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Abstract

Pretrained transformer-based Language Mod-
els (LMs) are well-known for their ability to
achieve significant improvement on text classi-
fication tasks with their powerful word embed-
dings, but their black-box nature, which leads to
a lack of interpretability, has been a major con-
cern. In this work, we introduce GAProtoNet,
a novel white-box Multi-head Graph Attention-
based Prototypical Network designed to ex-
plain the decisions of text classification mod-
els built with LM encoders. In our approach,
the input vector and prototypes are regarded as
nodes within a graph, and we utilize multi-head
graph attention to selectively construct edges
between the input node and prototype nodes to
learn an interpretable prototypical representa-
tion. During inference, the model makes deci-
sions based on a linear combination of activated
prototypes weighted by the attention score as-
signed for each prototype, allowing its choices
to be transparently explained by the attention
weights and the prototypes. Experiments on
multiple public datasets show our approach
achieves superior results without sacrificing the
accuracy of the original black-box LMs. We
also compare with four alternative prototypical
network variations and our approach achieves
the best accuracy and F1 among all. Our
case study and visualization of prototype clus-
ters also demonstrate the efficiency in explain-
ing the decisions of black-box models built
with LMs. Our codes are available at https:
//github.com/ximingwen/GAProtoNet.

1 Introduction

Deep learning models, especially transformer-
based Language Models (LMs) such as BERT (De-
vlin et al., 2018), RoBERTa (Liu et al., 2019) have
significantly contributed to advancements in NLP,
especially text classification. However, despite
their state-of-art performance, their complexity
and black-box nature obscure the decision-making
process and hinder their interpretability. Now

more and more real-world applications also desire
classification models built with LMs to be inter-
pretable, since it allows end-users to comprehend
the decision-making process, fostering trust and
encouraging adoption. To address this need, there
is growing interest in enhancing the interpretability
of text classification models built with LMs.

Recent efforts have focused on redesigning neu-
ral networks to be inherently interpretable, based
on the classic framework of prototypical learning
(Datta and Kibler, 1995). These models actively
learn prototype vectors hrough training, which are
representative cases from previous observations, to
explain decisions more intuitively. This methodol-
ogy is first introduced into image domain by Li et al.
(2018) and Chen et al. (2019), and then applied
in text classification field with different structure
variations (Ming et al., 2019; Hong et al., 2020;
Pluciński et al., 2021; Das et al., 2022). However,
despite this white-box framework being efficient
in training and improving the model’s intrinsic in-
terpretability, there is still some performance gap
compared with the original black-box models.

On the other hand, there exist strategies such as
graph attention network (GAT) (Velickovic et al.,
2017), that is known for its ability to capture the im-
portance of neighboring nodes in a graph through
attention mechanisms, enabling more effective and
expressive feature representation learning for each
node. This approach allows GAT to dynamically
assign different weights to different neighbors,
which enhances the model’s performance on vari-
ous graph-based tasks(Wang et al., 2019; Xie et al.,
2020; Bhatti et al., 2023). This inspires us to analo-
gize learning the relatedness between the input vec-
tor and the prototype vectors as constructing edges
and learning their weights between nodes.

To address the challenge of the performance
gap, we propose a novel white-box Multi-head
Graph Attention-based Prototypical Network
(GAProtoNet) designed to explain the decisions of

https://github.com/ximingwen/GAProtoNet
https://github.com/ximingwen/GAProtoNet
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text classification models built with LM encoders.
Our approach incorporates a prototype layer on top
of a fine-tuned LM and utilizes multi-head graph at-
tention (Velickovic et al., 2017) to efficiently learn
an interpretable prototypical representation by se-
lectively constructing edges between encoded rep-
resentations and their neighboring prototypes. In
the reference time, the decision is solely based on
a linear combination of prototypes weighted by
the attention scores assigned by attention heads.
Our model archives superior performance without
sacrificing the accuracy of the original LM while
facilitating transparent decision-making progress.
The novelty of our work lies in being the first to
represent prototypes and input vectors as nodes
within graphs, and actively train prototype vectors
utilizing edges constructed by graph attention for
interpretable text classification. The contribution
of our work can be summarized as follows:

• We propose a new prototypical framework
that leverages multi-head graph attention to
selectively construct edges between input and
prototypes which indicates relatedness. Our
model is inherently interpretable and the per-
formance is superior without sacrificing the
accuracy of the original models.

• We did extensive comparison experiments
with variations of prototype-based networks
on five public benchmark datasets, including
binary, four-label, ten-label classification. Our
approach achieves the best accuracy and F1.

• We evaluate the interpretability of GAPro-
toNet through various design criteria and
demonstrate that the explanations provided
by GAProtoNet are of high quality.

The next section describes our proposed approach.
§3 presents experiments, while §4 presents an anal-
ysis of the interpretability exhibited in the proposed
approach. We describe related work in §5. We con-
clude in §6 where we reiterate our contribution.
Limitations and future work are pointed out in §7.

2 Graph-Attention ProtoNet

Figure 1 illustrates the overall architecture of
GAProtoNet, which consists of three major com-
ponents: (1) Text Embedding based on Language
Models (LMs), responsible for converting input text
into high-dimensional vectors that capture its se-
mantic information; (2) Prototype Layer, responsi-
ble for forming multiple typical prototype vectors

that encapsulate distinct semantic aspects of the
input text as well as enhancing the interpretability
of the model; and (3) Graph Attention Mechanism,
which efficiently learn the relatedness between the
text embedding vector and its neighboring proto-
type vectors, which are later used to form a pro-
totypical representation of the text and passed to
output layer. Detailed descriptions for each compo-
nent are presented in the following subsections.

2.1 Text Embedding encoded by Language
Models (LMs)

Given the remarkable performance of pre-trained
language models RoBERTa, XLNet, and Distil-
BERT on a wide range of NLP tasks, we lever-
age their capabilities for efficient text embed-
dings. These models have been trained on vast
text datasets and can be fine-tuned for specific
downstream tasks. By utilizing these pre-trained
language models, we embed input text into high-
dimensional vectors, which serve as representa-
tions that capture the deep semantic information of
the text:

s = LM(x) (1)

where x denotes the input text. s is the semantic
information representation vector.

2.2 Prototype Layer

In the prototype layer, we define M prototype vec-
tors P = {pj}Mj=1 that represent typical features
in the vector space of training data. For each se-
mantic representation vector passed from the text
embedding layer, we compute the attention score
vector indicating the relatedness between itself and
all prototype vectors with a graph attention model
introduced in §2.3.

Note that these prototype vectors are randomly
initialized. They are learned through active train-
ing with loss defined in §2.5. Their representative-
ness is improved by updating the weights during
each training epoch, resulting in an inherently in-
terpretable classifier.

2.3 Graph Attention Mechanism

The graph attention mechanism in our model cap-
tures the relatedness between the embedding text
vector and the prototype vectors, allowing for the
derivation of prototypical representations for the
embedding vectors mentioned in §2.2. To effec-
tively capture diverse semantic aspects and intri-
cate patterns in the data, we utilized a multi-head
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Figure 1: Overview of the GAProtoNet Architecture: The GAProtoNet architecture consists of three primary
components: a Text Embedding Layer using LMs, a Prototype layer, and Graph Attention. The text embeddings are
linearly transformed to produce query vectors. Each attention head will construct a graph based on the attention
score between the query vectors and predefined prototypes. As shown in the figure, different heads will activate
prototypes in different semantic aspects, assigning different attention score to negative ones and positive ones. An
interpretable prototypical representation will be formed with a linear combination of all prototypes weighted by the
attention score and sent to the output layer for classification.

approach to comprehensively model this related-
ness. The query nodes in the graph represent the
input text embedding vector while the key nodes
represent the prototype vectors. Edges and weights
are constructed based on the following approach:

Single-Head Linear Transformation For each
text embedding input s, we utilize matrix W q to
transform it into query vector q. For each prototype
pj , we utilized matrix W k to transform it into kj :

q = W qs,kj = W kpj (2)

Multi-Head Linear Transformation Now in-
stead of using one single set of weight, we uti-
lize a set of learnable matrix linear transformations
{W q

i }
H
i=1 and

{
W k

i

}H

i=1
to generate a series of

query nodes {qi}Hi=1 and prototypes {kij}Hi=1 with
H representing the number of attention heads. For
each head i, we have:

qi = W q
i s,kij = W k

i pj (3)

Attention Score Computation After the trans-
formation with each head i, we calculate the simi-
larity between the node qi and the nodes {kij}Mj=1
based on the dot product:

sim(qi,kij) = dot(qikij)/dk (4)

where dk denotes the dimension of key node
vector k.

The attention scores are then derived by applying
the sigmoid activation function σ to the similarity
vector:

αij = σ(sim(qi,kij)) (5)

This attention score represents the weight of each
prototype p in shaping the decision-making process.
As shown in Figure 1, our experimental results
demonstrate that each attention head tends to acti-
vate prototypes corresponding to distinct semantic
aspects. Moreover, the attention scores assigned
to negative and positive prototypes suggest a bias
towards a negative or positive final classification,
respectively.

Graph Edge Construction For each attention
head i, a graph is constructed by activating edges
between the transformed prototype nodes k and
text embedding node q when attention scores ex-
ceed a certain threshold τ . For each attention head
i, the edge between the transformed prototype q
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and transformed j-th prototype node kj can be ex-
pressed as:

E = {(qi,kij) | αij > τ} (6)

Interpretable Prototypical Representation The
prototypical representation vector for the text em-
bedding vector s is formed by computing a linear
combination of the neighboring prototype nodes
from all attention heads weighted by the attention
score.

For each attention head i, we first normalize
the attention scores for neighboring transformed
prototype nodes of qi. Thus, for each prototype
node kj under attention head i, its normalized score
is:

γij =
αij∑

k∈N (qi)
αik

(7)

The prototypical representation vector r for s
under attention head i is computed as:

ri =
∑

j∈N (qi)

γijkij (8)

where N(qi) is the set of neighboring nodes for
node q under attention head i constructed under
the definition of E in 6.

Output Layer The interpretable prototypical rep-
resentations obtained from all heads are concate-
nated to form a single vector. This vector is then
utilized as input for the output layer to perform text
classification.

2.4 Prototype Projection
To understand the natural language meaning of
each prototype vector pj , we match each prototype
with the sample text embedding vector sj in the
dataset D that has the highest similarity, and as-
sign that sample xj as the prototype text. Let D
represent the training dataset, then:

Text of pj ← arg max
xj∈D

sim(sj ,pj) (9)

where sim(sj ,pj) denotes the similarity mea-
sure between the sample text sj and the prototype
vector pj .

During text classification tasks, we observe the
graph model formed between embedded text and
prototypes, as well as the edge weights, to interpret
the classification process.

2.5 Training Objective
In this study, our designed composite loss function
consists of three key components: Accuracy Loss,
Proximity Loss, and Diversity Loss.

Accuracy Loss We employ the cross entropy loss
to guide the model training. This loss measures the
discrepancy between the predicted probability dis-
tribution and the true labels, optimizing the model
to assign higher probabilities to the correct classes.
Specifically, the accuracy loss is defined as:

LAcc = −
N∑
i=1

C∑
j=1

yij log(ŷij), (10)

where N is the number of samples, while C is the
number of classes. yij is the true one-hot label
of sample i for class j, while ŷij is the predicted
probabilities.

Proximity Loss To ensure that each prototype
can be projected onto a similar sample in the train-
ing data, we introduce the Proximity Loss. This
loss measures the distance between prototypes and
data points, penalizing prototype-sample pairs that
are far apart. We use Euclidean distance as the dis-
tance metric and calculate the minimum distance
between each prototype and all samples. The aver-
age of the minimum distances across all prototypes
is then taken as the Proximity Loss:

LProx =
1

M

M∑
j=1

min
i
||pj − si||22 (11)

where M is the number of prototypes, pj is the
vector representation of the j-th prototype, and si
is the embedded vector representation of the i-th
sample in the training set.

Diversity Loss To encourage diversity among
prototypes and avoid redundancy, we introduce the
Diversity Loss. This loss aims to encourage proto-
types to be distributed as diversely as possible in
the feature space. We achieve this by penalizing the
average distance between all pairs of prototypes:

LDiv = − 1

M(M − 1)

M∑
j=1

∑
k ̸=j

||pj − pk||2 (12)

Composite Loss Function By combining the
above three loss functions, we obtain the composite
loss function:

L = λ1 · LAcc + λ2 · LProx + λ3 · LDiv (13)
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where λ1, λ2, and λ3 are hyperparameters that
balance the weights between different loss terms.
These hyperparameters can be determined experi-
mentally to optimize the model’s performance.

3 Performance Experiments

In this section are discussed the datasets used in
the experiments, and the models used as black-box
baselines, prototypical baselines, and the variations
of the proposed approach. The overall hypothesis
is that the proposed approach performs on par with
black-box and outperforms prototype baselines in
the dataset used for text classification.

3.1 Datasets and Metric
We evaluate our approach on three binary public
benchmark datasets: Hotel Reviews 1prepared by
(Hong et al., 2020), IMDb 2 (Maas et al., 2011)
and Yelp Polarity Reviews. All of them are bal-
anced datasets. To demonstrate our model’s perfor-
mance on more challenging tasks, we also evaluate
it on Tweet (Mohammad et al., 2018) and Yahoo
(Zhang et al., 2015), which are 4-class and 10-class
datasets seperately.

Metric We use accuracy, recall and F1-Score as
metrics to evaluate models’ performance. For each
model, we run 5 times and calculate the average as
the final reported results.

3.2 Models and Settings
We select three black-box LM as baselines and four
different prototype-based variations for comparison
experiments. We also test two variations of GAPro-
toNet, one with a single attention head and another
with attention heads = 4. We train each model
with one single NVIDIA GTX 3090 or GTX 4090.
We use Adam as the optimizer and the learning
rate is 1e− 4. Due to the limitation of GPU RAM,
we choose a batch size of 4 and an accumulated
gradient step of 64.

LM Baselines We select the following pre-
trained black-box language model without proto-
types as the powerful baselines: DistilBERT (Sanh
et al., 2019), RoBERTa-large (Liu et al., 2019)
and XLNet (Yang et al., 2019). For all the three
LMs, we use the same simple MLP (multilayer per-
ceptron) with two hidden layers over the output of
the CLS token from the last hidden layer of the LM
encoder for classification.

1https://www.kaggle.com/datafiniti/ hotel-reviews.
2https://huggingface.co/datasets/stanfordnlp/imdb.

Prototype-based Networks Variations We se-
lect the following 4 prototyical network variations
for comprehensive comparison experiments against
our GAProtoNet:ProSeNet (Ming et al., 2019),
ProtoryNet (Hong et al., 2020), ProtoCNN (Plu-
ciński et al., 2021) and ProtoTEX (Das et al.,
2022).

3.3 Experiment Result

Binary Classification Thr first three section in
Table 1 summarizes our evaluation results on binary
classification. We observe that GAProtoNet either
closely matches or exceeds the performance of its
baseline LLM across our experiments, supporting
GAProtoNet’s interpretability is not achieved at the
cost of performance. Within four types of prototyp-
ical variations, ProtoTEX and ProtoryNet have the
best performance for accuracy, recall, and F1 for
all three datasets, but GAProtoNet still improves
3%-6% upon their performance. This indicates
that leveraging graph attention to construct edges
between input embeddings and prototypes could
be more efficient than heuristic distance measure-
ment. For the variations of GAProtoNet, multi-
head GAProtoNet have better performance com-
pared with single-head, with the RoBERTa as the
encoder showing the best results. This could be due
to that the multi-head attention enables the network
to capture semantic meanings from different per-
spectives, thus potentially improving the network’s
performance.

Extend to Multi-label Classification The last
two section in Table 1 summarizes our evaluation
results on multi-label classification. For the 4-class
dataset, our model is the best overall. For the 10-
class dataset, our model is better than all other
prototype-based models and comparable to black-
box models. This confirms the robustness of our
model observed in binary classification and also
shows that our model produces accuracy compara-
ble or better than black-box model even when the
task is more challenging. Comparing our model
against other prototype-based architectures, the per-
formance is better in all the experiments done so
far.

The consistent results across five datasets sup-
port our hypothesis in the beginning that GAPro-
toNet can perform on par with black-box and out-
perform prototype baselines. The performance
improvement demonstrated by GAProtoNet indi-
cates graph attention for prototypical networks can
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Hotel IMDb Yelp Tweet Yahoo

Acc. Rec. F1 Acc. Rec. F1 Acc. Rec. F1 Acc. Rec. F1 Acc. Rec. F1

DistilBERT 97.49 98.22 97.57 92.91 93.53 92.93 97.25 97.51 97.43 76.84 76.84 76.89 71.17 71.17 71.97
XLNet 98.73 98.21 98.77 95.79 96.71 95.82 98.12 98.25 98.40 79.52 79.52 79.26 75.80 75.80 75.45
RoBERTa-large 98.97 99.33 99.00 96.38 97.08 96.38 98.18 98.57 98.21 81.63 81.70 81.63 75.46 75.46 74.94

ProSeNet 92.17 93.72 93.06 86.69 87.84 87.53 92.58 91.24 92.17 73.24 72.35 73.54 68.17 68.23 68.19
ProtoryNet 94.45 95.59 94.55 88.21 87.14 88.45 95.32 94.08 94.62 72.90 72.85 72.28 70.62 69.03 70.58
ProtoCNN 94.32 95.49 94.34 89.32 91.03 89.65 87.25 88.47 89.98 64.32 63.51 63.36 66.72 65.98 64.21
ProtoTEX 95.90 96.37 96.23 92.39 93.21 91.36 93.07 94.40 94.26 75.28 75.14 75.20 70.32 70.33 70.33

SINGLE-HEAD GAPROTONET VARIATIONS

DistilBERT + SG 97.14 96.67 97.20 92.79 93.73 92.82 97.38 97.76 97.40 75.72 75.72 76.00 70.67 70.67 71.35
XLNet + SG 98.62 98.88 99.11 95.36 94.65 95.73 97.65 98.70 98.21 79.80 79.80 79.76 73.77 73.77 73.65
RoBERTa + SG 98.94 98.67 98.89 96.35 96.97 96.23 98.14 98.11 98.17 81.42 81.40 81.42 72.23 72.23 71.16

MULTI-HEAD GAPROTONET VARIATIONS

DistilBERT + MG 97.94 97.78 98.00 92.79 94.06 92.86 97.40 96.93 97.43 75.43 75.40 75.40 71.40 71.40 72.00
XLNet + MG 99.08 99.33 99.11 95.96 95.96 95.96 98.19 98.69 98.23 80.64 80.64 80.48 74.12 74.12 74.74
RoBERTa + MG 99.09 99.56 99.12 96.53 96.85 96.53 98.27 98.07 98.39 81.84 81.81 81.85 73.79 73.79 73.95

Improvement (%) 3.19 3.19 2.89 4.14 4.46 5.17 2.95 4.29 3.77 6.56 6.67 6.65 3.50 3.79 4.16

Table 1: Accuracy, recall and F1 scores for baseline models and GAProtoNet variations across three datasets. ’SG’
denotes single-head GAProtoNet, while ’MG’ represents multi-head GAProtoNet. Bolded values indicate the
highest scores in each column across all sections, while underlined values highlight the best performance within the
prototypical baseline variation section. The percentage improvement reflects the difference between the highest
performance of GAProtoNet and that of other prototype-based variations.

achieve better overall performance, thus validating
our contribution.

4 Interpretability Analysis

In this section, we analyze our model’s inter-
pretability from two perspectives. First, we use
case studies to demonstrate how prototypes and
their surrounding edges to the input node, con-
structed with graph attention, are used to explain
the model’s decision-making process. Second, we
evaluate the quality of our prototypes. We demon-
strate their representativeness through visualization,
showing that they are distributed dispersedly within
the training data space. Additionally, we assess
the distinctiveness of the prototypes by examin-
ing how it varies with the number of prototypes
and analyzing its impact on the model’s prediction
performance.

4.1 Case study

Figure 3 illustrates an example of using multi-graph
attention heads and prototypes to explain a classi-
fication result. The input text is a Yelp review
about a restaurant. In this instance, eleven out of
twenty prototypes are activated by four attention
heads, indicating edges constructed between them
and the input text. Figure 2 illustrates the activation
of prototypes using attention Head 3 as an exam-

Figure 2: Prototype activation under Attention Head 3.

ple. Specifically, five positive prototypes related
to food quality are activated, and edges are con-
structed between the input text and the activated
prototypes, with the attention scores representing
the edge weights. This activation reflects the pos-
itive sentiment towards food quality expressed in
the original text.

We observe that different prototypes, represent-
ing various aspects of the restaurant, are activated
by different attention heads. Head 1 activates proto-
types related to service and price, Head 2 to service,
Head 3 to food, and Head 4 to waiting time. In this
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Figure 3: Using a Yelp review as input, the prototypes activated by various graph attention heads are analyzed. The
review’s label and prediction are both positive. For each prototype, an attention head is checked if it constructs an
edge between the prototype and the input. Different aspects are highlighted in distinct colors: blue for price, yellow
for service, red for wait time, and green for food quality.

(a) Hotel (b) IMDb (c) Yelp

Figure 4: Prototype distribution within training data space for three datasets.

text input, all different aspects of the text are cap-
tured by each attention head and then construct the
edge between the input and the prototypes. Interest-
ingly, prototypes related to service are activated by
Head 2, even though the input text does not explic-
itly mention service. This suggests that the model
might infer a positive attitude towards service based
on implicit cues in the text. It also indicates that
the aspects activated by different attention heads
can overlap rather than being fully distinct.

4.2 Prototype quality and performance

Prototype Distribution Visualization Since pro-
totypes are used to interpret the model, they should
capture as many representative features from the
data as possible, indicating an even distribution
within the training data space. A straightforward
way to verify this is through visualization. Since
our prototype vectors and training data are high-

dimension vectors, we first use t-SNE (t-distributed
Stochastic Neighbor Embedding) (Van der Maaten
and Hinton, 2008) to do dimension deduction be-
fore the visualization. This method is effective at
preserving the local structure of the data so the
distribution pattern won’t change when projected
from higher dimension space to lower dimension
space. The visualization of prototype vectors for a
multi-head GAProtoNet with the prototype number
of k = 20 is shown in Figure 4. The orange dots
represent prototypes while the blue dots represent
training data. We can see that the prototype vectors
are evenly distributed within the training data space
and test results show that those prototype vectors
are of high orthogonality. This indicates that the
space formed by these vectors can cover most of
the data points so we can use limited prototypes to
represent any point in the training data.
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Figure 5: Prediction accuracy and the percentage of
unique prototypes when trained with different numbers
of prototypes

Prototype Distinguishness and Model Perfor-
mance Since the prototypes are used both for
interpreting results and making decisions, we are
interested in how the hyperparameter k of their
number affects the model’s interpretability and clas-
sification performance. For interpretability, we
measure the number of distinguished prototypes.
Distinguishness indicates that if more than one
prototype vector projects onto the same sample
data point, it is counted only once. For classifica-
tion performance, we measure the accuracy. We
conduct experiments varying the number of pro-
totypes k from 10 to 40 on a multi-head GAPro-
toNet with RoBERTa-large as the encoder across
the three datasets. The percentage of distinguished
prototypes and classification accuracy is shown in
Figure 5. We observe the accuracy achieves the
highest when k = 20 across three datasets then
drops with k increasing. The corresponding trend
for the percentage of distinguished vectors is also
dropping from k = 20 to k = 40. We reason that
increasing k can only improve the model’s expres-
siveness until a certain point, in our case k = 20.
After the point, prototypes will lose distinguishness
and therefore hurts model’s classification perfor-
mance. Instead of observing a trade-off between
interpretability and accuracy, our experiments show
that they are positively related with each other.

5 Related Work

Li et al. (2018) and Chen et al. (2019) introduce
prototype-based architecture into interpretable im-
age classification by proposing a prototype layer,
where prototypes are randomly initialized and are
made meaningful through training. Ming et al.
(2019) brought this approach into NLP domain
by adding a sequence encoder before the prototype

layer. Concept representation learning is also ap-
plied in enhancing the interpretability of the struc-
ture (Jin et al., 2024c,b,a) while others improve
interpretability by extracting minimal sentiment
triplets (Sun et al., 2024b,a). However, despite
this intrinsically interpretable model demonstrat-
ing compelling results, there are still some perfor-
mance gaps compared to the original black-box
model.

In the NLP domain, researchers attempt to mini-
mize the performance gap by trying different struc-
ture variations. Hong et al. (2020) used Sentence
Universal Encoder (Cer et al., 2018) and added an
LSTM layer (Hochreiter and Schmidhuber, 1997)
between the prototype layer and the output layer
to better capture the patterns in the trajectory of
prototypes. Pluciński et al. (2021) propose a new
structure that operates on the prototypes in the form
of phrases. Das et al. (2022) applied a new dis-
tance measurement metric and further minimized
the accuracy gap but they only compared with the
black-box models and lack of comparison with
other prototype-based variations.

All the above approaches utilize variations of
heuristic distance metric (e.g. cosine similarity or
Euclidean distance) to calculate the distance vec-
tor or matrix between the input vectors and proto-
types, which serves as the sole input to the output
layer. We hypothesize that only passing a heuris-
tic distance metric may omit essential upstream
information, thereby impairing performance. This
motivates us to improve the current structure by cal-
culating relatedness with the attention mechanism,
which could potentially preserve more information
(Vaswani et al., 2017).

Considering all the limitations of the current ap-
proaches, there is a need for a new prototypical
network that can further minimize the performance
gap compared with the original black-box model
and at the same time prototypes can be effectively
trained through active learning.

6 Conclusion

We contribute an interpretable prototypical deep
learning architecture that is advanced with graph
attention on text classification. Our experiments
show our approach outperforms both other inter-
pretable and black-box architectures on benchmark
datasets. We also conduct a comprehensive analy-
sis to show good interpretability of our approach.
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7 Limitation

To demonstrate these prototypes can support user
explainability in addition to making the architec-
ture interpretable, we will include user study in our
future work.
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Figure 6: This is the 20 prototypes after projecting them with the nearest sample.
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