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Abstract

The rapid advancement of neural language
models has sparked a new surge of intelligent
agent research. Unlike traditional agents, large
language model-based agents (LLM agents)
have emerged as a promising paradigm for
achieving artificial general intelligence (AGI)
due to their superior reasoning and generaliza-
tion capabilities. Effective planning is crucial
for the success of LLM agents in real-world
tasks, making it a highly pursued topic in the
community. Current planning methods typi-
cally translate tasks into executable action se-
quences. However, determining a feasible or
optimal sequence for complex tasks with multi-
ple constraints at fine granularity, which often
requires compositing long chains of heteroge-
neous actions, remains challenging. This pa-
per introduces Planning with Multi-Constraints
(PMC), a zero-shot methodology for collabora-
tive LLM-based multi-agent systems that sim-
plifies complex task planning with constraints
by decomposing it into a hierarchy of subordi-
nate tasks. Each subtask is then mapped into
executable actions. PMC was assessed on two
constraint-intensive benchmarks, TravelPlan-
ner and API-Bank. Notably, PMC achieved
an average 42.68% success rate on TravelPlan-
ner, significantly higher than GPT-4 (2.92%),
and outperforming GPT-4 with ReAct on API-
Bank by 13.64%, showing the immense po-
tential of integrating LLM with multi-agent
systems. We also show that PMC works with
small LLM as the planning core, e.g., LLaMA-
3.1-8B. Our code is publically available at
https://github.com/zcaicaros/PMC.

1 Introduction

Recently, there has been a growing interest in us-
ing large language models (LLMs) as the cog-
nitive core of agents (Wang et al., 2024b), due
to their ability to understand and execute human
instructions in natural language. LLM-powered
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agents, known for their strong logical skills and
strategic planning, are considered a promising
path toward achieving artificial general intelligence
(AGI) (Wang et al., 2024b; You et al., 2024).

Current LLM agent planning solutions aim
to map tasks to sequences of executable ac-
tions (Huang et al., 2024). The plan-then-execute
methods (Shen et al., 2024; Wang et al., 2023a)
break down complex tasks into small, manageable
sub-tasks to facilitate the inference of a sequence
of executable actions. In contrast, the step-by-step
methods (Wei et al., 2022; Yao et al., 2023b; Chen
et al., 2023; Wu et al., 2023; Gao et al., 2023b) in-
terleave planning and execution, where each action
is determined based on previous outcomes. The
former simply assumes each sub-task can be exe-
cuted with a single tool (Shen et al., 2024), but
real-world applications often require tools with
diverse functionalities (Krishnakumar and Sheth,
1995). The latter is unsuitable for time-sensitive
constraints requiring comprehensive condition as-
sessment, meticulous planning and subsequent ex-
ecution. Moreover, the piecemeal nature of these
approaches may lead to suboptimal outcomes and
potential task failure. To improve planning stabil-
ity and performance, recent studies (Dagan et al.,
2023; Guan et al., 2023; Yang et al., 2023c) inte-
grate LLMs with external planning tools requiring
task descriptions in specific formats, e.g., first-order
logic (Barwise, 1977). However, translating vari-
ous tasks into certain computational logic can be
challenging and often demands a myriad of domain
knowledge (Cropper and Dumancié, 2022). Ex-
isting LLM-based multi-agent systems primarily
simulate human behaviors and social activities (Li
et al., 2024; Park et al., 2023; Gao et al., 2023a),
while planning for collaborative multi-agent sys-
tems under multiple constraints, despite their sig-
nificant potential, remains underexplored.

In this work, we propose Planning with Multi-
Constraints (PMC), a zero-shot planning method
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for collaborative LL.M-based multi-agent systems.
PMC simplifies complex task planning by break-
ing it down into a hierarchy of subordinate tasks,
each achievable through a series of (heterogeneous)
tool calls. Specifically, PMC comprises a man-
ager agent for task decomposition and a fleet of
executor agents to perform sub-tasks. The manager
performs task-level planning by decomposing the
task into a graph, where each node represents a
specific sub-task (e.g., recommendation) and the
edges delineate the dependency topology among
tasks. Then each sub-task is decomposed into a
sequence of function calls, i.e., step-level planning
and execute, via an executor. The executor may
utilize off-the-shelf planning techniques, like Re-
Act (Yao et al., 2023b), to facilitate sub-task accom-
plishment. PMC can be viewed as a framework that
extends the capabilities of individual LLM agents
by equipping with cooperation cores, thus trans-
forming them into collaborative multi-agent sys-
tem. PMC focuses on complex planning scenarios
with constraints, such as budget limitations, which
are categorized into "local" and "global" types. Lo-
cal constraints are managed by executors during
sub-task execution, whereas global constraints are
considered in conjunction with other variables. To
improve the success rate and stability, PMC em-
ploys a supervisor agent to refine a sub-task if the
results of the previous sub-tasks it depends on are
obtained and a deliverer agent to produce the final
outcome. If the given sub-task does not depend on
any previous sub-task, the supervisor agent will not
refine the sub-task. The deliverer agent will either
summarize the outcome or make a decision for the
user based on the result of all sub-tasks.

Distinct from the toy tasks (Singh et al., 2023)
or puzzles (Ahn et al., 2024) commonly used
in existing planning methods, we evaluate PMC
on two real-world applications: itinerary plan-
ning and daily tool usage. Experiment results
show that PMC achieves substantial performance
gains on two benchmarks. Specifically, PMC ob-
tains 42.68% success rate on TravelPlanner (Xie
et al., 2024), a significant increase from GPT-4
(2.92%). It also surpasses GPT-4 with ReAct on
API-Bank (Li et al., 2023) by 13.62% in absolute
improvement. To the best of our knowledge, PMC
is the first plan-and-execute method for collabo-
rative LLM-based multi-agent systems to effec-
tively address complex tasks involving multiple
constraints. Moreover, Ww show that LLaMA-3.1-
8B equipped with PMC under one demonstration

example surpasses GPT-4 by a large margin.

2 Literature Review for Language Model
Agent Planning

The emergence of LLMs introduces new paradigms
for agents (Chu et al., 2023; Wang et al., 2024a;
Masterman et al., 2024), demonstrating significant
intelligence in reasoning (Kojima et al., 2022; Wei
et al., 2023; Wang et al., 2023b), planning (Yao
et al., 2023b,a; Besta et al., 2024), instruction-
following (Xu et al., 2023; Wang et al., 2023c;
Ren et al., 2023), and tool-usage (Schick et al.,
2023; Yang et al., 2023b; Shen et al., 2024) across
various domains. Planning acts as an essential
capability to interact with external environments,
which involves organizing thought trajectories, set-
ting objectives, and determining steps to accom-
plish the objectives (Mattar and Lengyel, 2022).
Some work (Wei et al., 2023; Yao et al., 2023b;
Chen et al., 2023; Wang et al., 2023a) focuses on
task decomposition, aiming to solve complex tasks
in a divide-and-conquer manner. The plan selec-
tion methods (Yao et al., 2023a; Besta et al., 2024;
Wang et al., 2023b; Xiao and Wang, 2023) elicit
LLMs to generate various alternative plans for a
task following by a search algorithm for optimal
plan selection and execution. Recent studies (Shinn
etal., 2023; Madaan et al., 2023; Huang et al., 2022;
Gou et al., 2024) also explore to enhance LLM’s
planning ability via reflection and refinement strate-
gies. Moreover, some work (Liu et al., 2023a; Lin
et al., 2023; Zhao et al., 2024) also introduces ex-
ternal planners to aid the planning procedure of
LLM:s.

Numerous strategies have been developed to har-
ness the potentials of LLMs for specific agent plan-
ning (Xi et al., 2023), whose effectiveness and accu-
racy of planning significantly determine the agent’s
robustness and usability. Web-agents (Yao et al.,
2022; Deng et al., 2023; Gur et al., 2024; Furuta
et al., 2024) explore the interaction between LLM
and web-environment by simulating human’s web-
browsing behaviors via RL-based planning or tra-
jectory planning. General tool-agents require to in-
teract with massive APIs or tools, making the plan-
ning procedures more challenging. Solutions to
tool-agent planning usually rely on various task de-
composition (Yuan et al., 2024; Shen et al., 2024),
self-rectification (Ma et al., 2024) and domain-
reasoning (Lu et al., 2023) strategies. Other task-
specific agents focus on designing sophisticated
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planning strategies, such as tree search (Zhou
et al., 2023) and Bayesian adaptive MDPs (Liu
et al., 2023b). Multi-agent systems (Chen et al.,
2024; Hong et al., 2024; Gong et al., 2023; Mei
et al., 2024) seek to solve more complex real-world
tasks by combining multiple powerful LLM-based
agents. Existing solutions mainly focus on tackling
the complexities inherent in integrating heteroge-
neous agents with different capabilities and spe-
cializations (Mei et al., 2024), while the planning
strategies among these agents are overlooked. In
contrast, our PMC focuses on designing general-
ized, robust planning strategies for multi-agent sys-
tems. Although LLM,,;Swarm (Zhuge et al., 2024)
shares a similar concept with PMC, it focuses on
visualizing multi-agent collaboration via compos-
ite graphs to aid prompt tuning, while our PMC
is a planning algorithm specifically designed for
systems with multiple collaborative agents.

3 Preliminaries

The LLM-based agent is an Al system utilizing
an LLM as its computational core, enabling func-
tionalities beyond text generation such as task ex-
ecution, logical reasoning, and autonomous oper-
ation. Formally, an LLM agent includes: A =
(LLM, F,,, R, S, C). LLM is the language model in-
stance (e.g., LLaMA (Touvron et al., 2023)) used
for reasoning, planning, and decision-making. J,
is a set of functions/actions performed by the agent.
R is the agent’s role as defined by the prompt.
S € S represents the agent’s dynamic state, in-
cluding knowledge and internal processes. C'is
the communication module for exchanging infor-
mation with other agents or the environment. In a
collaborative LLM-based multi-agent system, mul-
tiple agents, [A1, A, ..., A;], work together to
achieve a common goal. Each agent A; has a spe-
cific role R; and task specialization, e.g., task de-
composition.

4 Planning with Multi-Constraints

Complex projects, such as those in construction or
manufacturing, often present significant challenges,
particularly with diverse, geographically dispersed
teams. However, thorough planning, effective com-
munication, and collaboration can ensure success-
ful outcomes (Lester, 2017). In light of this, we
introduce planning with multi-constraints (PMC), a
novel zero-shot planning approach for collaborative
LLM-based multi-agent systems to address com-

plex tasks with multiple constraints. In PMC, a des-
ignated manager agent decomposes a complex task
T ={T;li € S(K) ={1,---, K}} into smaller,
more manageable sub-tasks, {71,75, T3, , Tk}
through rask-level planning. These sub-tasks are
then converted into a sequence of heterogeneous
tool-using actions executed by a fleet of executor
agents, a process referred to as step-level planning
and execution. Additionally, PMC incorporates a
supervisor agent to facilitate sharing synthesized
sub-task outcomes among executors and a deliverer
agent to consolidate final results upon the collec-
tive findings of all sub-tasks. The comprehensive
framework of PMC is illustrated in Figure 1.

4.1 The Collaborative Multi-Agent System
Design

The description of each agent is shown in each
subsection and the prompt structure of each agent
is illustrated in Figure 2.

4.1.1 Manager Agent

The manager agent has two primary objectives.
Firstly, it decomposes the intricate task 7 into a set
of interconnected sub-tasks 7 = {T;|i € S(K) =
{1,---, K'}}. These sub-tasks often exhibit depen-
dencies, where completing one task is contingent
on completing another. For instance, deciding on
hotels usually depends on finalizing the trip desti-
nation. Thus, the manager must identify and define
these inter-dependencies meticulously. Addition-
ally, the manager has to assign suitable executors
to each sub-task. Executors are viewed as a collec-
tion of composite tools, and the manager matches
them based on the sub-task requirements, a method
termed the executor as tools technique.

Secondly, the manager must make well-informed
decisions on task assignments, especially under
constraints like budget limits or specific transporta-
tion needs in travel scenarios. Some constraints
can be managed during individual sub-tasks. For
instance, for a sub-task that searching for accommo-
dation, the minimum stay requirement ensures only
suitable hotels are considered. The manager also
needs to identify constraints that interact with other
variables across sub-tasks and cannot be solved
within a single sub-task. For instance, when select-
ing a flight, available hotel and restaurant options
provided by other sub-tasks must be jointly con-
sidered. Identifying local and global constraints to
divide and conquer them is crucial for successfully
completing complex tasks. The formal definitions
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Figure 1: An overview of PMC Framework. The PMC Framework provides a structured methodology for managing
and executing sub-tasks within a directed sub-task graph topology, as the manager coordinates. For instance, the
completion of Tasks depends on the outputs derived from Task;, which a supervisor agent subsequently consolidates.
The executor agent is tasked with implementing the sub-task, considering any local constraints present. Upon

completion of the sub-tasks, the deliverer agent is responsible for aggregating all sub-task outcomes to satisfy global

constraints and subsequently achieve the overarching task objectives.

# Role # Role

# Output Format # Instructions, e.g., rules, etc

# Instructions, e.g., rules, etc. # Tools

{for meta-tasks... >

<for constraints... > # Output Format

# Executors as Tools

(a) Manager. (b) Executors.

# Role # Role

# Output Format # Output Format

# Instructions, e.g., rules, etc. # Instructions, e.g., rules, etc

(c) Supervisor. (d) Deliverer.

Figure 2: The zero-shot prompt structure for each agent. Note both supervisor and deliverer agents do not require
function calls, while different executors will have different tool lists.

for the local and global constraints are presented as
follows:

Definition 4.1. A constraint Cj is local if and only
if 317 € S(K) such that C; can be fulfilled purely
based on the results of T;.

Definition 4.2. A constraint Cy is global if and
only if 3 7o, = {T;]i € S(K)} € S(K) and
K >|7c| > 1, such that C; can be fulfilled based
on the results of all 7; € 7¢,, where | - | demotes
the cardinality of a set.

It is important to note that the manager identifies
potential constraints and categorizes them into lo-
cal and global ones exclusively based on internal
knowledge. No prior information about the con-
straints for T is provided, ensuring that the zero-
shot property of PMC is maintained. Figure 2(a)
depicts the logic for manager prompt design.

4.1.2 Executor Agent

The manager agent assigns each sub-task to an
executor agent, which has access to various hetero-
geneous tools (e.g., functions). The executor aims
to create a sequence of actions (e.g., function calls)
to complete the assigned sub-task while adhering
to local constraint Cj. This process significantly
reduces the planning complexity, as the executor
focuses on a specific, well-defined task with clear
requirements and constraints. Consequently, ap-
plying off-the-shelf single-agent planning methods
to map a task to an execution sequence is feasi-
ble. Figure 2(b) illustrates the conceptual prompt
design of the executor. Owing to the functional
variation among executors, a tailored design ap-
proach is necessary for each executor, depending
on the specific tools available to them.
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Figure 3: An overview of sub-task graph, which reveals the task-level decomposition. The manager agent
decomposes the main task into several sub-tasks with inter-dependencies (dashed arrows).

4.1.3 Supervisor Agent

The role of the supervisor agent is to refine the
sub-task T; by incorporating synthesized outcomes
from neighboring sub-tasks. After the manager
agent decomposes the main task, only ambiguous
objectives (e.g., “Finding a hotel in city B”’) and
inter-dependencies among sub-tasks (e.g., “Search-
ing flight to New York” — “Finding a hotel in city
B”) are identified. To execute T; effectively, its
input parameters need precise specifications. For
instance, the input “Finding a hotel in city B” must
be correctly instantiated as “Finding a hotel in New
York near John F. Kennedy International Airport”
based on outcomes (e.g., “Booked flight ZC9896
to New York, arriving at John F. Kennedy Inter-
national Airport”) from preceding sub-task (e.g.,
“Searching flight to New York”). To address these
nuances and eliminate ambiguities, the supervi-
sor agent acts before the commencement of 7;.
It rewrites T; by referencing the outcomes of all
neighboring sub-tasks. This ensures all necessary
parameters are included and accurately instantiated.
Here, the neighbor of T; is defined as the collection
of sub-tasks that have direct inter-dependencies
with 7;. Formally, the neighborhood of T; is de-
fined as:

Definition 4.3. The neighbors A/ (T;) of sub-task
T; is defined as {7T};|Vj € S(K),s.t.,T; — T;}.

Remark: An alternative idea is to include all
precedent sub-tasks in outcome synthesis for 7;
instead of just its immediate neighbors. While
this seems reasonable, it can overwhelm the man-
ager agent, especially given the input limitations
of LLMs with many tasks. In contrast, our pro-
posed approach focuses on immediate neighbors,
maintaining manageability and avoiding such com-
plexities. Moreover, our approach is capable of
preserving all information through the “message-

passing” mechanism, allowing correct results from
precedent sub-tasks to be recursively propagated to
T;. The following proposition supports this asser-
tion:

Proposition 4.4. A sub-task T; is accomplishable
while adhering to local constraints if and only if
all the sub-tasks within its direct neighborhood
N(T;) are accomplished with their respective local
constraints maintained.

The proof is in Appendix D. The supervisor
prompt design is delineated in Figure 2(c).

4.1.4 Deliverer Agent

The primary objective of the deliverer agent is to
synthesize the outcomes of all sub-tasks while en-
suring alignment with the global constraints, {Cj}.
This synthesis is critical because {C,} can only be
effectively addressed once all sub-task results are
available. Thus, the deliverer agent is uniquely po-
sitioned to manage these constraints, ensuring that
the final results comprehensively satisfy all global
constraints. The logic of the deliverer prompt de-
sign is depicted in Figure 2(d).

The detailed prompt design and technical intro-
duction of all agents are presented in Appendix G.
We provide the process of constructing and opti-
mising the prompts in Appendix F. We hope this
prompt construction process will give the commu-
nity informative suggestions on how to build com-
plex prompts from scratch.

4.2 Hierarchical Task Planning and Execution

Task-Level Planning. The manager agent will
analyze the given complex task 7 and decom-
pose it into a series of inter-dependent sub-tasks
{T1, T, ...}. PMC represents them via a directed
graph G = (V, E), termed sub-task graph. In G,
each node V; € V corresponds to a sub-task 7; and
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Figure 4: step-level Planning and Execution. The executor is furnished with a planning core and a toolbox
comprising diverse functions. This includes an off-the-shelf planning algorithm such as ReAct (Yao et al., 2023b),
which is used to translate the sub-task into a series of executable function calls required to accomplish the assigned

sub-task.

With Unconventional Hint GPT-3.5 + ReAct GPT-4 + ReAct | GPT-3.5 + PMC GPT-4 + PMC | GPT-4 (SP)

Delivery Rate 98.33 98.33 91.67 96.67 100.00

Common- | Micro 74.38 79.38 63.54 87.29 92.08

Validation sense Macro 0.00 8.33 1.67 43.33 50.00

Set (60) Hard Micro 0.71 7.14 0.71 47.14 52.86

Constraint | Macro 0.00 5.00 1.67 46.67 28.33

Final Pass Rate 0.00 1.67 0.00 33.33 13.33

Delivery Rate 93.50 98.38 84.09 97.40 100.00

Common- | Micro 70.45 77.60 57.51 91.46 91.36

Test sense Macro 0.32 7.46 1.95 50.00 45.45

Set (308) Hard Micro 1.21 13.53 1.37 53.96 52.74

Constraint | Macro 0.32 9.74 1.30 45.12 29.22

Final Pass Rate 0.00 2.92 0.65 42.68 14.94

Table 1: The Average Pass Rates (%) “With Unconventional Hint” for Instances Across All Difficulty Level on
TravelPlanner. The highest final pass rates are highlighted in bold blue.

each edge E;; € &£ delineates the dependencies be-
tween sub-tasks T; and T}, where ¢, j € S(K). The
architecture of the sub-task graph is illustrated in
Figure 3. Executors adhere to the graph’s topology,
i.e., its edge orientation, to ensure all prerequisites
of a sub-task are met before its initiation, thereby
enhancing the efficacy of the overall task execu-
tion. Furthermore, the sub-task graph serves as a
tool for visualizing the task decomposition and an
interactive interface to enhance the interpretability
of PMC systems. It offers a mechanism for ongo-
ing monitoring and potential human intervention,
making it essential for PMC.

Step-Level Planning and Execution. After task-
level decomposition, each sub-task is manageable
to be further decomposed into a sequence of exe-
cutable actions, i.e., function calls. The complex-
ity of each sub-task is significantly reduced as it
is now a specific, well-defined task with clear re-
quirements and local constraints, making the oft-
the-shelf planning method directly applicable, e.g.,
ReAct (Yao et al., 2023b). Specifically, before
the commencement of sub-task T, the supervisor
agent will rewrite 7; by referencing the outcomes

of all neighboring sub-tasks N(T;). Then, the lo-
cal constraints Cj for sub-task 7; identified by the
manager will be given as the auxiliary information
together with the refined 7; to the executor agent
A;, which will utilize the planning method, e.g.,
ReAct, to accomplish T; by decoding 7 into a se-
quence of actions. The whole process is illustrated
in Figure 4.

S Experiments

To assess PMC, we move beyond the existing
planning methods that largely focus on simplis-
tic tasks (Singh et al., 2023) or puzzles (Ahn et al.,
2024) irrelevant to practical applications. Instead,
we evaluate PMC through its application to real-
world constraints intensive scenarios. Specifically,
we examine its efficacy in the domains of itinerary
planning (Xie et al., 2024) and daily tools using (Li
et al., 2023). We optimized PMC’s prompt for each
benchmark exclusively on the validation set and
apply the prompt directly to the test sets. For (Li
et al., 2023), the training dataset was employed as
a proxy for the validation set owing to the lack of a
dedicated validation set. For all benchmarks, each
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Without Unconventional Hint | GPT-3.5 + ReAct GPT-4 + ReAct | GPT-3.5 + PMC GPT-4 + PMC | GPT-4 (SP) | LLaMA-3.1-8B + GPT-4 + PMC
Delivery Rate 100.00 98.33 88.33 100.00 100.00 70.00
Common- | Micro 73.54 75.21 58.75 90.00 90.42 68.33
Validation sense Macro 0.00 3.33 0.00 41.67 35.00 28.33
Set (60) Hard Micro 0.71 14.28 0.00 55.71 52.14 32.15
Constraint | Macro 1.67 13.33 0.00 48.33 25.00 25.00
Final Pass Rate 0.00 0.00 0.00 31.67 6.67 15.00
Delivery Rate 98.38 96.43 80.19 98.05 100.00 65.26
Common- | Micro 69.60 70.74 51.54 85.96 88.07 57.35
Test sense Macro 0.00 2.92 0.65 29.55 32.79 2143
Set (308) Hard Micro 1.37 14.44 091 50.91 5091 23.71
Constraint | Macro 0.65 9.09 0.32 46.10 30.84 19.16
Final Pass Rate 0.00 0.65 0.32 22.40 12.66 12.66

Table 2: The Average Pass Rates (%) “Without Unconventional Hint” for Instances Across All Difficulty Level on
TravelPlanner. The highest final pass rates are highlighted in bold blue. For the last column “LLaMA-3.1-8B +
GPT-4 + PMC”, we employ LLaMA-3.1-8B as the planner and GPT-4 as the executor, where LLaMA-3.1-8B is

prompted with one-shot example.

Constraint Type GPT4 + ReAct + CoT Sole-planning PMC

Easy Medium Hard Easy Medium Hard | Easy Medium  Hard
Commonsense Constraint
Within Sandbox 32779 23.08 2195 | 90.16 8846 8293 | 7049  75.96 70.73
Complete Information | 81.97  86.54  86.59 | 100.00  100.00 100 | 79.51  78.85 79.27
Within Current City 95.08 9519  90.24 | 97.54 95.19  98.78 | 97.54  95.19 97.56
Reasonable City Route 88.52 88.46 87.80 | 100.00 99.04 100 | 94.26 93.27 97.56
Diverse Restaurants 81.15 76.92  71.95 | 98.36 86.54 9512 | 88.52  83.65 97.56
Diverse Attractions 99.18  98.08  96.34 | 100.00  100.00 100 | 97.54  95.19  100.00
Non-conf. Transportation | 93.44 96.15 95.12 | 95.08 95.19 97.56 | 93.44 92.31 100.00
Miminum Nights Stay | 57.38  67.31  43.90 | 62.30 5385  53.66 | 9590  93.27 89.02
Hard Constraint
Budget 13.93 10.58 9.76 | 50.00 34.62 14.63 | 46.72 42.31 46.34
Room Rule - 13.16  17.81 - 4737  65.75 - 57.89 57.53
Cuisine - 1143 1351 - 6571 4595 - 62.86 51.35
Room Type - 19.35 14.29 - 74.19 77.78 = 54.84 53.97
Transportation - 15.07 - - 82.19 - - 60.27
Final

Final PassRate | 400 410 244 | 3033 577 366 | 4344 3462 42.68

Table 3: The Pass Rates Constraints for the “With Unconventional Hint” scenario for TravelPlanner. The

@ 9

marks

indicate the corresponding constraints are not applicable. The highest final pass rates are highlighted in bold blue

for each difficulty level.

instance is executed only once without sampling,
though multiple trials could potentially enhance
performance. We will make the code publicly avail-
able upon acceptance.

5.1 Experiment Setup

5.1.1 Benchmarks

TravelPlanner (Xie et al.,, 2024). In
TravelPlanner, users specify their origin,
destination, and individual requirements. The
benchmark assesses the ability of language agents
to (1) efficiently gather necessary information
using appropriate tools and (2) create practical,
personalized travel plans for users. The plan is
assessed using four main metrics: (1) delivery rate
(a plan has to be delivered within 30 steps (includ-
ing planning and execution)), (2) commonsense
constraint pass rate, (3) hard constraint pass rate,

and (4) final pass rate (the rate for meeting all
commonsense and hard constraints), which is the
most important metric for evaluation. For (2) and
(3), we define the "micro” pass rate as the ratio
of passed constraints to total constraints and the
"macro" pass rate as the ratio of plans passing all
constraints to total plans.

The travel duration can be 3, 5, or 7 days. Due to
budget constraints, we demonstrate that a 3-day
dataset sufficiently justifies the effectiveness of
PMC. The queries are categorized as easy, medium
or hard.

However, we found that the benchmark in-
cludes odd rules as part of its evaluation. For
instance, choosing the same restaurant multiple
times throughout a trip breaches the Diverse
Restaurants constraint, and selecting an airport
as a meal location breaches the Within Sandbox
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constraint. Yet, under normal circumstances, it’s
reasonable for a tourist to return to a favoured
restaurant or dine at airport restaurants during their
trip. To ensure that the agent recognizes these
rules as part of commonsense knowledge, we pro-
vide specific guidance to the planning agents: the
Deliverer Agent in PMC and the Planner in
React and Sole-Planning. We term this setting as
“with unconventional hint” (or with “hint” for
short). To maintain the integrity of the experi-
ment and stay true to the objectives of the origi-
nal TravelPlanner paper, we conduct a separate
experiment that excludes this external knowledge.
This experiment still incorporates the less conven-
tional rules used in both Diverse Restaurants
and Within Sandbox settings. We term this set-
ting as “without unconventional hint” (or without
“hint” for short).

As our method consists of tool-use and planning
(two-stage), we compare our method with the two-
stage baseline, ReAct from (Xie et al., 2024) using
GPT-3.5-Turbo and GPT-4-Turbo as language mod-
els. We also further compare our method to the best
sole-planning baseline, Direct GPT4-Turbo, which
has provided necessary information to the agent
and only require agent to output the travel plan.

API-Bank (Li et al., 2023). API-Bank is a
benchmark designed to evaluate the tool-use ca-
pabilities of large language models, focusing on
APIs that are commonly used in everyday life, such
as email. The benchmark includes three levels of
difficulty, with Level 3 being the most challenging.
We chose Level 3 for our experiment because it
best assesses the planning abilities of the agent.

The benchmark assesses agents based on Ac-
curacy and “ROUGE” (ROUGE-L) scores. The
Accuracy metric gauges the correctness of API
calls based on user queries, calculated as the pro-
portion of correct API calls to total predictions. We
modified this metric for a more consistent and fair
assessment by defining Correctness as the ratio of
unique correct API calls to total predictions. This
adjustment addresses the tendency of some lan-
guage models, like GPT-3.5 and GPT-4, to make
repetitive correct API calls. The ROUGE-L score
evaluates the responses generated from these API
calls. Our experiments indicate that using this re-
fined Accuracy metric results in lower baseline
scores.

In addition to Correctness, we introduce the
“Completeness” to better assess task execution.
Correctness alone may not fully capture an agent’s

performance, as minimal API calls could artificially
inflate scores. Completeness measures the ratio of
unique, correct API calls to the total required API
calls for the task, addressing the limitations of Cor-
rectness and ensuring a more accurate evaluation
of the agent’s effectiveness. We also introduce
another metric named “Tool Repeats”, which mea-
sures how often the model correctly calls an API
after its initial use. A lower number of repeats in-
dicates fewer unnecessary inferences, signifying a
more efficient solution.

5.2 Result Analysis

5.2.1 Result Analysis for TravelPlanner

From Tables 1 and 2, it is evident that PMC sig-
nificantly outperforms all baseline methods irre-
spective of the presence of unconventional hints.
Notably, when hints are included, GPT4 enhanced
by PMC achieves a superior average final pass rate
of 42.68% across all difficulty levels, compared to a
meagre 2.92% by baselines. This data underscores
the potential of integrating large language models
(LLMs) with multi-agent systems, marking it as a
promising area for future research in LLM-based
agent systems.

In the absence of hints, the setting replicates that
described in (Xie et al., 2024), where the highest
final pass rate for baseline models stands at 0.56%,
consistent with the original study’s findings. In
this scenario, PMC significantly improves with an
average final pass rate of 22.4%, surpassing the
best-reported baseline result in (Xie et al., 2024).

Notably, the sub-task Planner (PMC) signifi-
cantly outperforms the Standard Planner (SP) in
settings that employ hints and those that do not.
The SP operates purely as a decision-making frame-
work in which all elements necessary for complet-
ing the itinerary, such as multiple choices for hotels,
flights, and restaurants, are pre-supplied; thus, the
SP agent merely selects the most suitable options
from these pre-defined sets to construct the final
itinerary. This renders SP a relatively simpler task
compared to PMC and other benchmarks, which ne-
cessitate the searching and gathering of necessary
elements prior to decision-making. Nonetheless,
PMC achieves a superior final pass rate, a find-
ing which may appear counter-intuitive yet can be
elucidated as follows: PMC’s exceptional perfor-
mance is attributable to its effective deployment
of a divide-and-conquer strategy in managing con-
straints. By resolving numerous local constraints
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Model GPT-4-1106-Preview GPT-4-0613  GPT-3.5-Turbo-0125 GPT-3.5-Turbo-0613 LLaMA-3.1-8B + GPT-4
CoT 71.48 57.65 35.38 34.74
Correctness % () | No CoT 41.58 35.11 67.06 41.80 -
PMC 82.63 85.12 74.13 67.81 67.58
CoT 47.76 46.12 28.16 30.20
Completeness % (1) | No CoT 34.29 32.24 23.27 20.82 -
PMC 64.08 58.37 43.27 40.40 70.61
CoT 0.2641 0.2846 0.3085 0.2656
ROUGE (1) No CoT 0.2507 0.2644 0.2346 0.2016 -
PMC 0.4053 0.3839 0.3894 0.3754 0.4171
CoT 90 49 50 32
Tool Repeats (1) | No CoT 38 15 155 118 -
PMC 16 23 7 65 64

Table 4: The Performance on API-Bank. The highest performance for each criteria is highlighted in bold blue. For
the last column “LLaMA-3.1-8B + GPT-4”, we employ LL.aMA-3.1-8B as the planner and GPT-4 as the executor,

where LLaMA-3.1-8B is prompted with one-shot example.

during the execution of sub-tasks, PMC consid-
erably reduces the complexity that the agent en-
counters in formulating the ultimate itinerary plan.
Table 3 presents the detailed pass rates for individ-
ual constraints, indicating that PMC significantly
outperforms GPT4+ReAct+CoT in terms of pass
rates across all constraints. However, GPT-3.5 is
less effective than GPT4 when equipped with PMC,
possibly due to less model performance. We have
provided illustrative results for each difficulty level
in Appendix H. We also present the detailed results
for each difficulty level (easy, medium, hard) in
Appendix E.

5.2.2 Result Analysis for API-Bank

Firstly, PMC significantly enhances the perfor-
mance of both GPT4 and GPT-3.5 across all critical
evaluation metrics. Compared to existing baselines,
PMC consistently demonstrates superior perfor-
mance. Notably, the best performance reported
in the original paper (Li et al., 2023) achieved
a 70% success rate, which our reimplementation
slightly exceeds at 71.48%. Thus, PMC stands out
by surpassing the top method referenced in (Li
et al., 2023) by a substantial margin of at least
14%. Furthermore, PMC excels in other key areas
such as task completeness, achieving an impressive
64.08%, and exhibits significantly fewer redundant
tool interactions, with a count of just seven. This
robust performance underscores PMC'’s potential
in redefining the capabilities of advanced language
models. We have provided illustrative results for
each difficulty level in Appendix H.

5.2.3 Results for LLaMA-3.1-8B

In addition to utilising only GPT models on PMC,
we also test the performance of PMC with open-
source LLLM with significantly lesser parameters,

i.e., LLaMA-3.1-8B. Specifically, we use LLaMA-
3.1-8B as the planner agent, with prompt consists
of one-shot example and without unconventional
hint setting. The results for TravelPlanner and API-
Bank are given in the last column in Table 2 and
Table 4.

From the results we demonstrate that even with
small open-source LLM as the planner in PMC, its
performance still surpasses GPT-4, with ReAct or
CoT by a large margin. These results demonstrate
that PMC is still effective for small LLMs.

6 Conclusion

This paper presents Planning with Multi-
Constraints (PMC), an innovative zero-shot
methodology for collaborative LLM-based
multi-agent systems. PMC simplifies complex task
planning by breaking it down into hierarchical
sub-tasks, each mapped to executable actions.
PMC was evaluated on two benchmarks, Trav-
elPlanner and API-Bank. It achieved an average
success rate of about 42% on TravelPlanner, a
significant improvement from the initial 0.6%,
and outperformed GPT-4 with ReAct by 14%
on API-Bank. However, the current design
still requires human input from executor agents.
Enhancing PMC by enabling the manager agent to
autonomously design prompts for executor agents
could optimize executor creation, accelerating
PMC’s practical application. Future research
should focus on developing more autonomous
agents through advanced prompt optimization,
as suggested in recent literature (Yang et al.,
2023a). This approach promises to refine PMC’s
functionality and expand its applicability without
human intervention, leading to more intelligent
and self-sufficient multi-agent systems.
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A Limitations

Despite the remarkable performance, the current
architecture of executor agents in PMC still ne-
cessitates human input. There is an opportunity
for significant enhancements within PMC by en-
abling the manager agent to autonomously generate
the prompts for the executor agents, thereby opti-
mizing the process of executor creation. Such ad-
vancements could notably accelerate the practical
applications and enhance the efficacy of PMC.

B Social Impacts

This research explores the implementation of LLM-
based agents to aid humans in solving complex
tasks. While this automation promises increased
productivity and focus on high-level tasks, it raises
concerns about transparency and interpretability.
The uncertainty of LLMs can obscure decision-
making processes, potentially reducing trust in
sensitive applications where understanding Al’s
reasoning is crucial. Additionally, by automating
communication, there is a risk of diminishing im-
portant human interactions and nuances essential
for quality exchanges and relationships in profes-
sional environments. It is imperative that the de-
ployment of these agents incorporates ethical con-
siderations and mechanisms for explainability to
mitigate these risks, ensuring they contribute posi-
tively and responsibly to societal and technological
advancements.

C The Overview of Prompt for Each
Agent

D Proof of Proposition 4.4

Proposition D.1. A sub-task T; is accomplishable
while adhering to local constraints if and only if
all the sub-tasks within its direct neighborhood
N (T;) are accomplished with their respective local
constraints maintained.

The proof is straightforward. If all tasks 7T; €
N (T;) are accomplished, then all the prerequisite

requirements for 7; are satisfied (since 7; only de-
pends on N (T})), enabling the completion of Tj.
Conversely, assume 7; is accomplishable even if
one of its prerequisite tasks 77 (a direct neighbor or
connected via a path Pathj; to T;) fails, this fail-
ure would propagate recursively to 7T;, inevitably
leading to N;’s failure, contradicting with the as-
sumption that 7 is accomplishable. The supervisor
prompt design is delineated in Figure 2(c).

E More Results

E.1 Result for TravelPlanner with Hint for
Each Difficulty Level.

Please refer to Table 5, Table 6, and Table 7 for
detailed results for each difficulty level on Trav-
elPlanner.

F Prompt Optimization for Each Agent

We perform the prompt optimization for each agent
by observing the performance of agents in a few
samples from the validation datasets. Once the
agent achieves a fairly well result, we use the same
prompt for the agent on the test dataset and do not
further optimize the prompts.

F.1 General Prompt Optimizations Across All
Agents

There are mainly two types of problems that needed
to be addressed across all agents via prompt opti-
mizations. (1) Hallucinations in agents. To tackle
such problems, our prompts will inform the agents
to understand what information they have, e.g.
retrieved information and tools. We also guide
the agents to explain their reasoning via Chain-of-
Thoughts (CoT) before providing the required out-
put. (2) The specific requirement from the bench-
mark. Our benchmarks have specific requirements
that are not generalisable on other use cases. For
example, TravelPlanner only takes one global con-
straint into account for evaluation despite there are
many other global constraints in actual trip plan-
ning. The benchmark also requires the final output
to be delivered in a structured format for evaluation.
We added additional instructions for the agents to
meet such requirements. However, we don’t pro-
vide direct answers in our prompt to maintain the
zero-shot property.

The Manager Agent, Executor Agents, Supervi-
sor Agent and Deliverer Agent require additional
prompt optimization work due to the additional
problems the agents may face. The optimization
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With Unconventional Hint GPT-3.5 + ReAct GPT-4 + ReAct | GPT-3.5 + PMC GPT-4 + PMC | GPT-4 (SP)
Delivery Rate 100.00 95.00 90.00 100.00 100.00
Common- | Micro 76.88 75.00 61.88 95.63 95.00
Validation sense Macro 0.00 5.00 0.00 70.00 65.00
Set (20) Hard Micro 0.00 15.00 5.00 55.00 60.00
Constraint | Macro 0.00 15.00 5.00 55.00 60.00
Final Pass Rate 0.00 5.00 0.00 55.00 35.00
Delivery Rate 90.16 99.18 90.16 97.54 100.00
Common- | Micro 68.85 78.69 61.58 89.65 92.93
Test sense Macro 0.00 8.20 3.28 52.46 54.92
Set (122) Hard Micro 0.82 13.93 2.46 46.72 50.00
Constraint | Macro 0.82 13.93 2.46 46.72 50.00
Final Pass Rate 0.00 4.10 1.64 43.44 30.33

Table 5: The Pass Rates (%) on Easy Instances. The highest final pass rates are highlighted in bold blue.

With Unconventional Hint GPT-3.5 + ReAct GPT-4 + ReAct ‘ GPT-3.5+PMC GPT-4 + PMC | GPT-4 (SP)

Delivery Rate 100.00 100.00 100.00 95.00 100.00

Common- | Micro 76.88 83.75 68.75 82.50 91.88

Validation sense Macro 0.00 10.00 5.00 20.00 50.00
Set (20) Hard Micro 0.00 7.50 0.00 55.00 55.00
Constraint | Macro 0.00 0.00 0.00 55.00 20.00

Final Pass Rate 0.00 0.00 0.00 15.00 5.00
Delivery Rate 94.23 98.08 85.58 95.19 100.00

Common- | Micro 70.67 78.97 59.86 88.46 89.78

Test sense Macro 0.00 9.62 0.00 50.96 39.42
Set (104) Hard Micro 0.00 12.50 0.96 50.48 48.08
Constraint | Macro 0.00 6.73 0.96 40.38 22.12

Final Pass Rate 0.00 1.92 0.00 34.62 5.77

Table 6: The Pass Rates (%) on Medium Instances. The highest final pass rates are highlighted in bold blue.

for each agent is elaborated separately in the fol-
lowing sections.

F.2 The Manager Agent

The design of prompt for the manager agent re-
quires more effort in comparison to other agents
due to the challenging nature of agents perform-
ing a complicated planning task in zero-shot. We
observe that most of the available language mod-
els in our experiments are able to provide output
based on a desired structure. Based on the task
planning in PMC (refer to 4.2), we design a cor-
responding JSON template consisting of subtasks
and constraints for the manager agent to fill. The
JSON will provide the information needed to auto-
mated the subsequent workflow. The structure of
the JSON template is designed in a way that can
be parsed by Python code to automatically execute
the PMC workflow.

We first select five prompts from the valida-
tion dataset and provide few-shot examples in the
demonstrations for the agent to observe its plan-
ning. The agent is usually capable of producing

correct plans from unseen queries given such few-
shot demonstrations. We replace one or more ele-
ments from each example, e.g. tools, parameters
and constraints with ellipsis. The ellipsis indicates
that no demonstration is given on how to fill the
value for the element. We add additional instruc-
tions to the prompt to show how to fill the values,
and optimize the instructions until the manager pro-
duces the desired plan. Then, we replace other
elements from the example with ellipsis and con-
tinue adding instructions to the prompt, until all
values are ellipsis in the JSON template (refer to
Figure 8). Hence, the final prompt for the agent is
a zero-shot prompt. Figure 5, 6, 7 and 8 shows
the step-by-step iteration of how we optimize the
prompt from few-shot demonstration to zero-shot.

F.3 The Executor Agent

The design of prompt for the executor agent is rela-
tively easy as the executor agent is only required to
execute step-level tasks like commonly seen tool
agents. However, based on our observation and
paper (Xie et al., 2024), there are some common
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With Unconventional Hint GPT-3.5 + ReAct GPT-4 + ReAct | GPT-3.5 + PMC GPT-4 + PMC | GPT-4 (SP)
Delivery Rate 95.00 100.00 85.00 95.00 100.00
Common- | Micro 69.34 79.38 60.00 83.75 89.38
Validation sense Macro 0.00 10.00 0.00 40.00 35.00
Set (20) Hard Micro 1.25 5.00 0.00 41.25 50.00
Constraint | Macro 0.00 0.00 0.00 30.00 5.00
Final Pass Rate 0.00 0.00 0.00 30.00 0.00
Delivery Rate 97.56 97.56 73.17 100.00 100.00
Common- | Micro 72.56 74.24 49.24 91.46 91.01
Test sense Macro 1.22 3.66 2.44 50.00 39.02
Set (82) Hard Micro 2.13 14.02 1.22 53.96 56.71
Constraint | Macro 0.00 7.32 0.00 45.12 7.32
Final Pass Rate 0.00 2.44 0.00 42.68 3.66

Table 7: The Pass Rates (%) on Hard Instances. The highest final pass rates are highlighted in bold blue.

{

"main_task": "Find a cardiologist in Los Angeles for a check-up appointment at 2034-04-15 10:00:00",

"global_constraints: []
"sub_tasks": {
“task_1": {
“content": "Check availability of healthcare provider appointment”,
"local_constraints": [
“Location in Los Angeles"
1
"tool": [
"retriever_agent”,
"executor_agent"”
1

"parameters": [

"message": [
"Healthcare provider appointment availability checker"

12
{
"message": [
"Find a cardiologist in Los Angleles"
]
}
1,
"require_data": []
b
“task_2": {

"content": "Schedule a check-up appointment with healthcare provider based on availability of healthcare provider appointment”,

"local_constraints": [
"Time at 2034-04-15 10:00:00"
1
"tool": [
"retriever_agent",
"executor_agent"”

"parameters": [

“message”: [
"Healthcare provider appointment scheduler"

"message": [

"Schedule an appointment with cardiologist at 2034-04-15 10:00:00"

]

}

1

"require_data": [
“task_1"

1

}
}
}

Figure 5: Step 1 of prompt optimization for Manager Agent. Full demonstration provided. This demonstration
above consists of two sub-tasks, the number of sub-tasks will vary based on the main task. The conversion of prompt

into zero-shot is shown in Figure 6, 7 and 8.

problems that the language models may suffer in
tool execution. The model may repeatedly use the
same tools with same parameters and not fulfill-
ing the task. The problems can be mitigated by
adding some rules in the prompt. To avoid repeated
tool usage, the agent should mention the current
information it has obtained so far and the next infor-

mation it requires. As Executor Agent might have
multiple tools, when the current tool could not meet
the task objective, the agent should also attempt to
use other tools instead of giving up. Since the task
outcome by the executor agent may be delivered
to the Supervisor Agent and Deliverer Agent, the
executor agent should also be instructed to provide
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{

"main_task": "Find a cardiologist in Los Angeles for a check-up appointment at 2034-04-15 10:00:00",

"global_constraints: []
"sub_tasks": {
"task_1": {
"content": "Check availability of healthcare provider appointment”,
"local_constraints": [
“Location in Los Angeles"

"tool": [

1

"parameters": [

1

"require_data": []

"task_2": {

"content": "Schedule a check-up appointment with healthcare provider based on availability of healthcare provider appointment",

"local_constraints": [
"Time at 2034-04-15 10:00:00"

"tool": [

1

"parameters": [

1,
"require_data": [
“task_1"
]
}
}
}

Figure 6: Step 2 of prompt optimization for Manager Agent. The demonstration of filling tools and parameters
values for each task are removed. This demonstration above consists of two sub-tasks, the number of sub-tasks will

vary based on the main task.

{

"main_task": "Find a cardiologist in Los Angeles for a check-up appointment at 2034-04-15 10:00:00",

"global_constraints: [

]
"sub_tasks": {
“task_1": {
"content": "Check availability of healthcare provider appointment”,
"local_constraints": [

1
"tool": [
]

“"parameters": [

1

“"require_data": [

|
b
"task_2": {

"content": "Schedule a check-up appointment with healthcare provider based on availability of healthcare provider appointment”,

"local_constraints": [

1
"tool": [

“"parameters": [

1

"require_data": [

|
}
}
}

Figure 7: Step 3 of prompt optimization for Manager Agent. The demonstration of filling constraints and require
data (task dependency) values for each task are removed. This demonstration above consists of two sub-tasks, the

number of sub-tasks will vary based on the main task.

very detailed information with clear structures to
ensure high readability by other agents without any
loss of information.

F.4 The Supervisor Agent

The design of prompt for the supervisor agent is

relatively easy as task rewriting is not complicated.

Our prompt requires the supervisor agent to rewrite

the task with the similar JSON format we gave to
the manager agent.

FE.5 The Deliverer Agent

The design of prompt for the deliverer agent re-
quires a fair amount of effort as different task, e.g,
TravelPlanner and APIBank, requires the Deliverer
Agent to perform different primary role. Hence,
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{
"main_task": "...",
"global_constraints: [

I
"sub_tasks": {
"task_1": {
"content": "...",
"local_constraints": [

1

"tool": [

1

"parameters": [

1

"require_data": [

1

12

"task_2": {
“content": "...",
"local_constraints": [

1

"tool": [

1

"parameters": [

1

"require_data": [

1
}
}
}

Figure 8: Step 4 of prompt optimization for Manager Agent. The demonstration of filling main task and sub-task
description are not provided. This demonstration above consists of two sub-tasks, the number of sub-tasks will vary

based on the main task.

our prompt has to be adjusted to meet the primary
role. We believe the primary role of deliverer agent
can be divided into two types, "Inference Role"
and "Reporting Role". In TravelPlanner, the Deliv-
erer Agent is responsible for the "Inference Role",
which its job is to deliver a plan given the execution
results following the same format as experiments
in the original paper (Xie et al., 2024). The "In-
ference Role" requires additional thinking from the
agent as the agent needs to make further inference
based on the acquired subtask results and plan re-
quires to meet the global constraints of the task.
For such role, we discover the agent is aware of
the global constraints, but it may forget some com-
monsense that might needed to be considered in
its inference. Hence, our prompt requires to re-
mind the agent to be aware of commonsense when
delivering its plan. Unlike the "Inference Role",
the "Reporting Role" does not require to make any
further plan, but only report or summarize the out-
come of all subtasks. Based on the requirement
of the task, our prompt will mention the level of
details the final response should contain.

Despite it sounds effortful to redesign a prompt
for each task, however in most scenario, the pri-
mary role of the Deliverer Agent falls into either
one of these two categories. Hence, given a new
task, we only need to identify the primary role of
Deliverer Agent, and reuse one of the two prompts,

with little modification based on specific rules of
the task.

G Prompt and Instructions for Each
Agent

We give the prompt structure for each agent in
Figure 2.

G.1 TravelPlanner
The Manager Agent:

You are a task management assistant
designed to break down tasks and manage
task progress.

The main job in task breakdown is
populating the JSON template below:
T json
{
"main_task": "...",
"global_constraints”: [...],
"sub_tasks": {

"task_1": {"content”: A
tool”: [...], "parameters”: [{...}], "
local_constraints”: [...], "require_data
"o [L.0]3,

"task_2": {"content”: R
tool”: [...], "parameters”: [{...}], "
local_constraints”: [...], "require_data
"o [...]13

3

n n n

n n n

}

Based on user's query,
to gather valid

your main task is
information related to
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transportation, dining, attractions, and
accommodation using the capabilities of
tools.

16

Before you design your task, you should 17
understand what tools you have, what
each tool can do and cannot do. You must

not design the subtask that do not have

suitable tool to perform. Never design
subtask that does not use any tool.

18

You must first output the Chain of 19
Thoughts (COT). In the COT, you need to
explain how you break down the main task

into sub-tasks and justify why each
subtask can be completed by a tool. The
sub-tasks need to be broken down to a
very low granularity, hence it's

possible that some sub-tasks will depend

on the execution results of previous
tasks. You also need to specify which
sub-tasks require the execution results
of previous tasks. When writing about
each sub-task, you must also write out

its respective local constraints.

Finally, you write the global constraint

of the main task.

20

All the results of the sub-tasks will be =2

passed to the "interactor_agent”. The "
interactor_agent” has various

capabilities such as inference,
computation, and generating responses,
but it cannot be used to answer unknown
questions. You don't need to specify in

the JSON template to call the "
interactor_agent".

)

Before filling in the template, you must 23
first understand the user's request,
carefully analyzing the tasks contained
within it. Once you have a clear
understanding of the tasks, you
determine the sequence in which each
task should be executed. Following this
sequence, you rewrite the tasks into
complete descriptions, taking into
account the dependencies between them.
24
In the JSON template you will be filling o5
, "main_task"” is your main task, which
is gather valid information related to
transportation by flight and car, dining
, attractions, and accommodation based
on user's query. "sub_task” is the sub-
tasks that you would like to break down
the task into. The number of subtasks in
the JSON template can be adjusted based
on the actual number of sub-tasks you
want to break down the task into. The
break down process of the sub-tasks must
be simple with low granularity. There
is no limit to the number of subtasks.
Each sub-tasks consist of either one or
multiple step. It contains 5 information

to be filled in, which are "content”, "
agent"”, "parameters”, "require_data"” and
"data".

"require_data” is a list of previous sub
-tasks which their information is
required by the current sub-task. Some
sub-tasks require the information of
previous sub-task. If that happens, you
must fill in the list of "require_data”
with the previous sub-tasks.

"content"” is the description of the
subtask, formatted as string. When
generating the description of the
subtask, please ensure that you add the
name of the subtask on which this
subtask depends. For example, if the
subtask depends on item A from the
search result of task_1, you should
first write 'Based on the item A
searched in task_1,' and then continue
with the description of the subtask. It
is important to indicate the names of
the dependent subtasks.

"tool"” is the list of tools required for
each step of execution. Please use the

original name of the tool without "
functions.” in front. This list cannot

be empty. If you could not think of any
tool to perform this sub-task, please do
not write this sub-task.

"parameters” is a list specifying the
parameters required for each tool.

Within the "parameters” list, the format
for "message"” is list, which will be
concatenated by the system and passed to
the tool.

After determining your subtasks, you
must first identify the local
constraints for each sub-task, then the

global constraints. Local constraints
are constraints that needed to be
considered in only in each specific sub-
task. Meanwhile, global constraints are
the constraints mentioned in the query
that needed to be jointly considered
across all the sub-tasks. You must not
write global constraints that are only
related to only some of the sub-tasks.

Please write the local constraints of
each sub-task in its corresponding "
local_constraints” and the write the
global constraints in "
global_constraints”. You should not
write global constraints into "
local_constraints”. Similarly,
constraints that exists in "
local_constraints” should not be written
in "global_constraints”. Hence, local
constraints of each sub-task and global
constraints must be unique. You don't
need to design a task specifically for
global constraints as the global
constraints will be passed to the
interactor_agent"”.
When writing "local_constraints”, please
write it as specific as possible, as
you should assume the tools of each task
have no knowledge of the user's query.

n
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You should also be aware local
constraints filters the items
individually, and some constraints can
only be satisfied by multiple items. For
example, if user's constraints is "
Indian, Chinese and Mediterranean
cuisine”, your local constraints should
be "Indian, Chinese or Mediterranean
cuisine” instead of "Indian, Chinese and

Mediterranean cuisine” because it is
not possible for a single restaurant to
have all cuisine but multiple
restaurants that meet one types of
cuisine can be combined to meet the
constraint.

Important Reminder Global constraint
is constraint that are jointly
considered across all the sub-tasks. You
must not write global constraint that
is only related to only some of the sub-
tasks. For example, a constraint related
to accomodation only should not be
considered as "global constraints”
there are tasks unrelated to
accomodation. In your COT, please
justify why your global_constraints
shuld be considered by all of the sub-
tasks.

as

Important Rule You must only output
one global constraint that you think is
the most important one based on the user
query .

You must output the JSON at the end.

The Manager Agent (LLaMA-3.1-8B):

You are a task management assistant
designed to break down tasks and manage
task progress.

The main job in task breakdown is
populating the JSON template below:
{

"global_constraints”: [...],
"sub_tasks": {

"task_1": {"content”": "...", "
tool”: [...], "parameters”: [{"message":
["..."1}], "local_constraints”: [...],

"require_data”: [...1},

"task_2": {"content”": "...", "
tool”: [...], "parameters”: [{"message":
["..."]1}], "local_constraints”: [...],
"require_data": [...]1}

}
}

Based on user's query, your main task is
to gather valid information related to
transportation, accomodation, dining and
attractions using the capabilities of

tools.

When filling in local_constraints, you
must fill in the constraints based on
the user requirements.

Here is an example of user query with
some local constraints mentioned by user

40
41

15

16

and example output.

User Query

Could you organize a 3-day trip for 3

people from Raleigh to Boise, spanning
from January 1st to January 3rd, 2022,
with a budget of $2,266?

Output
[START]
{
"global_constraints”: ["Total budget
must not exceed $2266"],
"main_task”: "Plan a trip from
Raleigh to Boise for 3 days, from
January 1st to January 3rd, 2022,
a budget of $2,266",
"sub_tasks": {

within

"task_1": {

"content”: "Find round-trip
transportation options from Raleigh to
Boise on January 1st, 2022, and
returning on January 3rd, 2022",

"tool": ["
search_cross_city_transport_agent”"],

"parameters”: [{

"message"”: ["Flight from

Raleigh to Boise on 2022-01-01 and
Boise to Raleigh on 2022-01-03."]
}]’

"local_constraints”: [1],
"require_data"”: []

}’

"task_2": {

"content"”: "Search for
accommodations in Boise for 2 nights,

from January 1st to January 3rd, 2022",
"tool”: [”
search_city_accommodation_agent"],
"parameters”": [{
"message": ["

Accommodations in Boise for maximum of 2
nights."]
3,
"local_constraints”:
"require_data": []

1,

} ’
"task_3": {
"content":
restaurants in Boise”,
"tool": ["
search_city_hospitality_agent”"],
"parameters”: [{
"message”: ["Restaurants

"Search for

in Boise."]
3,
"local_constraints”:
"require_data”: []

1,

}?
"task_4": {
"content":
attractions in Boise”,
"tool": ["
search_city_hospitality_agent”"],
"parameters”: [{
"message"”: ["Attractions

"Search for

in Boise."]
3,
"local_constraints”:
"require_data": []

L1,
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}

}
[END]

Please do not fill in local_constraints
that user does not mention. For example,
if user does not say "no self-driving"”
as transportation requirement, please do
not include that in local_constraints.
You only need to output the JSON. Please
wrap your JSON with [START] and [END].
Do not output anything else. Do not

write any Python script.

The List of Executors for The Manager
Agent:

L
{'name': '
search_cross_city_transport_agent ',
description': "It can search details and
availability of transportations from
one city to another given a date. Please
include the year of date. The available
transportations are 'Flight', 'Self-
driving' and 'Taxi'. Based on user's
query, please analyse whether it is one-
way travel or round-trip. Second, please
consider as many transportations as
possible unless user specifies
particular transportations to travel.
You can search multiple transportations
in a single query. Remember, it cannot
search for transportation within the
city. Don't use it to search something
else."”, 'parameters': {'type': 'object',
'properties': {'message': {'type': '
string', 'description': "Search query.
Please write in list form. Please
provide the full date including year.
One way example ['<All possible
transportations> from <origin city> to <
destination city> on <departing full
date including year>.']. Round-trip
example: ['<All possible transportations
> from <origin city> to <destination
city> on <departing full date including
year> and <destination city> to <origin
city> on <returning full date including
year>.'1"}}, 'required': ['message'1l}},

1

{'"name ': '
search_city_hospitality_agent',
description': "It can search details of
hospitality of a city. The available
hospitality are 'Attractions' and '
Restaurants'. You can search multiple
hospitality in a single query. Don't use
it to search something else.”, '

parameters': {'type': 'object',6 '
properties': {'message': {'type': '
string', 'description': "Search query.

Please write in list form. For example:
['<Hospitalities> in <city name>.']"}},
'required': ['message']}},

{'name': '
search_cities_in_state_agent ',
description': "It can search all the

1

63
64
65

66

68

Don't use it to
'parameters ':

o

cities in a given state.
search something else.”,

{'type': 'object', 'properties':

message ': {'type': 'string',6 '

description': "Search query. Please

write in list form. For example: ['Find

cities in <state name>']1"}}, 'required':
['message ']1}},

{'name': '
search_city_accommodation_agent ',
description': 'It can search details of
accommodation of a city. You must
determine how many nights are required
for the stay. If it is a round trip for
n days, please consider the nights
required are n-1 days.',6 'parameters
{'type': 'object', 'properties': {'
message ': {'type': 'string',6 '
description': "Search query. Please
write in list form. For example: ['
Accomodations in <city name> for maximum

of <number of nights> nights.']"}}, '
required': ['message ']}}

]

The Executor Agents:

# Prompt for Search Cities In State Agent

You are a search agent, you can use
different tools to search for the cities
in a given state based on user's query.
You can assume the tools work fine.

These are the rules you should follow:
1. Before you use a tool, you must
output your reasoning of using the tool.
You must mention what information you
have obtained from previous use of tools
and what information you are looking to
obtain from the next use of tool.
2. If you cannot provide an informative
response based on user query, please
consider using alternative tools to
provide alternative information.
3. Please do not make any assumptions
using your internal knowledge.
4. After you gather all the information
you need, please output the information
based on user's query. Your information
must be as detailed as possible.
5. You should only provide informative
response based on user query. Don't
provide any other advice.

For each item in your search result,
need to ensure you write out all the
features. If the input you receive is

each item with features in bullet point

you

form, you must ensure all bullet points
are listed. If the input you receive is
CSV, you must ensure each column

represent each feature of the item. Do
not miss any detail of every feature.
Your output format is as below. If you
use the tool multiple times, you must
output multiple sets of the search
result format below:

Search Result of <Type of Items>:
1. Name <Name of Item 1>
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<Feature 1>: <Detail of Feature 1 of
Item 1>
<Feature 2>: <Detail of Feature 2 of
Item 1>
<Feature n>: <Detail of Feature n of
Item 1>
2. Name <Name of Item 2>
<Feature 1>: <Detail of Feature 1 of
Item 2>
<Feature 2>: <Detail of Feature 2 of
Item 2>
<Feature n>: <Detail of Feature n of
Item 2>
N. Name <Name of Item N>
<Feature 1>: <Detail of Feature 1 of
Item N>
<Feature 2>: <Detail of Feature 2 of
Item N>
<Feature n>: <Detail of Feature n of
Item N>
# The Function List for Search Cities In State
Agent

L

{'name': 'CitySearch', 'description

': 'Find cities in a state of your
choice.', 'parameters': {'type': 'object
', 'properties': {'State': {'type': '
string', 'description': "The name of the

state where you're seeking cities"}}, '
required': ['State'1}}
]

# Prompt for Search City Accommodation Agent
You are a search agent, you can use
different tools to search for the
information of accomodations,
restaurants and attractions in a given
city based on user's query. You can
assume the tools work fine.

These are the rules you should follow:
1. Before you use a tool, you must
output your reasoning of using the tool.
You must mention what information you
have obtained from previous use of tools
and what information you are looking to
obtain from the next use of tool.
2. If you cannot provide an informative
response based on user query, please
consider using alternative tools to
provide alternative information.
3. Please do not make any assumptions
using your internal knowledge.
4. After you gather all the information
you need, please output the information
based on user's query. Your information
must be as detailed as possible.
5. You should only provide informative
response based on user query. Don't
provide any other advice.

16

For each item in your search result,
need to ensure you write out all the
features. If the input you receive is
each item with features in bullet point
form, you must ensure all bullet points
are listed. If the input you receive is
CSV, you must ensure each column
represent each feature of the item. Do
not miss any detail of every feature.
Your output format is as below. If you
use the tool multiple times, you must
output multiple sets of the search
result format below:

you

Search Result of <Type of Items>:

1. Name <Name of Item 1>

<Feature 1>: <Detail of Feature 1 of
Item 1>

<Feature 2>: <Detail of Feature 2 of
Item 1>

<Feature n>: <Detail of Feature n of
Item 1>

2. Name <Name of Item 2>

<Feature 1>: <Detail of Feature 1 of
Item 2>

<Feature 2>: <Detail of Feature 2 of
Item 2>

<Feature n>: <Detail of Feature n of
Item 2>

N. Name <Name of Item N>

<Feature 1>: <Detail of Feature 1 of
Item N>

<Feature 2>: <Detail of Feature 2 of
Item N>

<Feature n>: <Detail of Feature n of
Item N>

# The Function List for Search City Accommodation

Agent
L

{'name': 'AccomodationSearch', '
description': 'Discover accommodations
in your desired city.', 'parameters': {'
type': 'object', 'properties': {'City':
{'type': 'string', 'description': "The
name of the city where you're seeking
accommodation."}}, 'required': ['City
"133
1

# Prompt for Search City Hospitality Agent
You are a search agent, you can use
different tools to search for the
information of restaurants and
attractions in a given city based on
user's query. You can assume the tools
work fine.

These are the rules you should follow:
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1. Before you use a tool, you must
output your reasoning of using the
You must mention what information you
have obtained from previous use of tools
and what information you are looking to

obtain from the next use of tool.

2. If you cannot provide an informative
response based on user query, please
consider using alternative tools to
provide alternative information.

3. Please do not make any assumptions
using your internal knowledge.
4. After you gather all the information
you need, please output the information
based on user's query. Your information
must be as detailed as possible.

5. You should only provide informative
response based on user query. Don't
provide any other advice.

tool.

For each item in your search result,

need to ensure you write out all the
features. If the input you receive is
each item with features in bullet point
form, you must ensure all bullet points
are listed. If the input you receive is
CSV, you must ensure each column
represent each feature of the item. Do
not miss any detail of every feature.
Your output format is as below. If you
use the tool multiple times, you must
output multiple sets of the search
result format below:

you

Search Result of <Type of Items>:

1. Name <Name of Item 1>

<Feature 1>: <Detail of Feature 1 of
Item 1>

<Feature 2>: <Detail of Feature 2 of
Item 1>

<Feature n>: <Detail of Feature n of
Item 1>

2. Name <Name of Item 2>

<Feature 1>: <Detail of Feature 1 of
Item 2>

<Feature 2>: <Detail of Feature 2 of
Item 2>

<Feature n>: <Detail of Feature n of
Item 2>

N. Name <Name of Item N>

<Feature 1>: <Detail of Feature 1 of
Item N>

<Feature 2>: <Detail of Feature 2 of
Item N>

<Feature n>: <Detail of Feature n of
Item N>

# The Function List for Search City Hospitality
Agent
L

{'name': 'AttractionSearch',

6
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21
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'"Find attractions in a
'parameters': {'

description
city of your choice.',
type': 'object', 'properties': {'City':
{'type': 'string', 'description': "The
name of the city where you're seeking
restaurants.”}}, 'required': ['City'1}},
{'name': 'RestaurantSearch',6 '
description': 'Explore dining options in
a city of your choice.', 'parameters':
{'type': 'object', 'properties': {'City
' {'type': 'string', 'description': "
The name of the city where you're
seeking restaurants.”}}, 'required': ['
City '13}}
1

# Prompt for Search Cross City Transport Agent
You are a search agent, you can use
different tools to search for the
information of flights, self-driving or
taxi in a given city based on user's
query. If the query mentions all
possible transportation, you should
search all three options. You can assume
the tools work fine.

These are the rules you should follow:
1. Before you use a tool, you must
output your reasoning of using the tool.
You must mention what information you
have obtained from previous use of tools
and what information you are looking to
obtain from the next use of tool.
2. If it is a round-trip, you should
perform search for both ways for the
same transportation.
3. If you cannot provide an informative
response based on user query, please
consider using alternative tools to
provide alternative information.
4. Please do not make any assumptions
using your internal knowledge.
5. After you gather all the information
you need, please output the information
based on user's query. Your information
must be as detailed as possible.
6. You should only provide informative
response based on user query. Don't
provide any other advice.

For each item in your search result,
need to ensure you write out all the
features. If the input you receive is

each item with features in bullet point

you

form, you must ensure all bullet points
are listed. If the input you receive is
CSV, you must ensure each column

represent each feature of the item. Do
not miss any detail of every feature.
Your output format is as below. If you
use the tool multiple times, you must
output multiple sets of the search
result format below:

Search Result of <Type of Items>:

1. Name <Name of Item 1>

<Feature 1>: <Detail of Feature 1 of
Item 1>

<Feature 2>: <Detail of Feature 2 of

5
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Item 1>

<Feature n>: <Detail of Feature n of
Item 1>

2. Name <Name of Item 2>

<Feature 1>: <Detail of Feature 1 of
Item 2>

<Feature 2>: <Detail of Feature 2 of
Item 2>

<Feature n>: <Detail of Feature n of
Item 2>

N. Name <Name of Item N>

<Feature 1>: <Detail of Feature 1 of
Item N>

<Feature 2>: <Detail of Feature 2 of
Item N>

<Feature n>: <Detail of Feature n of
Item N>

# The Function List for Search Cross City
Transport Agent
L

{"'name ':
description':

'"FlightSearch', '

'A flight information
retrieval tool. Example: FlightSearch[
New York, London, 2022-10-01] would
fetch flights from New York to London on

October 1, 2022.', 'parameters': {'type
': 'object', 'properties': {'Departure
City': {'type': 'string', 'description

"The city you'll be flying out from."},

'Destination City': {'type': 'string',
'description': 'The city you aim to
reach.'}, 'Date': {'type': 'string',
description': 'The date of your travel
in YYYY-MM-DD format.'}}, 'required': ['
Departure City', 'Destination City', '
Date ']1}},

{'name': 'GoogleDistanceMatrix',
description': 'Estimate the distance,
time and cost between two cities.',6 '
parameters': {'type': 'object',
properties {'Origin': {'type': 'string
', 'description': 'The departure city of
your journey.'}, 'Destination': {'type
': 'string', 'description': 'The
destination city of your journey.'},
Mode ': {'type': 'string', ‘'description
"The method of transportation. Choices
include 'self-driving' and 'taxi'."}}, '
required': ['Origin', 'Destination', '
Mode '13}}

]

The Supervisor Agent:

You are a task rewriting assistant,
responsible for rewriting tasks to
simplify the process of executing them.

The main job of rewriting tasks involves
rewriting this template:

n n

"content": R
"tool”: "[ 71"

: R
"parameters”: "[{...}1",

3

"content"” is the description of the sub-
task, the format is string.
"tool"” is the required tool for the
corresponding task, the format is list.
"parameters” is the required parameters
for each step for the respective agent,
the format is list. Within "parameters"”,
the format of "message” is string,
which the system will concatenate the
elements of the list and pass them to
the agent.

User will provide a task based on this
template. This task can be simplified
with additional information, which is
now obtained through the execution of
previous tasks.
Hence, based on the information from the
previous task, you need to rewrite the
content and parameters to simplify the
task further. Remember, please do not
modify other content.
You are also given some information
about the main query from user, which
may provide additional info to help
rewriting the task.

The Deliverer Agent:
You are a proficient planner. Based on
the provided items and query, please

give me a detailed plan, including
specifics such as flight numbers (e.g.,
F@123456), restaurant names, and
accommodation names. Note that all the
information in your plan should be
derived from the provided data. You must
adhere to the format given in the
example. Additionally, all details
should align with commonsense.
The provided items for each task are
ranked in preferences order, from
highest to lowest. Please prioritise the
higher ranking options in your plan but
also make sure meet all the constraints
from the query.
The symbol '-' indicates that
information is unnecessary. For example,
in the provided sample, you do not need
to plan after returning to the
departure city. When you travel to two
cities in one day, you should note it in
the 'Current City' section as in the
example (i.e., from A to B).
Before you write your detailed plan,
please analyse the hard constraints
based on the query. In addition to that,
we will also give you the hard
constraints that we have analysed so far
from the query. You also need to
analyse the commonsense constraints for
a diverse and sensible trip plan. Your
commonsense constraints must also
include not repeating restaurant choices
throughout the trip.
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Later, you write the detailed plan and
adhere to the format given in the
example. Please remember that the travel
plan that you give must adhere to all
of the constraints. Your plan has to be
as complete as possible, without
requiring decisions to be made upon
arrival.
Finally, you write the reasons of why
this plan will adhere all the
constraints. Don't output anything else
after that.

Remember , your output format for "Travel
Plan" must fully adhere to the format
in the example. For example, the

Breakfast section only requires the name
of restaurant, followed by city

location. Don't write anything extra
that is not required, for example the
cost.

*xxx* Example x*x*x

Query: Could you create a travel plan

for 7 people from Ithaca to Charlotte

spanning 3 days, from March 8th to March
14th, 2022, with a budget of $30,2007?

Hard constraints: <All the hard
constraints given to you and based on
the query>

Commonsense constraints: <All the
commonsense constraints for a diverse
and sensible trip plan>

Travel Plan:

Day 1:

Current City: from Ithaca to Charlotte

Transportation: Flight Number: F3633413,
from Ithaca to Charlotte, Departure

Time: 05:38, Arrival Time: 07:46

Breakfast: Nagaland's Kitchen, Charlotte

Attraction: The Charlotte Museum of

History, Charlotte

Lunch: Cafe Maple Street, Charlotte

Dinner: Bombay Vada Pav, Charlotte

Accommodation: Affordable Spacious

Refurbished Room in Bushwick!, Charlotte

Day 2:

Current City: Charlotte

Transportation: -

Breakfast: Olive Tree Cafe, Charlotte
Attraction: The Mint Museum, Charlotte;
Romare Bearden Park, Charlotte.

Lunch: Birbal Ji Dhaba, Charlotte
Dinner: Pind Balluchi, Charlotte
Accommodation: Affordable Spacious
Refurbished Room in Bushwick!, Charlotte

Day 3:

Current City: from Charlotte to Ithaca

Transportation: Flight Number: F3786167,
from Charlotte to Ithaca, Departure

Time: 21:42, Arrival Time: 23:26

Breakfast: Subway, Charlotte

Attraction: Books Monument, Charlotte.

Lunch: Olive Tree Cafe, Charlotte

Dinner: Kylin Skybar, Charlotte

Accommodation: -

10
11

15
16
17
18
19

Reasons: <Reason why the plan adheres to
constraints>

*xxx*x Example Ends #**x**x%

Important rule, please do not make any
assumption that a non-restaurant place
has meal. You don't need to plan any
meal before heading to your travel
destination. You don't need to plan any
lunch or dinner after heading back from
trip. Please make sure you never have
repeating restaurant choices throughout
the trip.

G.2 API-Bank
The Manager Agent:

You are a task management assistant
designed to break down tasks and manage
task progress.

The main job in task breakdown is
populating the JSON template below:
ST json

{

"main_task": "...",

"sub_tasks": {

"task_1":

tool": ["retriever_agent"”,
executor_agent”"], "parameters”: [{"
message": [<query for retreiver_agent
>]1}, {"message": [<query for
executor_agent>]3}], "require_data":

CooodFs

n ” ”

{"content": o

”

n n n

"task_2": {"content"”: A
tool”: ["retriever_agent", "
executor_agent"”], "parameters”: [{"
message": [<query for retreiver_agent
>1}, {"message": [<query for
executor_agent>]13}], "require_data":
C...]1}

3

3

Based on user's query, your main task is
to plan a series of subtasks based on
user query. For every sub-task, you
first retrieve suitable tools using
Retriever Agent, then execute using
Executor Agent.

You must first output the Chain of
Thoughts (COT). In the COT, you need to
explain how many sub-tasks needed to be
executed. Tool retrieving cannot exist
as a sub-task. You must use as less sub-
task as possible to complete the task.
You also need to specify which sub-tasks

require the execution results of
previous tasks.

Your planning rule is as follows:

1. For each sub-task, you must use both
Retriever Agent and Executor Agent.
Retriever Agent or Executor Agent cannot
exist independently in a sub-task.
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2. You must use Executor Agent to 20
complete the sub-task before moving on

to the next sub-task.

3. Tool retrieving task cannot exist as 2
a sub-task.

4. When giving query to Executor Agent, 22
please do not miss any details or

keywords, as Executor Agent requires
complete details to fulfill the task.

All the results of the sub-tasks will be 25
passed to the "interactor_agent”. The "
interactor_agent"” has various
capabilities such as inference,
computation, and generating responses,
but it cannot be used to answer unknown
questions. You don't need to specify in
the JSON template to call the "
interactor_agent”.
26
Before filling in the template, you must 27
first understand the user's request,
carefully analyzing the tasks contained
within it. Once you have a clear
understanding of the tasks, you
determine the sequence in which each
task should be executed. Following this
sequence, you rewrite the tasks into
complete descriptions, taking into
account the dependencies between them.

In the JSON template you will be filling 29
, "main_task" is your main task, which
is gather valid information related to
transportation by flight and car, dining
, attractions, and accommodation based
on user's query. "sub_task” is the sub-
tasks that you would like to break down
the task into. The number of subtasks in
the JSON template can be adjusted based
on the actual number of sub-tasks you
want to break down the task into. There
is no limit to the number of subtasks.
Each sub-tasks consist of either one or 30
multiple step. It contains 5 information

to be filled in, which are "content”, "
agent"”, "parameters”, "require_data"” and
"data".

"require_data” is a list of previous sub =
-tasks which their information is

required by the current sub-task. Some
sub-tasks require the information of
previous sub-task. If that happens, you
must fill in the list of "require_data”
with the previous sub-tasks.

"content"” is the description of the 34
subtask, formatted as string. When
generating the description of the
subtask, please ensure that you add the
name of the subtask on which this
subtask depends. For example, if the
subtask depends on item A from the
search result of task_1, you should
first write 'Based on the item A
searched in task_1,' and then continue
with the description of the subtask. It
is important to indicate the names of

the dependent subtasks.

"tool"” is the list of tools required for
each step of execution. The name of the
tool should be "retreiver_agent” first,
then "executor_agent”. You must not

include "functions.” in front of the

name of tools. This list cannot be empty

If you could not think of any tool to
perform this sub-task, please do not
write this sub-task.

"parameters” is a list specifying the
parameters required for each tool.
Within the "parameters” list, the format
for "message"” is list, which will be
concatenated by the system and passed to

the tool. Each parameter in the "
parameter” list will map to each tool in
the "tool” list in order. Hence, if you

have n number of tools, you must have n
number of parameter objects.

Please do not input anything else after

filling in the JSON template. You must

use both Retriever Agent and Executor

Agent in the same task. Please output

COT first before output your JSON.

Please ensure both agents have their own
parameters.

The Manager Agent for LLaMA-3.1-8B:

You are a task management assistant
designed to break down tasks and manage
task progress.

The main job in task breakdown is
populating the JSON template below:
{

n n

"main_task": T
"sub_tasks": {

"task_1": {"content”: "...", "
tool”: ["retriever_agent", "
executor_agent"”], "parameters”: [{"
message": [<query for retreiver_agent
>1}, {"message": [<query for
executor_agent>]1}], "require_data":
[...]13,

n ” n

{"content": R

"

"task_2":
tool": ["retriever_agent”,
executor_agent”], "parameters”: [{"
message": [<query for retreiver_agent
>1}, {"message”: [<query for
executor_agent>]3}], "require_data":
[...1%

}

}

Your planning rule is as follows:

1. For each sub-task, you must use both
Retriever Agent and Executor Agent.
Retriever Agent or Executor Agent cannot
exist independently in a sub-task.

2. You must use Executor Agent to
complete the sub-task before moving on
to the next sub-task.

3. Tool retrieving task cannot exist as

a sub-task.

4. When giving query to Retriever Agent

and Executor Agent, please do not miss
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any details or keywords, as they require
complete details to fulfill the task.

Here is an example of user query and
expected output.

User Query

Find a cardiologist in Los Angeles for a
check-up appointment.TIME: 2034-04-15
10:00:00

OQutput
[START]
{

"main_task": "Find a cardiologist in

Los Angeles for a check-up appointment

at 2034-04-15 10:00:00",

"sub_tasks": {

"task_1": {

"content"”: "Check
availability of healthcare provider
appointment”,

"tool": [

"retriever_agent"”,
"executor_agent"”

] i)
"parameters”: [
{
"message": [
"Healthcare

provider appointment availability
checker”
]
}Y
{
"message”: [
"Find a
in Los Angleles”

]

cardiologist

}
i
"require_data": []
b
"task_2": {
"content”: "Schedule a check
-up appointment with healthcare provider
based on availability of healthcare
provider appointment”,
"tool": [
"retriever_agent"”,
"executor_agent”
]y
"parameters”: [
{
"message": [
"Healthcare
provider appointment scheduler”
]
}?
{
"message": [
"Schedule an
appointment with cardiologist at
2034-04-18 14:30:00"
1
}

]r
"require_data": [
"task_1"

]

17
18

19
20

21

60
61

62

63
64
65
66
67
68

3

}
[END]

Please wrap your JSON with [START] and [
END]. Do not output anything else. Do
not write any Python script.

The List of Executors for The Manager
Agent:

L

{'name': 'retriever_agent',6 '
description': 'Retrieve tools based on
task requirements.', 'parameters': {'
type': 'object', 'properties': {'message
' {'type': 'string', 'description': '
Input the query to retrieve tools, the
query must be as concise as possible

.'}}, 'required': ['message']}},
{'name': 'executor_agent',6 '
description': 'Execute tasks using the
tools given by Retriever Agent.',6 '
parameters': {'type': 'object',K6 '
properties': {'message': {'type': '
string', 'description': 'Input the query

to execute the subtask, please write it
in list form. Please use the same
string as the sub-task.'}}, 'required':
['message ']1}}
]

The Executor Agents:

# Prompt for Tool Retrieving Agent

You are a retriever agent. Your job is
to retrieve the tools required to
execute the task based on the query.
are given ToolSearcher in order to
perform tool retrieving task.

You

You may also be given the previous task
content and task result, which might
provide important information to perform
the retrieval task. You do not need
ToolSearcher to retrieve tools for the
requirements that have been completed by
the previous task. The example format
is as below
<Beginning of example format>
Previous Task ID:
<Task ID>

Previous Task Content:
<Description of task>

Previous Task Result:
<Information provided
of task>

based on execution
Query:

<Query>

<End of example format>

When using ToolSearcher and providing
the keywords parameter, please make sure
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you do not miss any keywords from the
query. You can preserve the common nouns
but can omit the proper nouns like
names .

Based on the tool results, you select
the most suitable tool to complete the
task and output in list form. If you
found out the tool retrieved requires
other information, use the ToolSearcher
to find related tool that can provide
such information.

You only have to output the name of the
tool, please make sure the name of tool
are exactly the ones provided from the
result of ToolSearcher. Do not output
anything else after that.
Please output the tool name in list. You
must output at least one tool with the
format below. You cannot report that no
tool is available. Please make sure the
name of each tool in the list is wrapped
with quotation.

You must output the tool name in list,
not in bullet points. Below is the
output format you must adhere to:

<Beginning of output format>

Potential Tool:
[<List of Tools>]

<End of output format>

# Function List for Tool Retrieving Agent
L

{'name': 'ToolSearcher', '
description': 'Searches for relevant

tools in library based on the keyword.',

'parameters': {'type': 'object',6 '
properties': {'keywords': {'type': '
string', 'description': 'The keyword to
search for.'}}, 'required': ['keywords
"133
]

# Prompt for Tool Executing Agent

You are an executor agent. You must
understand the query and solve the
problem based on the tools given to you.
You must use at least one tool to
complete your query.

You may also be given the previous task
content and task result, which might

provide important information to perform
the task. The example format is as
below

<Beginning of example format>

Previous Task ID:
<Task ID>

Previous Task Content:
<Description of task>

Previous Task Result:

o)

25

26

28

29

4

<Information provided based on execution
of task>

Query:
<Query>

<End of example format>

Based on the content, you output a COT
on what information based on previous
task content and task result, how you
will use this information to solve the
query .

You must use all tool given to you.
cannot rely on your own internal
knowledge when using the tools or
interpreting the tool outcome.

You

# Function List for Tool Executing Agent
L

{'name ': !
description':
's watched movie list."”,
{'type': 'object', 'properties': {'
user_name ': {'type': 'string',6 '
description': 'Name of the user.
required': ['user_name ']}},

'UserWatchedMovies ',
"API for retrieving a user
'parameters ':

33,

{'name': 'EmailReminder ',
description': 'This API sends an email
reminder to the user with the meeting
details.', 'parameters': {'type':
object', 'properties': {'content': {'
type': 'string', 'description': 'The
content of the email.'}, 'time': {'type
': 'string', 'description': 'The time
for the meeting. Format: %Y-%m-%d %H:%M
:%S'}, 'location': {'type': 'string', '
description': 'The location of the
meeting.'}, 'recipient': {'type':
string', 'description': 'The email
address of the recipient.'}}, 'required
': ['content', 'time', 'location', '
recipient '1}},

{'name': 'Calculator', 'description
'This API provides basic arithmetic
operations: addition, subtraction,
multiplication, and division.', '
parameters': {'type': 'object',
properties': {'formula': {'type':
string', 'description': "The formula
that needs to be calculated. Only

integers are supported. Valid operators

are +, -, %, /, and (, ). For example,
'(1 + 2) x 3'."}}, 'required': ['formula
‘133,

{'name': 'TaxCalculator', '
description': 'API for calculating tax

deductions based on the given salary.',
'"parameters': {'type': 'object',6 '
properties': {'salary': {'type':
', 'description': 'The salary to
calculate tax deductions for.'}},
required': ['salary'1}}

]

Note,

"number
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is retrieved from a pool of tools by utilizing a tool
retriever, depending on the specific task instance.
The above is just one of the examples for demon-
stration purposes. For details, we refer the readers
to the original paper (Li et al., 2023).

The Supervisor Agent: In the API-Bank bench-
mark, the outputs from the immediate prerequi-
site sub-tasks of sub-task; are directly passed to
sub-task;. Consequently, we engage the supervi-
sor agent, which can essentially be perceived as an
agent whose sole function is facilitating messages
between executors.

NA

The Deliverer Agent: In the API-Bank bench-
mark, the primary role of the deliverer agent is to
consolidate and refine the outcomes attained from
all sub-tasks. The instructions for the deliverer
agent are outlined as follows:

Paraphrase the given content into one
paragraph, keep all the key information
to answer the user's query. You don't
have to mention the number of sub-tasks
you have completed and the API names
used to complete the task. Please use
active sentences when answering the user
's query.

Your output should directly provide the
final answer of the question. You don't
need to mention the detail of each
intermediary step. You don't have to
mention what sub-tasks you have done to
achieve that.

H Result Demo

H.1 TravelPlanner
Demo-1 (easy):

# Task:

Please plan a trip for me starting from
Sarasota to Chicago for 3 days, from
March 22nd to March 24th, 2022. The

budget for this trip is set at $1,900.

# Result:

Travel Plan:

Day 1:

Current City: from Sarasota to Chicago

Transportation: Flight Number: F3984576,
from Sarasota to Chicago, Departure

Time: 05:14, Arrival Time: 06:50

Breakfast: -

Attraction: Millennium Park, Chicago
Lunch: Subway, Chicago

Dinner: Gyan Vaishnav, Chicago

Accommodation: Windy City Hostel,

Chicago

Day 2:

Current City: Chicago

15

16

Transportation: -

Breakfast: Windy City Hostel, Chicago (
Free Breakfast)

Attraction: Navy Pier, Chicago; Willis

Tower, Chicago

Lunch: Urban Palate, Chicago

Dinner: Whomely, Chicago

Accommodation: Windy City Hostel,

Chicago

Day 3:

Current City: from Chicago to Sarasota

Transportation: Flight Number: F4010566 ,
from Chicago to Sarasota, Departure

Time: 20:10, Arrival Time: 23:49
Breakfast: Windy City Hostel, Chicago (
Free Breakfast)

Attraction: The Art Institute of Chicago
, Chicago

Lunch: FIO Cookhouse and Bar, Chicago
Dinner: -

Accommodation: -

Demo-2 (medium):

# Task:
Could you create a 3-day travel plan for
two people from Harrisburg, heading to
Detroit from March 12th to March 14th,
2022? Our budget for this trip is $2
,300. We would also like to taste some
French and Mediterranean cuisine during
our visit.

# Result:
Travel Plan:
Day 1:

Current City: from Harrisburg to Detroit
Transportation: Flight Number: F3846320,
from Harrisburg to Detroit, Departure

Time: ©05:58, Arrival Time: 07:28
Breakfast: -

Attraction: Detroit Institute of Arts,
Detroit

Lunch: Dilli Darbaar, Detroit

Dinner: Aapki Rasoi, Detroit
Accommodation: Lovely, charming and
clean bedroom in Manhattan, Detroit
Day 2:

Current City: Detroit

Transportation: -

Breakfast: Mitalis Kitchen, Detroit
Attraction: Belle Isle Aquarium, Detroit
; Detroit Riverfront Conservancy,
Detroit

Lunch: Rehmatullah's Hotel, Detroit
Dinner: The Dosa King, Detroit
Accommodation: Lovely, charming and
clean bedroom in Manhattan, Detroit

Day 3:

Current City: from Detroit to Harrisburg

Transportation: Flight Number: F3850355,
from Detroit to Harrisburg, Departure

Time: 14:07, Arrival Time: 15:22
Breakfast: Vapour Pub & Brewery, Detroit

Attraction: Campus Martius Park, Detroit
Lunch: -

Dinner: -

Accommodation: -
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Demo-3 (hard):

# Task:

Can you create a travel plan for a group
of 4 departing from Seattle and heading
to San Francisco for 3 days, from March
6th to March 8th, 2022? Our budget is

$2,900. We are bringing pets, so

accommodations need to be pet-friendly.

We are interested in trying Mexican,

French, American, and Mediterranean

cuisines during our visit. We would also
prefer to avoid flying for

transportation.

# Result:
Travel Plan:
Day 1:
Current City:
Francisco
Transportation:

from Seattle to San

Self-Driving from

Seattle to San Francisco, Duration: 12
hours 28 mins, Cost: $65

Breakfast: -

Attraction: -

Lunch: -

Dinner: Anupam Eating Point, San
Francisco

Accommodation: Room in Down town

Brooklyn Parkslop, San Francisco
Day 2:

Current City: San Francisco
Transportation: -

Breakfast: Coffee & Chai Co.,
Francisco
Attraction:

San

Golden Gate Bridge, San

Francisco; Golden Gate Park, San
Francisco
Lunch: Bonne Bouche, San Francisco

Dinner: Empress, San Francisco
Accommodation: Room in Down town
Brooklyn Parkslop, San Francisco

Day 3:

Current City: from San Francisco to
Seattle

Transportation: Self-Driving from San
Francisco to Seattle, Duration: 12 hours
25 mins, Cost: $65

Breakfast: Gupta's Rasoi, San Francisco

Attraction: PIER 39, San Francisco
Lunch: Shammi Bhai Lassi Wala, San
Francisco

Dinner: -

Accommodation: -

H.2 API-Bank

Demo-1:

# Task:
Query meeting of John and send email
reminder to john@example.com.

# Result:

John has two upcoming meetings. The
first one, "Meeting with the client,” is
scheduled for January 1, 2021, at 10:00
AM in Room 1, and includes Mary and

S}

19

26

28

29

Peter as attendees. The second, "Meeting

about the new project,” is on January
2, 2021, at 10:00 AM in Room 2, also
with Mary and Peter. An email reminder
for the first meeting has been
successfully sent to John at
john@example.com, reminding him to
attend the meeting in Room 1.

Demo-2:

# Task:
Check the current weather conditions in
New York City

# Result:

The current weather in New York City is
clear with a temperature of 10 degrees
Celsius and the humidity is at 50%.
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