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Abstract

Existing video-LLMs excel at capturing the
overall description of a video but lack the abil-
ity to demonstrate an understanding of tempo-
ral dynamics and a fine-grained grasp of lo-
calized content within the video. In this paper,
we propose a Time-Perception Enhanced Video
Grounding via Boundary Perception and Tem-
poral Reasoning aimed at mitigating LLMs’
difficulties in understanding the discrepancies
between video and text temporality. Specif-
ically, to address the inherent biases in cur-
rent datasets, we design a series of boundary-
perception tasks to enable LLMs to capture
accurate video temporality. To tackle LLMs’
insufficient understanding of temporal informa-
tion, we develop specialized tasks for boundary
perception and temporal relationship reasoning
to deepen LLMs’ perception of video tempo-
rality. Our experimental results show signifi-
cant improvements across three datasets: Ac-
tivityNet, Charades, and DiDeMo (achieving
up to 11.2% improvement on R@0.3), demon-
strating the effectiveness of our proposed tem-
poral awareness-enhanced data construction
method.1

1 Introduction

With the success of large language models (LLMs)
in the field of natural language processing (Touvron
et al., 2023) (Achiam et al., 2023), an increasing
number of researchers are attempting to leverage
the capabilities of LLMs in the domain of video
understanding, leading to the emergence of various
video-LLMs (Ko et al., 2023). Video Grounding, as
a representative task in video temporal understand-
ing, aims to locate specific events in an untrimmed
video based on natural language descriptions.

*Corresponding author. †These authors contributed
equally to this work.

1Our code will available at https://github.com/
lixuefenfen/TPE-VLLM.
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A baby is sitting on the floor in front of a plate filled with some

French fries. The food in front of him catches his attention,

and he starts to play with the fries in the plate. After a while,

he grabs a fry from the plate and puts it in his mouth.

… …

Figure 1: Illustration of video sequences and corre-
sponding text sequences. The video frames show key
events and scene changes, while the text describes the
action taking place in the video. Text marked in red
represents the turning point markers.

Traditional methods often require the meticu-
lous design of complex multimodal fusion frame-
works to achieve precise temporal localization (Cao
et al., 2023), researchers have been inspired to ex-
plore the application of LLMs in the multimodal
domain. The application of large language models
(LLMs) for video grounding tasks remains in the
exploratory phase. (Li et al., 2023) (Zhang et al.,
2023) (Maaz et al., 2023) have shown impressive
capabilities in video understanding, they reveal
significant limitations in addressing fine-grained
temporal questions. To address these challenges,
existing approaches construct temporally contex-
tualized conversational datasets to perform super-
vised fine-tuning of LLMs. (Huang et al., 2024)
uses a three-stage training approach to fine-tune the
video-LLM step by step. (Li et al., 2024) developed
video-LLMs that leverage large-scale multimodal
datasets, incorporating both video-text and audio
data to enhance temporal comprehension. How-
ever, their data construction methods often simplify
video content into a series of independent event de-
scriptions, such as: "Q: During which frames can
we see Ti happening in the video? A: From ts to
te." Here, T represents the event, ts represents the
start time, and te represents the end time. This data

https://github.com/lixuefenfen/TPE-VLLM
https://github.com/lixuefenfen/TPE-VLLM
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construction method treats each video segment in
isolation during the supervised fine-tuning phase,
neglecting the inter-dependencies between differ-
ent events within the same video.

In terms of the natural differences between video
and text modalities, as illustrated in Figure 1, the
temporal relationships between video frames are
more continuous and smooth, whereas the gaps
between words in text can be larger and struc-
turally more complex. Moreover, individual video
frames typically contain more information than sin-
gle words or characters, requiring the model to
have stronger information extraction and compres-
sion capabilities. A critical examination of existing
methods and modal differences reveals two pri-
mary challenges that contribute to the current gap
in video grounding performance.

Inadequate Perception of Event Boundaries:
Current methods lack sufficient mechanisms for
accurately identifying and delineating the bound-
aries of events within videos. This issue arises be-
cause most models are trained to comprehend over-
all video content but fail to detect the precise mo-
ments when an event begins or ends. Consequently,
these methods are ill-equipped to address tasks
that require nuanced temporal boundary detection.
Insufficient Temporal Understanding: Beyond
the inter-training limitations, there is a significant
gap in how existing models handle tasks that rely
on a deep understanding of temporal sequences.
Most current approaches focus on coarse-grained
content comprehension rather than on fine-grained
temporal reasoning. This inadequacy becomes par-
ticularly evident in video grounding, where the
model needs to understand the temporal relation-
ships within the video with greater granularity.

To address the two core issues, limited event
boundary perception, and insufficient temporal
understanding, we proposed Time-Perception En-
hanced Video Grounding via Boundary Perception
and Temporal Reasoning (TPE-VLLM). Specifi-
cally, To tackle the problem of inaccurate identifi-
cation and delineation of event boundaries within
videos, we designed boundary perception tasks.
These tasks include duration perception and posi-
tion perception subtasks, which enable the model
to more precisely capture the start and end points of
events, thus improving its ability to handle tasks re-
quiring nuanced temporal boundary detection. To
address the lack of fine-grained temporal under-
standing in current models, we developed temporal
reasoning tasks. These tasks include event time

matching, event ordering, and time selection for
given events, which enhance the model’s compre-
hension of complex temporal relationships within
videos, enabling more accurate temporal reasoning.
The results show the significant improvements in
video grounding performance on ActivityNet, Cha-
rades, and DiDeMo datasets. Our contributions are
as follows:
• We introduced boundary perception and tempo-

ral reasoning tasks, significantly enhancing the
model’s event boundary detection and temporal
understanding.

• Experiments demonstrated the efficiency of these
tasks, achieving strong performance with just
20% of the constructed training data.

• Extensive evaluations on ActivityNet, Charades-
STA, and DiDeMo showed notable improve-
ments, validating the effectiveness of our time-
perception enhanced approach.

2 Related Work

Video Grounding The video grounding task
aims to locate specific segments in untrimmed
videos based on text descriptions (Gao et al.,
2017). Traditionally, achieving performance im-
provements requires carefully designed model ar-
chitectures (Zhang et al., 2021). To enhance model
universality, researchers are increasingly using gen-
eral models for video grounding. For instance,
(Zheng et al., 2023) employs BLIP (Li et al., 2022)
to convert video frame content into text descrip-
tions and declusters frames based on the differ-
ences in event descriptions. Similarly, (Luo et al.,
2024), breaking down text into shorter segments,
utilizes InternVideo (Wang et al., 2022) to match
text with video clips. However, these sophisticated
models often demand experienced engineers to de-
sign complex systems that may not be suitable for
contemporary modeling environments.

LLMs for Video Grounding With the impres-
sive performance of LLMs in NLP, researchers are
increasingly exploring the application of LLMs in
video grounding (Liu et al., 2024). Video LLMs
directly accept videos and queries, responding
based on the query and video content like Video-
Chat (Li et al., 2023) and Video-LLama (Zhang
et al., 2023). However, these general-purpose mod-
els have shown unsatisfactory performance in video
grounding. Recently, efforts have shifted toward
fine-tuning LLMs for this task. (Huang et al.,
2024) proposes a three-stage time sensing model
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Figure 2: The illustration of TPE-VLLM: 1) Our training framework based on LLM, 2) Our method for constructing
boundary-aware and temporal reasoning dialogue data. We use a high-quality dataset to construct Boundary
Perception and Temporal Reasoning dialogue tasks, and merge them train Stage3 to enrich the training tasks, guide
the model to correctly perceive boundaries and distinguish between different events.

to create a dialogue dataset focused on temporal
perception. (Li et al., 2024) introduces the incor-
poration of audio modality to further enhance the
model’s capabilities and presents a strategy for con-
structing training data. However, the template form
of the existing dialogue data are often singular in
form and constructed based on individual events,
which leads to a deficiency in the model’s ability
to reason about temporal relationships.

3 Approach

Our approach builds upon a multi-stage architec-
ture, with significant innovations introduced in
the third stage to enhance the model’s temporal
reasoning capabilities. As illustrated in Figure 2,
TPE-VLLM consists of three main components: a
multi-stage architecture (Section 3.1), novel time-
perception enhanced tasks (Section 3.2), and a
specialized data fusion and training strategy (Sec-
tion 3.3). The core of our contribution lies in
the time-perception enhanced tasks, which include
boundary perception tasks and temporal reasoning
tasks, specifically designed to improve the model’s
ability to perceive event boundaries accurately and
understand complex temporal relationships within
videos.

3.1 Multi-Stage Architecture
We first formally define the video grounding task.
Given an untrimmed video V = vt

T
t=1 of T frames

and a natural language query Q, the goal is to locate
the temporal segment [ts, te] that best corresponds
to the query, where 1 ≤ ts < te ≤ T . Formally,
we aim to learn a mapping function f :

f : (V,Q)→ [ts, te] (1)

TPE-VLLM adopts a three-stage training method-
ology following (Huang et al., 2024), as illustrated
in Figure 2. In the first stage, we use a frozen CLIP
ViT-L/14 (Radford et al., 2021) to extract visual
features from uniformly sampled video frames and
train a Visual Adapter to project these features into
the LLM’s embedding space. The second stage
fine-tunes the LLM on extensive video datasets
(Wang et al., 2023) using Low-Rank Adaptation
(LoRA), enabling effective video content compre-
hension while maintaining most pre-trained param-
eters. The third stage represents the core innova-
tion of our method. We leverage Video Grounding
datasets to construct high-quality data, introduc-
ing two novel types of tasks: Boundary Perception
Tasks Tb and Temporal Reasoning Tasks Tr, which
will be elaborated in Section 3.2. We perform Su-
pervised Fine-Tuning (SFT) in this stage, using the
following loss function:

L = − logP (y|V,Q, Tb, Tr) (2)
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Event Time Match (ETM):

Question : Based on the video, can you match these event s to their correct time frames?  Event #1: A little boy picked up 
the ball and managed to get back on it. Event #2: A little boy is laying on an exercise ball. Event #3: The boy fell off the 
ball and tried to get back on the exercise ball. Span #1: From 0 to 25, Span #2: From 68 to 82. Span #3: From 25 to 47.

Answer： The correct matches are: Event #1 matches span #2, Event #2 matches span #1, Event #3 matches span #3.

A little boy is laying on 
an exercise ball

A boy fell off the ball and tried 
to get back on the exercise ball

A little boy picked up the ball 
and managed to get back on it

0

… … ……

25 47 68 82Event #1(𝑒1) Event #2 (𝑒2) Event #3 (𝑒3)

Event Selection for Given Time (ES):

Question : Which of the following events occurs in the video segment spanning from 25 to 47? Event #1: A little boy picked 
up the ball and managed to get back on it. Event #2: A little boy is laying on an exercise ball. Event #3: The boy fell off 
the ball and tried to get back on the exercise ball. 

Answer： The event that occurs in the video between 25 and 47 is a boy fell off the ball and tried to get back on the 
exercise ball. This corresponds to option event 3 in the list."

Event Ordering (EO):

Question : The video presents a series of events. Could you please order them based on their temporal progression?  Event #1: 

A little boy picked up the ball and managed to get back on it. Event #2: A little boy is laying on an exercise ball. Event #3: 

The boy fell off the ball and tried to get back on the exercise ball.

Answer： According to the video content, the sequence of events should be: Event #2, Event #1, Event #3.

Time Selection for Given Event (TS):

Question : From the video content, do you know when a little boy picked up the ball and managed to get back on appear in?  

From frames 0 to 25, from 25 to 47 or from 68 to 82?

Answer： Based on the video content, a little boy picked up the ball and managed to get back on appears from 68 to 82.

…

Figure 3: Example of temporal video reasoning tasks, which presents a video segmented into three distinct events.
Red text annotates the descriptions of events, while green markers highlight the corresponding video frames.

where y is the model’s output. This loss function
integrates the standard video grounding objective
with our novel tasks, enabling the model to jointly
optimize for accurate temporal localization and
enhanced temporal understanding.

3.2 Time-Perception Enhanced Tasks
The core innovation of our approach lies in the
design of specialized tasks for the third stage of
training, aimed at enhancing the LLM’s temporal
understanding in video content. We introduce two
categories of tasks: Boundary Perception Tasks
and Temporal Reasoning Tasks. These tasks are
designed to address two key challenges in video
grounding: (1) inadequate perception of event
boundaries and (2) insufficient temporal relation-
ship understanding.

3.2.1 Boundary Perception Tasks
Boundary Perception Tasks are designed to im-
prove the model’s ability to accurately identify the
start and end times of events in videos. These
tasks address the common biases in existing mod-
els, which often struggle with precise temporal

localization.
We construct two types of Boundary Percep-

tion Tasks: Duration Perception Task: This task
aims to correct the model’s tendency to over- or
under-estimate event durations. Position Percep-
tion Task: This task focuses on improving the
model’s ability to accurately locate events within
the overall video timeline. The construction of
these tasks follows Algorithm 1, which generates
question-answer pairs based on manipulated time
intervals.

The GenerateErrorInterval function creates
erroneous intervals by applying shifts sampled
from the bias distributions Bdur and Bpos. These
distributions are derived from the error patterns
observed in our Stage 2 model. The GenerateQues-
tion function formulates a question that requires
the model to distinguish between the correct and
erroneous intervals. For example:
Duration Perception:
Q: In which segment do you see {description} hap-
pening: t′s to t′e or ts to te?
A: {description} occurs from ts to te.



9808

Position Perception:
Q: Can you observe {description} in the frame
range from t′s to t′e?
A: No, The event { description} happens from ts to
te.

This task design encourages the model to de-
velop a more nuanced understanding of event dura-
tions and positions within videos.

Algorithm 1 Boundary Perception Task Generation

Require: Video dataset D, bias distributions Bdur,
Bpos

Ensure: Generated task set TBP

1: for each video v ∈ D do
2: Extract ground truth interval [ts, te] and

event description e
3: [t′s, t

′
e]← GenerateErrorInterval

([ts, te], Bdur, Bpos)
4: q ← GenerateQuestion(e, [ts, te], [t′s, t

′
e])

5: a← GenerateAnswer([ts, te])
6: Add (q, a) to TBP

7: end for
8: return TBP

3.2.2 Temporal Reasoning Tasks
While Boundary Perception Tasks focus on indi-
vidual events, Temporal Reasoning Tasks are de-
signed to enhance the model’s understanding of
the relationships between multiple events within a
video. These tasks address the challenge of compre-
hending the complex temporal dynamics in videos
containing multiple events.

We introduce four types of Temporal Reasoning
Tasks: Event Time Matching, which requires the
model to associate events with their correct time
intervals in a multi-event video; Event Ordering,
which challenges the model to arrange events in
their chronological sequence; Event Selection for
Given Time, testing the model’s ability to identify
which events occur within a specified time interval;
and Time Selection for Given Event, which re-
quires the model to select the correct time interval
for a given event description. The construction of
these tasks follows Algorithm 2, which generates
diverse question-answer pairs based on the tempo-
ral relationships between events.

The MeetsFilteringCriteria function en-
sures that selected videos and events meet the fol-
lowing criteria for task generation: video duration
is between 10 and 200 seconds, event durations
range from 10% to 90% of the video length, events

Algorithm 2 Temporal Reasoning Task Generation

Require: Video dataset D, task types T =
{t1, t2, t3, t4}

Ensure: Generated task set TTR

1: for each video v ∈ D do
2: Extract event set E =

{(e1, [ts1, te1]), ..., (en, [tsn, ten])}
3: if MeetsFilteringCriteria(v,E) then
4: for each task type t ∈ T do
5: q ← GenerateQuestion(t, E)
6: a← GenerateAnswer(t, E)
7: Add (q, a) to TTR

8: end for
9: end if

10: end for
11: return TTR

do not overlap, and each video contains at least
three events to support complex reasoning.

Examples of generated questions for each task
type are as follows:

Event Time Matching (ETM):
Q: Based on the video, can you match these events
to their correct time frames? : Event #1: {descrip-
tion}, Event #2: {description}, Event #3: {descrip-
tion}. Span #1: [ts1, te1], Span #2: [ts2, te2], Span
#3: [ts3, te3].

Event Ordering (EO):
Q: The video presents a series of events. Could
you please order them based on their temporal
progression? : Event #1: {description}, Event #2:
{description}, Event #3: {description}.

Event Selection for Given Time (ES):
Q: Which of the following events occurs in the
video segment spanning from ts to te in the video?
Event #1: {description}, Event #2: {description},
Event #3: {description}.

Time Selection for Given Event (TS):
Q: From the video content, do you know when
"{description}" appear in? A. [ts1, te1], B. [ts2, te2],
C. [ts3, te3].

These tasks collectively challenge the model to
develop a comprehensive understanding of tem-
poral relationships within videos, going beyond
simple start and end time identification. We show
template examples of these tasks and populated ex-
amples using description and timestamps, as shown
in Figure 3.
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Model
ActivityNet Charades-STA DiDeMo

R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

7B Series
VideoChat-7B 8.8 3.7 1.5 7.2 9.0 3.3 1.3 6.5 - - - -
VideoLLaMA-7B 6.9 2.2 0.8 6.5 10.4 3.8 0.9 7.1 - - - -
VideoChatGPT-7B 26.4 13.6 6.1 18.9 20.0 7.7 1.7 13.7 - - - -
GroundingGPT-7B - - - - - 29.6 11.9 - - - - -
VTimeLLM-7B 44.0 27.8 14.3 30.4 51.0 27.5 11.4 31.2 36.3 28.8 20.9 27.9
TimeChat-7B - - - - - 32.2 13.4 - - - - -
Ours-7B 50.4 35.4 19.2 36.1 55.5 33.1 14.7 34.7 36.9 29.8 22.5 29.0

13B Series
VTimeLLM-13B 44.8 29.5 14.2 31.4 55.3 34.3 14.7 34.6 43.6 33.0 23.4 32.2
TPE-VLLM-13B 55.0 37.1 20.0 38.1 56.2 36.9 16.2 35.8 46.6 37.5 26.2 34.8

Table 1: Performance comparison of our proposed method with existing Video LLMs on three Video Grounding
datasets (ActivityNet, Charades-STA, and DiDeMo). Methods are grouped into 7B and 13B series. The best results
within each model series are shown in bold.

3.3 Data Integration
After constructing the Boundary Perception and
Temporal Reasoning tasks, we integrate them into
our training pipeline. TPE-VLLM is straightfor-
ward:

1) Task Combination: We uniformly mix the
newly generated tasks with the original video
grounding data. This ensures that the model is
exposed to both the primary video grounding task
and the new temporal reasoning tasks during train-
ing.

2) Data Volume: We generate approximately
20,000 new task instances in total. This relatively
small addition (compared to 128,000 entries from
stage 2 and 558,000 entries from stage 1) is de-
signed to enhance the model’s temporal reason-
ing abilities without overwhelming the core video
grounding objective.

3) Integration: These new tasks are directly in-
corporated into the third stage of training, alongside
the original video grounding data.

This simple yet effective integration approach
allows our model to benefit from the additional tem-
poral reasoning tasks while maintaining its focus
on the primary video grounding objective.

4 Experiments

4.1 Dataset
To evaluate the effectiveness of our model, we
conducted experiments on three publicly avail-
able datasets: ActivityNet Captions (Krishna et al.,
2017), DiDeMo (Anne Hendricks et al., 2017), and
Charades-STA (Gao et al., 2017).

ActivityNet Captions. This dataset comprises
10,009/ 4,917/ 5,044 videos in the training, vali-
dation, and test sets respectively, with correspond-
ing query counts of 37,417/ 17,505/ 17,031. The
average video duration is 117.6 seconds, and the
average query length is 37.14 words. We adhere
to the original dataset’s splitting strategy and will
report our results on the val 2 split.

Charades-STA. Charades-STA encompasses
complex human behaviors and activities. The train-
ing set consists of 5,338 videos with 12,408 queries,
while the test set contains 1,334 videos with 3,720
queries. The average video duration is 30.06 sec-
onds, and the average query length is 7.22 words.
We will report our results on the test set. It is
noteworthy that we will utilize Charades-STA to
evaluate our model’s out-of-distribution generaliza-
tion capability. The training data does not include
any training data from the Charades-STA dataset.

DiDeMo. This dataset is divided into 8,395/
1,065/ 1,004 videos for the training, validation,
and test sets respectively, with corresponding query
counts of 33,580/ 4,260/ 4,016. Each video is ap-
proximately 30 seconds in length, with an average
query length of 7.5 words. We adhere to the origi-
nal dataset’s splitting strategy and will report our
results on the test set.

4.2 Metric
We employ the recall rate “R@n, IoU = m”,
and mIoU to evaluate our model’s performance.
Where R represents the proportion of queries
where at least one of the k predictions has an
IoU greater than m with the ground truth. mIoU
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Boundary Perception Temporal Understanding ActivityNet Charades-STA
Duration Position ETM EO ES TS R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU

✘ ✓ ✓ ✓ ✓ ✓ 46.84 33.19 17.64 33.58 53.64 32.77 14.41 33.58
✓ ✘ ✓ ✓ ✓ ✓ 47.01 33.40 17.83 33.87 53.93 31.22 13.58 33.26

✓ ✓ ✘ ✓ ✓ ✓ 48.63 34.04 18.60 35.02 53.70 31.35 13.65 33.09
✓ ✓ ✓ ✘ ✓ ✓ 49.50 34.67 18.76 35.53 54.27 31.95 13.36 33.54
✓ ✓ ✓ ✓ ✘ ✓ 48.60 34.06 18.72 34.98 55.13 32.87 14.28 34.38
✓ ✓ ✓ ✓ ✓ ✘ 47.03 32.32 17.57 33.88 53.83 33.91 16.24 34.46

✘ ✘ ✓ ✓ ✓ ✓ 43.55 30.91 16.82 31.74 53.07 32.68 15.29 33.63
✓ ✓ ✘ ✘ ✘ ✘ 44.44 30.58 16.64 32.37 52.37 32.05 14.91 33.09
✓ ✓ ✓ ✓ ✓ ✓ 50.39 35.35 19.24 36.13 55.26 33.15 13.57 34.49

Table 2: Ablation studies on Boundary Perception and Temporal Understanding tasks for video grounding on
TPE-VLLM(7B). Performance is evaluated on ActivityNet and Charades-STA datasets. Checkmarks (✓) indicate
remaining tasks, while red crosses (✘) denote removed relevant task.

represents the mean Intersection over Union be-
tween the predicted intervals and the ground truth
across all test samples. Consistent with previous
works (Huang et al., 2024), we set k = 1 and
m = {0.3, 0.5, 0.7} for evaluation.

4.3 Implementation Details
For the visual encoder, we use CLIP ViT-L/14 (Rad-
ford et al., 2021) to extract visual features and keep
the encoder frozen. For the Adapter, we use a linear
layer and train it in the stage 1. For the LLM, we
use Vicuna v1.5 (Chiang et al., 2023) for 7B and
13B, and fine-tuning them with LoRA, the param-
eters set to r = 64 and alpha = 128. We use the
AdamW (Loshchilov, 2017) optimizer and set the
learning rate to 0.0001. Our 7B model is trained on
1 RTX4090 GPU, while the 13B model is trained
on 4 NVIDIA A100 GPUs.

4.4 Baselines
We compared our model with existing SOTA
video-LLMs. These include VideoChat (Li et al.,
2023), VideoLLaMA (Zhang et al., 2023), and
VideoChatGPT (Maaz et al., 2023), which are de-
signed for video understanding and interaction
that have been fine-tuned on large-scale video-
text pairs. There are also GroundingGPT (Li
et al., 2024), VTimeLLM (Huang et al., 2024) and
TimeChat (Ren et al., 2024), which are video large
models specifically designed for fine-grained video
temporal tasks.

4.5 Main Results
As shown in Table 1, the experimental results on
three widely used video grounding datasets high-
light the superiority of our model across different
parameter settings. We compare our proposed ap-
proach to SOTA Video-LLMs, leading to several

key findings, which underscore the potential of our
approach in bridging the gap between language
models and fine-grained video understanding.

For 7B series, TPE-VLLM consistently sur-
passes existing 7B Video LLMs across all datasets
and evaluation metrics. On ActivityNet, it achieves
notable gains compared to the next best model,
VTimeLLM (7B parameters), with relative im-
provements of 14.5%, 27.3%, 34.3%, and 18.8%
for R@0.3, R@0.5, R@0.7 and mIoU, respec-
tively. On DiDeMo, TPE-VLLM also posted
relative gains of 1.7%, 3.5%, 7.7% and 3.9%
on R@0.3, R@0.5, R@0.7 and mIoU, respec-
tively. On Charades-STA, we tested the out-of-
distribution performance, compared to our baseline
VTimeLLM, our results achieved relative gains of
8.8%, 20.3%, 29.0% and 11.2% in R@3, R@5,
R@7 and mIoU, respectively. Concurrently, when
compared to the current state-of-the-art model on
this dataset, Time Chat, our model still achieved
relative improvements of 2.8% and 9.7% in R@0.5
and R@0.7, respectively. The ability of our model
to maintain high performance in the face of en-
tirely new and unseen data distributions demon-
strates the sophistication and robustness of our
model. While scaling to larger model sizes, TPE-
VLLM obtain notable performance improvements
observed across all datasets. The experiments
demonstrate strong generalization and consistent
performance across multiple datasets with vary-
ing distributions. Specifically, on ActivityNet, we
achieved an average improvement of 7.58%, sig-
nificantly surpassing the VTimeLLM-13B. These
results highlight the effectiveness of our method
in improving both boundary perception and fine-
grained temporal reasoning.
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Data Size
Charades-STA

R@0.3 R@0.5 R@0.7 mIoU
20% 53.51 32.55 14.72 33.59
40% 53.67 31.32 13.84 33.01
60% 54.05 31.13 13.33 33.22
80% 54.81 31.00 13.55 33.76
100% 55.26 33.15 13.57 34.49

Table 3: Performance comparison with different data
sizes on Charades-STA dataset.

4.6 Ablation Study

Based on the ablation studies depicted in Table 2,
our experimental design methodically assesses the
impact of removing specific tasks related to bound-
ary perception and temporal understanding in video
grounding on the TPE-VLLM (7B) model. These
studies are executed across the ActivityNet and
Charades-STA datasets.

The ablation study clearly shows that removing
all tasks related to Boundary Perception and Tem-
poral Understanding significantly influences the
model’s performance. Specifically, tasks associ-
ated with boundary perception are particularly im-
pactful due to their strong alignment with the eval-
uation metrics. This alignment not only validates
our model’s effectiveness but also underscores the
crucial role of boundary tasks in achieving supe-
rior performance. Removing any individual gran-
ular tasks also impacts the model’s performance,
thereby affirming the significance of each compo-
nent. This outcome indicates that the tasks we have
designed are complementary, they work synergis-
tically to mitigate the impact of removing other
tasks, thus enhancing the model’s resilience. While
the integration of all tasks yields the best results,
the influence on the Charades dataset is notably
milder compared to ActivityNet. This discrepancy
may stem from the shorter video lengths and larger
event proportions in Charades, which could dimin-
ish the impact of boundary ambiguities on perfor-
mance metrics. Further exploration of these effects
is discussed in subsequent sections 4.8.

4.7 Error Analysis

4.8 Data Size Impact Analysis

The original training dataset comprised of 16,128
entries. After partitioning 30% for validation pur-
poses, we utilized 3720 entries for experiments
of TPE-VLLM. To elucidate the impact of our
methodology on the model’s temporal understand-
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Figure 4: The relative deviation of the center point of our
predicated results compared with baseline VTimeLLM.
The center point deviation represents the degree of de-
viation between the center point of the forecast interval
and the true interval. The lower the deviation, the more
accurate the prediction of the event center.
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Figure 5: The illustration of the time deviation of our
predicted results compared with the deviation of baselin
VTimeLLM. The time deviation represents the differ-
ence between the duration of the predicted interval of
the event and the duration of the true interval. The lower
the difference, the closer the predicate time is to the true
time.

ing, rather than merely the increase in data volume,
we conducted experiments with 20%, 40%, 60%,
and 80% of the total constructed dataset. As il-
lustrated in Table 3, employing only 20% of the
dataset achieves results comparable to those ob-
tained using the full dataset. This finding under-
scores the efficiency of our approach in leveraging
smaller data volumes effectively. As the data size
increases to 40%, 60%, 80%, and eventually 100%,
there is a noticeable improvement in performance
across all metrics, which highlights the capability
of our method to bridge the gap between video tem-
poral perception and textual temporal understand-
ing. This incrementally enhances the model’s per-
formance, demonstrating the mitigation of impacts
due to continuity and information density in the
dataset. This nuanced approach effectively lever-
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ages increasing amounts of data to progressively
refine the model’s temporal understanding capabil-
ities, validating the effectiveness of our method in
enhancing temporal alignment between the visual
and textual modalities.

We compared the differences in the proportions
of data within various fine-grained error inter-
vals between our method and the SOTA model
VTimeLLM.

We report the relative deviations in both the cen-
tral point prediction and the duration prediction
between our model and VTimeLLM, which is the
difference in deviation between our model’s pre-
dictions and those of VTimeLLM. Positive values
indicate that TPE-VLLM has a higher proportion
in these error intervals, while negative values indi-
cate that the VTimeLM is higher. The central point
value represents the temporal center at which the
event occurred. A lower range of deviation indi-
cates that the predicted center is closer to the actual
center. A higher quantity of data within the lower
deviation range, and a lower quantity within the
higher deviation range, signifies that a greater num-
ber of cases have predicted the true event center
more accurately, while fewer cases have predicted
the incorrect event center. This indicates a bet-
ter predictive performance. Similarly, the duration
deviation represents the accuracy of the predicted
event duration. The greater the amount of data with
smaller deviations, the better the performance of
the model.

Figure 4 shows the deviation of the predicted
interval center point from the true center across
different intervals. Notably, our model exhibits a
higher proportion of predictions within smaller er-
ror ranges and significantly fewer predictions in
larger error ranges compared to the VTimeLM.
This indicates that our model achieves a more pre-
cise center point prediction, effectively reducing
the instances of large errors. Figure 5 displays the
relative lengths of the predicted intervals compared
to the actual intervals. TPE-VLLM demonstrates
a greater proportion of predictions within a tight
error margin and fewer predictions with substantial
deviation relative to the VTimeLM. This pattern
suggests that our method not only predicts more
accurate interval lengths but also maintains consis-
tency in predicting closer to the true interval size,
even under varying conditions.

5 Conclusion

In this paper, we introduced Time-Perception En-
hanced Video Grounding via Boundary Perception
and Temporal Reasoning, a method designed to
improve large language models’ temporal aware-
ness in video grounding tasks. To address the
limitations in LLMs’ temporal understanding of
video data, we designed two categories of special-
ized tasks: Boundary Perception Tasks and Tem-
poral Reasoning Tasks. These tasks enable LLMs
to more accurately identify event boundaries and
understand temporal relationships between events
in videos. By incorporating such diverse bound-
ary perception and temporal reasoning tasks, TPE-
VLLM achieved competitive performance on three
public datasets and demonstrated the effectiveness
of temporally-focused task design in enhancing
LLMs’ fine-grained video understanding capabili-
ties.

6 Limitations

A limitation of our current approach is its reliance
on labeled dataset construction. The construction
of temporal reasoning and boundary perception
tasks depends heavily on original labeled video
grounding datasets. Future work could focus on
exploring self-pity and reasoning to alleviate this
dependence on labeled data. Such advancements
may help improve the model’s ability to general-
ize to plain video datasets and further enhance its
reasoning capabilities, allowing it to infer more
complex temporal dynamics.
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