, and it is essential to
maintain train-test consistency. We have made sim-
ple attempts to rearrange the order of layers with
different directions, but the performance was not
robust. Specific layers have already been special-
ized to process image information from particular
directions.

4.4.4 Ablation on Learning Rate
As shown in Table 1, correct learning rate is cru-
cial for the performance of benchmarks. Table
10 shows a comparison of our model with differ-
ent learning rate. From the Table, it can be ob-
served that a higher initial learning rate has a sig-
nificant impact on the model’s performance. Our
hypothesis is that the substantial divergence in tasks
from the textual to the visual domain necessitates a
higher learning rate to facilitate the model’s adap-
tation.

It has been observed that there is a substantial
discrepancy between the optimal learning rates of
VisualRWKV and LLaVA(Liu et al., 2023a), with
the optimal initial learning rate for LLaVA-1.5-7B
being 2e−5 and for VisualRWKV-7B being 4e−5.
This caused considerable difficulties in our work
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Method LLM Res. PT/IT VQA GQA SQA TQA POPE MME MMB MMB-cn

BLIP-2 (Li et al., 2023c) Vicuna-13B 224 129M/ - 41.0 41.0 61.0 42.5 85.3 1293.8 – 22.4

MiniGPT-4 (Zhu et al., 2024a) Vicuna-7B 224 5M/5K - 32.2 - - - 581.7 23.0 -

InstructBLIP (Dai et al., 2023) Vicuna-7B 224 129M/1.2M – 49.2 60.5 50.1 – – 36 26.2

InstructBLIP (Dai et al., 2023) Vicuna-13B 224 129M/1.2M – 49.5 63.1 50.7 78.9 1212.8 – 25.6

Shikra (Chen et al., 2023b) Vicuna-13B 224 600K/5.5M 77.4 – – – – – 58.8 –

Otter (Li et al., 2023a) LLaMA-7B 224 - - - - - - 1292.3 48.3 24.6

mPLUG-Owl (Ye et al., 2023) LLaMA-7B 224 2.1M/102K - - - - - 967.3 49.4 -

IDEFICS-9B (IDEFICS, 2023) LLaMA-7B 224 353M/1M 50.9 38.4 – 25.9 – – 48.2 –

IDEFICS-80B (IDEFICS, 2023) LLaMA-65B 224 353M/1M 60.0 45.2 – 30.9 – – 54.5 –

Qwen-VL (Bai et al., 2023) Qwen-7B 448 1.4B/50M 78.8 59.3 67.1 63.8 – – 38.2 –

Qwen-VL-Chat (Bai et al., 2023) Qwen-7B 448 1.4B/50M 78.2 57.5 68.2 61.5 – 1487.5 60.6 –

LLaVA-1.5 (Liu et al., 2023a) Vicuna-7B 336 558K/665K 78.5 62.0 66.8 58.2 85.9 1510.7 64.3 30.5

LLaVA-Phi (Zhu et al., 2024b) Phi2-2.7B 336 558K/665K 71.4 - 68.4 48.6 85.0 1335.1 59.8 28.9

MobileVLM-3B (Chu et al., 2023) LLaMA-2.7B 336 558K/665K - 59.0 61.2 47.5 84.9 1288.9 59.6 -

VL-Mamba (Qiao et al., 2024) Mamba-2.8B 224 558K/665K 76.6 56.2 65.4 48.9 84.4 1369.6 57.0 32.6

VisualRWKV-Base (Peng et al., 2024) RWKV5-1.6B 336 558K/665K 51.1 48.1 41.9 35.2 73.1 - - -

VisualRWKV RWKV6-1.6B 336 558K/665K 69.4 55.2 59.1 43.6 83.2 1204.9 55.8 53.2

VisualRWKV RWKV6-3B 336 558K/665K 71.5 59.6 65.3 48.7 83.1 1369.2 59.5 56.3

VisualRWKV RWKV6-7B 336 558K/665K 75.8 64.3 68.2 51.0 84.7 1387.8 65.8 63.7

Table 2: Comparison with SoTA methods on 8 benchmarks. Due to space constraints, benchmark names are
abbreviated. VQA (Goyal et al., 2017); GQA (Hudson and Manning, 2019); SQA: ScienceQA-IMG (Lu et al.,
2022); TQA: TextVQA (Singh et al., 2019); POPE (Li et al., 2023d); MME (Fu et al., 2023); MMB: MMBench (Liu
et al., 2023d); MMB-cn: MMBench-CN (Liu et al., 2023d). PT and IT denote the quantity of samples involved in
the pre-training and instruction-tuning phases. "Res." stands for "Resolution.

Method Size Prompt VQA SQA TQA GQA

VisualRWKV-Base 7B First 67.93 65.59 47.13 48.52
VisualRWKV-Base 7B Last 63.07 57.66 48.52 44.19
VisualRWKV-Base 7B Sandwich 69.71 65.20 50.25 50.50

Table 3: Results for three prompting method.

Method Size Scanning VQA SQA TQA GQA

VisualRWKV-Base 1.6B UniDir 51.03 41.94 35.19 48.09
VisualRWKV-Base 1.6B BiDir 65.62 47.30 37.13 48.60
VisualRWKV-Base 1.6B MultiDir 66.04 44.03 35.84 49.95

VisualRWKV 1.6B BiDir 69.26 57.61 43.17 54.85
VisualRWKV 1.6B MultiDir 69.20 57.31 42.97 54.63

Table 4: Results for three scanning methods.

at the beginning and also confirmed the significant
divergence between the RWKV architecture and
the Transformer architecture.

4.5 Efficiency Analysis

As shown in Figure 1, we compared the infer-
ence speed and GPU memory consumption directly
with LLaVA-1.5 of the same parameter size. Vi-
sualRWKV has a constant single token inference
speed, while the inference speed of a single token
in LLaVA-1.5 slows down as more tokens are gen-
erated. On the other hand, VisualRWKV has a con-
stant GPU memory consumption, while the mem-

ory consumption of LLaVA-1.5 increases linearly.
In practice, compared to LLaVA-1.5, VisualRWKV
has a speed advantage of 3.98 times and can save
54% of the GPU memory when reaching an infer-
ence length of 24576 tokens. Since VisualRWKV
retains a fixed state size throughout inference, GPU
memory usage remains nearly constant, which is
illustrated as a straight line in Figure 1(c).

4.6 Text-only Capability
According to Lin et al. (2024), LLMs face the issue
of degraded text capabilities after visual instruction
tuning. As shown in Table 5, no degradation of
text abilities was observed in VisualRWKV. Con-
versely, enhancements in performance were noted
across various text-only English datasets, which
we credit to the integration of a large set of English
samples in our fine-tuning dataset. Furthermore, it
was observed that VisualRWKV did not face text
ability degradation across multiple languages, as
shown in Table 5. The capabilities were fundamen-
tally aligned with those of the text-only RWKV.
This may be due to the incorporation of the multi-
lingual ShareGPT4. More details about text-only
capability can be found in Appendix G.

Besides the results previously stated, we also
compared the outcomes of single-stage and two-
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Method Size LAMBADA English MultiLang
ppl avg% avg%

RWKV 1.6B 4.63 59.82 59.97
VisualRWKV 1.6B 4.15 61.01 59.83

Table 5: Results for text-only capability: The English
score is the average of 10 English benchmarks, while
the Multilingual score is the average of 4 Multilingual
benchmarks.

stage training approaches; conducted ablation stud-
ies on the method of cross-entropy loss reduction;
assessed the influence of Weight Decay on the
model; and explored a basic hybrid model known
as VisualRWKV Hybrid. Due to space limitations,
we have included these contents in the Appendix.

5 Conclusions

In this paper, we introduce for the first time Vi-
sualRWKV, which explores the construction of
a visual language model using the linear RNN
model RWKV. VisualRWKV incorporates three
innovative designs: data-dependent recurrence to
enhance the model’s information extraction capa-
bilities, sandwich prompt for better conditioning,
and bidirectional scanning for more effective ex-
traction of 2D visual information. We conducted
extensive experiments on eight multimodal bench-
marks and achieved comparable performance with
some of the most advanced VLMs; we also carried
out ablation studies to evaluate the effectiveness
of data-dependent recurrence, prompting methods,
and various scanning mechanisms. The results
validate the effectiveness of our proposed model
and demonstrate the potential of applying RNNs to
VLMs.

Limitations

Despite the encouraging results achieved by Vi-
sualRWKV, several limitations must be acknowl-
edged. Firstly, due to the lack of data following
such instructions and the limited context length, Vi-
sualRWKV is currently unable to process multiple
images. Secondly, although VisualRWKV shows
good performance on academic datasets, its ability
to handle certain tasks, such as TextVQA, may be
constrained by the limitations in the recall ability
of efficient language models (Arora et al., 2023).
These constraints can potentially be mitigated by
further architectural improvements. Lastly, to main-
tain consistency with LLaVA-1.5, this study did

not investigate the effects of the choice of vision
encoder or the quality of training data on Visu-
alRWKV. In the future, we aim to explore more
advanced visual encoders and utilize higher-quality
training data to further enhance its performance.

Risks Although VisualRWKV significantly re-
duces the occurrence of hallucinations, it can still
generate hallucinations and occasionally dissemi-
nate misinformation. Therefore, its application in
critical fields, such as the medical industry, should
be approached with great caution.
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